
0018-9162/00/$10.00 © 2000 IEEE58 Computer

Reconfigurable
Accelerators 
for Combinatorial
Problems 

R
econfigurable accelerators can improve
process time on combinatorial problems
with fine-grained parallelism. Such problems
contain a huge number of logical operations
(NOT, AND, and OR) that can evaluate simul-

taneously, a characteristic that varies considerably
from problem to problem. Because of this variability,
such combinatorial problems are approached using
instance-specific reconfiguration—hardware tailored
to a specific algorithm and a specific set of input data. 

Boolean satisfiability (see the sidebar) is a common
combinatorial problem that exhibits fine-grained par-
allelism that varies considerably based on the situation.
Its solution is thus an ideal candidate for improvement
with instance-specific reconfiguration. In fact, simula-
tions of an instance-specific accelerator show potential
speedups by a factor of up to 140,000 in execution time
over the solution by a software solver. We worked on
a prototype in current FPGA technology that leads to
an order-of-magnitude speedup in the execution of dif-
ficult satisfiability problems. A conference and work-
shop published the details of that work.1,2

IMPLEMENTING SAT IN HARDWARE 
The basic architecture for solving Boolean satisfiabil-

ity (commonly known as “SAT” for short) in hardware,
shown in Figure 1, consists of three building blocks: a
chain of finite state machines (FSMs), deduction logic,
and a global controller. The FSMs are connected in a
one-dimensional array—each FSM can activate its two
neighboring FSMs, one above and one below. The
deduction logic is a combinational circuit that computes
the three-valued logic result of the Boolean formula. The

global controller starts computation and handles I/O.
The architecture is instance-specific because the SAT
problem instance we want to solve determines the num-
ber of FSMs and the deduction logic. 

The hardware architecture follows a simple assign-
and-determine procedure. The architecture maps SAT
problem variables to three possible values: 0, 1, or X
(X denotes an unassigned variable). Each assigned
variable corresponds to an FSM holding the variable’s
value. Initially, all variables are unassigned, and the
global controller activates the topmost FSM. An acti-
vated FSM assigns 0 to its variable and checks the for-
mula’s result. 

If the formula evaluates to 1, this partial assignment
satisfies the formula and computation stops. An eval-
uation to 0 contradicts the formula, and the FSM tries
the complementary value for its variable. If the for-
mula evaluates to X, the FSM activates its neighbor
FSM below. If the FSM tries both value assignments (0
and 1) without success (without evaluating the for-
mula to 1), it relaxes this variable by assigning X, and
activates the FSM above.  

The act of the first FSM in relaxing its variable and
activating the global controller proves the SAT prob-
lem to be unsatisfiable. This procedure implements
backtracking search with a fixed ordering of variables,
a rather simple deduction step that checks each par-
tial assignment for satisfaction or contradiction, and
does not perform a diagnosis.

By exploiting fine-grained parallelism in the deduction
logic, this process has a huge advantage over software
solvers. The deduction logic consists of three-valued logic
operators (NOT, AND, and OR), a good match for the fine-

Tailoring hardware to a specific algorithm and a specific set of input data
can boost execution several fold. One hardware circuit that solves Boolean
satisfiability improved execution time by a factor of 140,000 over state-of-
the-art software solvers.  

Marco
Platzner
Swiss Federal
Institute of
Technology
(ETH) Zurich 

C O V E R  F E A T U R E



grained hardware structures of field-programmable gate
arrays. The deduction logic computes the Boolean for-
mula in a single clock cycle. Even newer microproces-
sors, with clock frequencies 10 to 20 times higher than
FPGA-based SAT accelerators, cannot compete, except
for trivially small SAT problems. On the other hand, soft-
ware solvers have more powerful strategies for decision,
deduction, and diagnosis that require fewer value assign-
ments to find a solution.

RESULTS 
Simulations of the basic SAT architecture with

problems from the DIMACS (Center for Discrete
Mathematics and Theoretical Computer Science)
benchmarks suite showed raw speedups between 10
and 140,000 times the performance of state-of-the-
art software SAT solvers. These results reveal the great
potential of instance-specific acceleration.

To obtain realistic performance data, including
hardware compilation and configuration times, we
created an accelerator prototype. This prototype reads
a SAT problem and generates an instance-specific cir-
cuit, which it compiles into a configuration bitstream
for an FPGA. The prototype then loads the bitstream
onto the FPGA, starts the computation, and if the
FPGA finds a solution, the prototype reads the vari-
able values back from the FPGA. We implemented this
prototype on a low-cost system: a Windows-NT-based
PC with a Digital/Compaq PCI Pamette board, which
contains four Xilinx XC4028 FPGAs.

This prototype speeds up runtime by an order of
magnitude for medium-sized SAT problems. As an
example, Figure 2 shows the runtimes and the over-
all speedups for instances of the pigeon hole prob-
lem—a well-known benchmark that asks if it is
possible to place n +1 pigeons in n holes without two
pigeons being in the same hole—from the DIMACS
benchmarks suite. For small problem sizes (hole6,
hole7, and hole8), hardware compilation times dom-
inated the accelerator’s runtime. For hole9, we ob-
served a real overall speedup for the first time,
measuring hardware compilation and execution time
and comparing it to the runtime of a software solver.
For hole10, using the reconfigurable accelerator
reduced the software runtime from 2 hours and 7
minutes to 17 minutes. Larger instances of this prob-
lem require FPGAs with more logic resources than
Xilinx XC4028s offer. 

We have also implemented extensions to our basic
architecture using more powerful deduction strategies
based on don’t-care variables and Boolean constraint
propagation (a deduction mechanism that exploits the
fact that a partial assignment can imply values for
other variables). Although these variants can use fewer
clock cycles to find solutions, they also require more
hardware, resulting in slower FPGA designs. 

FPGAs will continue to become denser and faster,
which will benefit instance-specific accelerators.
Additionally, reduced FPGA synthesis and com-

pilation times will enable the promising high raw
speedups for algorithms like those for SAT. Using
today’s FPGAs restricts instance-specific accelerators
to hard combinatorial problems with long software
runtimes. Our experiments further revealed that a
reconfigurable SAT accelerator does not accurately
produce speedups over different benchmark classes.
Moreover, many SAT problems have very specific
properties for which highly optimized software
solvers exist. A practical acceleration engine will have
to combine an instance-specific accelerator with soft-
ware SAT solvers. If the software solvers do not ter-

April 2000 59

Host interface

Global controller

FSM1

X1

FSM2

X2

FSMn

Xn

Deduction
logic

Result

Figure 1. Basic hard-
ware architecture for
solving SAT problems
with backtracking
search. 

Runtime(s)

10K

1K

100

10

1

0.003 0.034
0.220

1.376

7.408

Overall
speedup

Benchmark
hole6 hole7 hole8 hole9 hole10

Software
Hardware execution
Hardware compilation

Figure 2. Runtimes
and overall speedups
for hard SAT problems,
measured for the
basic SAT architec-
ture running at 
20 MHz.



60 Computer

minate within a given period, the software can
migrate the problem to reconfigurable hardware. We
envision future reconfigurable accelerators for com-
binatorial problems as plug-ins to workstations.
These will employ a handful of high-density FPGAs
and have a software shell that makes their technol-
ogy invisible to the user. ❖

References
1. M. Platzner and G. De Micheli, “Acceleration of Satis-

fiability Algorithms by Reconfigurable Hardware,” Int’l
Workshop Field-Programmable Logic and Applications,
Springer-Verlag, Berlin, 1998, pp. 69-78.

2. O. Mencer and M. Platzner, “Dynamic Circuit Genera-
tion for Boolean Satisfiability in an Object-Oriented Design
Environment,” 32th Hawaiian Int’l Conf. System Sciences,
IEEE CS Press, Los Alamitos, Calif., 1999.

Marco Platzner is a senior researcher in the Computer
Engineering and Networks Lab at the Swiss Federal
Institute of Technology Zurich, Switzerland. His
research interests include reconfigurable computing,
hardware-software codesign, and embedded systems.
Platzner earned a PhD in telematics from Graz Uni-
versity of Technology, Austria. He is a member of the
ACM and the IEEE. Contact him at platzner@
tik.ee.ethz.ch or marco.platzner@computer.org.

Boolean Satisfiability (SAT) 
SAT is a fundamental problem in math-

ematical logic and computing theory and
has many practical applications in auto-
mated reasoning, computer-aided design
and manufacturing, databases, robotics,
machine vision, computer architecture,
and networks.1 For example, engineers
use it for the automated generation of test
patterns to test digital circuits for faults.  

The SAT problem is to find an assign-
ment of truth values (0,1) to a set of
Boolean variables, x1, ..., xn, so that a given
Boolean formula evaluates to 1. SAT is NP-
complete, which means the worst case run-
time of an exact SAT solver grows expo-
nentially with the number of variables. 

Most exact SAT solvers rely on back-
tracking and perform a depth-first search

of the problem’s search tree. Figure A
shows the search tree for the following
formula:

(x1 OR x2) AND (x1 OR x3)  
AND (x1 OR x2)

Starting with all variables unassigned,
the procedure iteratively picks a free vari-
able and assigns it a truth value. When the
procedure assigns all variables (steps a, b,
and c in Figure A), it checks the result of
the formula. If the formula evaluates to 1,
satisfiability is proven. Otherwise, the pro-
cedure goes back until it can assign a vari-
able a value that it hasn’t tried earlier (step
d). The procedure continues, systemati-
cally alternating forward search and back-
tracking until it finds a satisfying assign-

ment (step e) or scans the whole search
tree.

Such a procedure would be very time-
consuming, however. Practical SAT solvers
use improved strategies for decision,
deduction, and diagnosis.2 The decision
step selects a variable for the next assign-
ment, either statically with a fixed vari-
able order or dynamically, depending on
information gathered during search. The
deduction step infers information from
the current partial assignment. 

For example, in the sample formula,
assigning x1 ← 0 and x2 ← 1 already con-
tradicts the premise (the formula cannot
evaluate to 1); there is no point in assign-
ing x3. Such deduced information con-
tributes greatly to a SAT solver’s efficiency
and sometimes prunes off large parts of
the search tree. 

A widely used deduction mechanism is
Boolean constraint propagation. Intro-
duced first in the Davis-Putnam algorithm,3

this technique exploits the fact that a partial
assignment can imply values for other vari-
ables. A diagnosis step analyzes the contra-
diction’s cause and uses the inferred knowl-
edge to search more efficiently. 

References
1. J. Gu et al., “Algorithms for the Satisfia-

bility (SAT) Problem: A Survey,”
DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, Vol.
35, 1997, pp. 19-151.

2. J.P.M. Silva and K.A. Sakallah, “GRASP:
A New Search Algorithm for Satisfiabil-
ity,” Proc. Int’l Conf. CAD, IEEE CS Press,
Los Alamitos, Calif., 1996, pp. 220-227. 

3. M. Davis and H. Putnam, “A Comput-
ing Procedure for Quantification The-
ory,” J. ACM, July 1960, pp. 201-215.

X2

✗ ✗

X3

✗ ✗

X3

✓ ✓

X3

X2

Pruning

c 0

d

e 1 10 10 1

1

0

010

10

b

a

X1

✗ ✓

X3

Figure A. Search tree for the sample formula. 


