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Promises and Challenges of Evolvable Hardware

Xin Yao, Senior Member, IEEEand Tetsuya Higuchi

Abstract—Evolvable hardware (EHW) has attracted increas- motivation for hardware implementation of EA’s is to speed
ing attention since the early 1990’s with the advent of easily up the execution oEA functions Such Speedup' however'
reconfigurable hardware, such as field programmable gate arrays does not necessarily imply a faster EA application because it

(FPGA's). It promises to provide an entirely new approach to . . o
complex electronic circuit design and new adaptive hardware. d0€S not speed up fitness evaluation, which is often the most

EHW has been demonstrated to be able to perform a wide range time-consuming part of an EA application. Discussion of EA’s
of tasks from pattern recognition to adaptive control. However, hardware implementation is beyond the scope of this paper.
there are still many fundamental issues in EHW that remain EHW involves two major aspects—simulated evolution and

open. This paper reviews the current status of EHW, discusses : . . ; :
the promises and possible advantages of EHW, and indicates electronic hardware. According to different EA’s, e.g., genetic

the challenges we must meet in order to develop practical and @lgorithms (GA's), genetic programming (GP), evolutionary
large-scale EHW. programming (EP), and evolution strategies (ES’s), and dif-
Index Terms—Adaptive hardware, evolutionary algorithms, fgrent electronic circuits, €g. d'g'tal’_ anal.ogue, and hyb_“d
evo|utionary Computation’ field programmab|e ga’[e arrays C|rCU|tS, Used, we C0u|d Cla.SS|fy EHW into d|ﬁerent CategOI’IeS
(FPGA’s), reconfigurable hardware. along these two dimensions. There are, however, at least two
other important dimensions we should consider in investigat-
ing EHW, i.e., how the simulated evolution is realized and
what the simulated evolution is used for, because they have a
EVO'—VAB'-E hardware (EHW) refers to hardware thalgjrect impact on the future research and development of EHW.
can change its architecture and behavior dynamically andgyy s usually implemented on programmable logic
autonomously by interacting Wi_th its enviro_nment. At preser’_@eviceS (PLD’s), such as field programmable gate arrays
almost all EHW use an evolutionary algorithm (EA) as thefrpga’s). The architecture of a PLD and thus its function are
main adaptive mechanism. One of the key motivations behigdiermined by a set of architecture bits that can be changed
EHW is to learn from nature since she has done so wejle ' reconfigured). In EHW, the simulated evolution is used
in evolving wonders such as ourselves (i.e., human being§)eyolve a good set of architecture bits to solve a particular
W_lthout external for_ces. Howevdearningfrom nature is qwte_ problem. According to de Garis [6], EHW can be classified
different from copyingit. There are many new challenges ifn, o categories, i.e., extrinsic and intrinsic EHW. Extrinsic
front of us if we want to harness the power of evolution IBHW simulates evolution by software and only downloads

EHW. This paper discusses the promises and challengesﬂgg best configuration to hardware in each generation; i.e., the

EHW in more detall in later sections. hardware is only reconfigured once. Intrinsic EHW simulates

There are different VIEWs on what EHW is, dtipen('jmg' %8 olution directly in its hardware; i.e., every chromosome
the purpose of EHW. One view regards EHW as "applicatiory ill be used to reconfigure the hardware. The EHW will be
of evolutionary techniques to circuit synthesis” [1, abstrac

. . econfigured the same number of times as the population size

Another view regards EHW as hardware that is capablﬁ . .
. 4 o ) In each generation. Hirst [1] wrote a good survey paper alon

of online adaptation through reconfiguring its architectu 9 [ 9 y pap 9

re. . .
dynamically and autonomously [2]. Although these views artiIIS I|n§. Sanghezet al. [7] descnbed_a phylogeny, ontogeny,
L and epigenesis (POE) model that nicely captured some of the
closely related and quite similar to each other, they emphasize - ; :
. . Characteristics of various EHW's.
different aspects of EHW. The former one uses simulated . .
n this paper, we take a much broader view on EHW and

evolution as an alternative to conventional specification—baseg

I. INTRODUCTION

electronic circuit design, while the later uses it as an adaptigacriwrcehfzest’oaTz ;Treg)f:m\/\/l(:s:%ien?r:af?\r:gzdis"; gi:‘rf?atanigd
mechanism. However, the line between the two is gray. X ' . - )
gray between EHW used as an alternative to circuit design and

EHW is fundamentally different from the hardware imple- . . .
mentation of EA’s, in which the hardware architecture doé’:sHW as online adaptive hardware. A,lth,OUQh the t'echmques
ed to develop them may be very similar, the criteria used

not change and is used to implement EA functions, suth

as selection, recombination, and mutation [3]-[5]. The malf €valuate them are different. For EHW that is used as
an alternative to conventional circuit design, there are two
g\(/laguscr_ipt rfiﬁeti\éed CApril 2t1't_199|7:|f?V|i|5_ed Jaméafy 15ysl9h98-| . distinct phases. One is the evolutionary design phase, and the
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The rest of this paper is organized as follows. Section $ide. Such restriction ensures that all offspring produced are
reviews the work of evolving hardware as an alternative tegal programs of the language. In addition to crossover and
designing it from specifications, as is done in conventionaiutation, gene duplication and deletion were also used to
electronic circuit design. Section Il discusses the attempt ofodify derivation trees.
developing EHW for online adaptation. Sections IV and V The idea of evolving the grammar itself was mentioned [11].
present some views toward EHW and other nonevolutionaltywas hoped that as the tasks to be performed by the hardware
approaches to EHW. Finally, Section VI concludes this papkecame more and more complex, the grammar itself would
with a summary of the paper and some remarks. evolve to cope with the increasing complexity. A grammar
was represented by a production diagram, which is a directed
graph. The main genetic operator proposed was a kind of node
) ) ) . splitting operation [11].

Although EHW is a relatively new term, evolutionary design’ gosware simulation of evolving a binary adder using SFL

of electronic circuits have been attempted for more than grams was carried out [11]. The task can be described as
decade [8]-[10]. These early attempts did not design thgows.

architecture or function of a circuit. They were only used to

optimize certain aspects of electronic circuit boards, e.g., cell The target is two input and one output circuit; inputting

placement [9], [10] and compaction of symbolic layout [8]. two sequences of binary numbers from lowest figure, the

In essence, such work is better described as combinatorialcircuit produces the sum of the binary numbers from the

optimization by EA’s. lowest figure in the output terminal. The correct circuit
Recent EHW work concentrates on evolutionary design of must consider the carry from the lower bit, so it belongs

electronic circuits, although the ultimate goal is to develop in a class of sequential circuits.

online adaptive hardware. So far, few studies have be‘I::He fithness of each individual (i.e., a derivation tree/program)

reported on EHW, which adapts its architecture and function N : .
. o . . was calculated by evaluating its correctness in adding two

while operating in a real physical environment. . A . S
According to the level of chromosome representation thle536_t".t numbers, which include all possmlg combmauo-ns Qf
' t(\:/¥o 4-bit numbers [11, p. 376]. A complete binary adder circuit

design approach to EHW can be classified into the d'rewas found in the experiment,

and indirect ones. The direct approach to EHW encodesz) Related Work on Evolving Derivation Tree§he chro-

circuit’s architecture bits as chromosomes, which specify the . . : _
some representation scheme used in evolving the binary

L ) . 0
connectivity and functions of dn_‘fergnt hardware c:omp_)on.enﬁc],dder was also studied by Whigham [15]-{17] independently
(often at the gate level) of the circuit. In contrast, the indire¢ ; .

: . : n a very different context. Whigham [15], [16] used a
approach does not evolve architecture bits directly. It uses

: . Greammar to incorporate biases into GP to learn difficult
a higher level representation, such as trees or grammats

N complex concepts. The major concern was to introduce
as chromosomes. These trees or grammars are then use Q. rati . :

o ecClarative biases into GP under the general framework of
generate circulits.

inductive learning. There was no direct connection with EHW.

Whigham [15], [16] used similar crossover and mutation op-
erators to those used by Hematial. [11]. A schema theorem

1) Evolving Digital Circuits: A typical example of the in- under the derivation tree representation and the crossover and
direct approach is the evolution of a binary adder usingutation was given [18]. The idea of evolving the grammar
Hardware Description Language (HDL) programs [11]. litself was mentioned but not tested.
this case, programs written in Structured Function DescriptionWhigham’s work provides a different view toward the
Language (SFL) were encoded as chromosomes and subje@wvolution of grammars. Such evolution can be regarded as
evolution [12]. The chromosome representation is a derivatitime evolution of biases; i.e., certain knowledge or heuristics
tree generated from a context-free grammar, which is callegbout what kind of circuits should be evolved. Such biases
rewriting system [11]. Each tree can generate one SFL prograrauld be accumulated and obtained through the evolution of
deterministically if the tree is “well-structured” [11, p. 372].SFL programs and used to guide the evolution of grammars at
Programs generated by different derivation trees can coveralhigher level. The importance of biases in inductive learning
possible programs in the SFL language, which is defined hgs long been recognized in the machine learning field and
the grammar. will not be repeated here.

The root of a derivation tree is the start symbol of the 3) Evolving Analogue Circuitsin comparison with digital
grammar. The internal nodes are nonterminal symbols of thiecuits, analogue circuits are more difficult to design. Recent
grammar, and the leaves are terminal symbols. The crossowerk on evolving analogue circuits using GA's [19] and GP
and mutation operators applied to derivation trees are simi[20]-[24] shows an alternative to analogue circuit design using
to those used in GP [13], [14], but with some constraints. the evolutionary approach. One of the key issues in such evolu-
branch (i.e., subtree) in a derivation tree can only be repladéshary design is to find a suitable chromosome representation
(through either crossover or mutation) by another one witif analogue circuits. This problem is quite similar to that in
the same nonterminal node as the root (of the subtree). Thimlutionary artificial neural networks (EANN'S) [25]-[27], in
is equivalent to replace a production (i.e., rewriting) rule iwhich a good chromosome representation of EANN's is also
the grammar with another one having the same left-harmdry important.

Il. EVOLUTIONARY DESIGN OF ELECTRONIC CIRCUITS

A. Indirect Approach to Evolutionary Circuit Design
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In the GP approach to analogue circuit design, trees areOne of the experiments carried out by Thompson was the
used to construct circuits. These circuit-constructing trees aeolution of a slow electronic oscillator using high-speed logic
evolved by GP [20]-[24]. Each tree can contain connectiogates [31], [33]. The aim of such an experiment was to find
modifying functions, component creating functions, and autout whether “the high-speed components can somehow be
matically defined functions. A number of circuits, such as assembled to give rise to slower dynamics, without explicitly
low-pass “brick wall” filter, an asymmetric bandpass filter, androviding large time-constant resources or slow-speed clocks.”
an amplifier using transistors, have been evolved successfiB] The experiment was quite different from others in that
[20], [23]. both spatial and temporal constraints were removed. The

The work on evolving analogue circuits described here doesgolving circuit operated entirely in an asynchronous mode
not belong to EHW in a strict sense because the evolution waghout any clocks. The delay at each gate was assigned a
all implemented and simulated by software. The simulaticeal-value “selected uniformly randomly from the range 1.0
was carried out on a parallel computer system consisting tof 5.0 nanoseconds.” The delay of connections was ignored,
64 Power PC 601 processors (80 MHz) arranged in a toroida., set to zero.
mesh [20]. Thompson [31] fixed the number of logic gates (also called

nodes) at 100 in his experiment and defined the fithess of an
individual as follows.

The objective was for node number 100 to produce a

Instead of evolving indirectly HDL programs or trees that square wave oscillation of 1 kHz, which means alter-
specify circuit architecture and function, direct evolution of nately spending 0.5¢ 10~2 s at logic1 and at logic
architecture bits of PLD’s, such as FPGA's, has also beenO. If & logic transitions were observed on the output of
proposed [28], [29], [2]. The architecture bits of an FPGA node 100 during the simulation, with thah transition
refer to those bits that specify its logic function and in- occurring at time,, s, the average error in the time spent
terconnections. The architecture bits uniquely determine theat each level was calculated as

B. Direct Approach to Evolutionary Circuit Design

architecture and function of an FPGA. By evolving these bits |k
(i.e., chromosomes), hardware can be evolved. average error= —— Z |(tp — tn_1) — 0.5 x 1073, (1)
It is worth pointing out here the distinction made earlier in k—1=

Section | of this paper between EHW used as an alternative to
circuit design and EHW as online adaptive hardware. Higuchi
et al. [28], [29], [2] have e?<pI|C|tIy emphasized the latter trial, which lasted for 10 ms of simulated time. The
although some of the techniques they proposed can also b

) . L . O D&itness was simply the reciprocal of the average error.
used in evolutionary circuit design. The hardware evolution Each node (ie.. loai i ired ; t of
described in this subsection is at the gate level since all ach node (i.e., logic gate) required a genotype segment o

hardware functional units are simple logic gates, such as A db'tfs n the chré)rrrl]osome reprefs_en;anon, Véhlcl:] ehncoded the
and OR gates [30]. node function and the sources of its inputs. Each chromosome

had a total of 101 segments, i.e., 2424 bits. The GA used

the six-multiplexor problem has been carried out to show {{gas a “g?neratmnal one W'.th elitism and linear rank-based
potential of the gate level evolution [28]. The chromosom%EIeCt'on' Tr_'e populatlor_1 size was 30 [31].

used in the simulation had 108 bits, of which 12 bits were " the forfieth generation of one run, the GA was able
used to specify the function of the logic cell [an output logi 0 ev.olv_e.an ogcﬂlator with apprpxmately 4 kHz, while the
macro cell (OLMC)] and 96 bits used to specify a fuse arr st |nQ|V|duaI in the random |n|t|e_1l popullanon was one with
that determines interconnections between inputs and the lo Rprommatgly 18 MHz. 'Ehe expgnment did not gontmue after
cell. A generational GA with uniform crossover, bit-flipping 0 generatl_ons_ due to excesilve procesiqr time neede_d o
mutation, and roulette wheel selection was used to evolﬁgmlate this kind of network,” although "fitness was still

a population of 100 such chromosomes. The fitness of ea{gﬂng." [31] A total of 68 gates were used in the 4-kHz

chromosome was calculated by evaluating the gate array %ﬁ,gllator evolved by the GA.
all 64 possible inputs. A correct six-multiplexor circuit was
evolved after about 2000 generations in one run. Experimeﬁs
on evolving other circuits, such as the exclusive-OR circuit, aAs can be seen from the experiments on the gate level
3-bit counter, and a four-state finite state machine, have alelution, the size of chromosomes grows rapidly as the size
been reported [29], [2]. of EHW increases. According to Higuclet al's estimation
Thompsonet al. [31]-[34] emphasized the importance 0f28], “FPGA’s require from 2000 to 30000 architecture bits
unconstrained evolution of electronic circuits (including botto configure their circuits.” Evolution of chromosomes of such
spatial and temporal constraints), and they provided baizes is inefficient even in hardware.
theoretical arguments and experimental evidences to supporfo address the issue, Higucdtial. [30], [35], [36] proposed
their points. They viewed electronic circuits more as dynamibe function level evolution for EHW. In the function level
systems than as static ones. Such a view enabled themevolution, high-level hardware functions, such as addition,
explore a wide range of potentials of EHW. It also revealeslibtraction, sine, etc., rather than simple logic functions are
some fundamental issues faced by EHW in general. used as primitive functions in the evolution. Much more

For the purpose of this equation, transitions were also
assumed to occur at the very beginning and end of the

A software simulation of evolving a GAL16Z8 chip for

Function Level Evolution
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powerful circuits can be evolved using the function levdly the conventional method. Even for these small EHW,
evolution [30], [35], [37], [38], [36]. Since the function levelresearchers have already experienced the high computational
evolution aims at online adaptation by EHW, it will becost of evolving circuits [28], [48].

discussed in more detail in Section Ill. The scalability of EHW could be divided into two re-
lated parts. The first part deals with the scalability of the
D. Advantages of Evolutionary Design chromosome representation of electronic circuits. At present,

. . the length of chromosomes can be a couple of thousand
EHW has been used as an alternative to conventlorbq,!e 9 P

ircuit desi thouah the ultimat | miaht be to devel s for 100 logic gates [31]. For a circuit with 1000 logic
gs\lfv' the?gr(\ja t oug eT |rrr]1a§ gloa mig etosev;? cg’ates, the expected length of chromosomes would be tens

hat adapts n a real physical environment. Suc thousands of bits, which is very inefficient to process by
evolutionary design approach offers a number of advanta

over the conventional one used by human designers altho current evolutionary techniques. Roughly speaking, if no
) . Y desig Whstraint is imposed on the connectivity of EHW, i.e., any
there are some important issues that remain open.

. . . connectivity is possible, then the length of chromosome would
First, the evolutionary design approach can explore a mu w in the order ofO(n2), in which n is the number of
wider range of design alternatives than those that could & ctional components (su’ch as logic gates) in the EHW
cons@ered b.y human bemgs. This has been shqwn by m onnectivity is constrained to certain local neighborhood
experiments in other design tasks, such as evolutionary des] Bund a functional componenf)(n) would be achievable
of neural networks [39]-[43], building architectures [44], ana?owever this comes with the cost obnstraining the EHW.
arts [45]. These experiments demonstrated how evolutionar ’ ’

. . : : sdmething that we tried to avoid at the beginning when we
techniques could be applied to evolving novel designs th barked on EHW.

were difficult to discover by human beings. However, a The second part of EHW’s scalability concerns with the

of these experiments were carried out by software Simmgémputational complexity of an EA. This is a much more

tion although some of the techniques used in these software . . . . .
. . . important issue, which still remains open, than the scalability
simulations will also be useful for EHW.

of chromosome representation. Neither the worst nor average

Second, the evolutionary design approach does not assUif&e time complexity has been established for any EA. At

a priori knowledge of any particular design domain. It can bé o .
. . . . resent, it is not unusual to carry out an EHW experiment
applied by users without resorting to domain experts. It can he : .
i C S 2 : . at runs for days. Yet the EHW used in these experiments
used in domains in which littla priori knowledge is available . . .
. . . : contained only 100 functional components or so. The question
or in which such knowledge is very costly to obtain. As the " L .
: S . . 15: how long will it take to evolve an EHW with 10000
complexity of circuits increases, it becomes extremely difficu

i i : {,Jnctional components using the current techniques?
to fully understand interactions among various components

of the circuits and their dynamics. The conventional designnz) Danger of Relying Too Much on Hardware Speddsing

: . ardware to increase the speed of evolution seems to be
approach tends to break down in such cases, while the evolu- . . .
answer to combat the high computational cost. While

) . a
tionary approach would excel. In essence, the conventiorda)

design approach specifidow to design and implement ahardware does offer limited temporary relief on the high
circuit, while the evolutionary approach only specifiehat computational cost, it does not solve the problem. The sheer

S i . . . speed of dedicated hardware is not the answer to a time
the circuit should implement, i.e., what required function or L . . .
complexity issue. The importance of the time complexity and

havior the circuit should have without worrying how t !
behavior the circtit should have out wortying ho cEhe irrelevance of hardware speed can be seen clearly from

achieve it F]he following artificial example. Assume the average time
Third, the evolutionary design approach can work W'tcomplexity of an EA applied to an EHW i©(2"), where

varying degrees of constraints and special requirements, if néc-

: . . 0 Is the number of functional components in the EHW. If the
essary, by incorporating them in chromosome representatlgﬁw with ten functional components requirég24 — 210
and fitness function. As mentioned above, the evolution -

ar 6 .
approach can work with littlea priori domain knowledge. n%mosecondsz(lo S) to evolve (in hardware of course),

. . . . . imilar EHW with only 100 functional components would
However, if some domain knowledge is available, it can g S'm!
g eed2!% = 103° nanoseconds>(10* years) to evolve. That

used to improve the efficiency of the evolutionary design, . . .
Using domain knowledge to improve EA’s has been showR certainly not the time we would like to spend on EHW.
to be achievable and effective [46], [47]. The above example ;hows the d_anger of relying too much
on hardware speed while overlooking the fundamental issue.
. ] ) ... Fortunately, the time complexity o®(2™) assumed in the
E. Some Issues in Evolutionary Design of Electronic Circuityificial example is not based on any theoretical or empir-
1) Scalability of EHW: The importance of scalability hasical evidences. Unfortunately, there is still no result on the
been recognized by several researchers [28], [48]. It is a tougfhe complexity of EHW. The possibility of aw(2") time
problem faced not only by EHW researchers, but by otheomplexity, albeit small, does exist.
researchers in the fields of evolutionary computation, artificial 3) Fitness Evaluation and Circuit Verification/Testingn
neural networks, and artificial intelligence in general. To oussue that arises in the evolutionary design of electronic circuits
best knowledge, all EHW experiments conducted so far haisehow to verify that the evolved circuit, i.e., EHW is correct.
been on a small scale. That is, the EHW is small with mucthis would not be an issue if a fithess function could be defined
fewer components in comparison with the circuits designedich that a maximum fithess corresponds to a perfectly correct
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circuit. For example, in the six-multiplexor experiment [28], alAnother thing that is unclear from all of these experiments
64 possible input combinations were used in fithess evaluatigmwhether the correct circuit is the result of only one run or
The maximum fitness implies a correct EHW. However, thaultiple runs. If every single run can guarantee to produce a
method will not work for circuits with a large number of inputscorrect circuit, there would be no problem. If not, how many
since the number of possible input combinations increasess on average do we have to perform to get a correct circuit?
exponentially as the number of inputs increases. When should we stop? Although there are quite a few papers
Sometimes a fitness function that guarantees the circaitalyzing the behaviors of an evolved circuit and showing
correctness is very difficult to find without incurring heavythey are correct, it is unclear whether a circuit with similar
computational cost in fitness evaluation. For example, in thehaviors could be evolved from another separate run.
sequential binary adder experiment [11], the correctness o) Other Issues:Other issues that need addressing in the
evolved circuits had to be confirmed by human beings throughrrent EHW research include maintainability and understand-
“reading the description of the program” [11, p. 376]. Thability of evolved circuits. Circuits evolved by EA’s are often
maximum fitness value did not guarantee the correctnessvefy difficult to understand and thus very difficult to maintain
a circuit. The fitness of a circuit in the sequential binarpy human beings. They are basically black boxes. In order to
adder experiment was defined by considering “all possiblise EHW successfully in a real-world environment, the EHW
combinations of two 4 bit numbers” [11, p. 376]. Howevermust be maintainable. If the maintenance is carried out by
this does not imply that a sequential binary adder that operategman experts, they must be able to understand the EHW,
correctly on all possible combinations of two 4-bit numberghich is an extremely difficult task. An entirely different
will be correct on all possible combinations of two five or morapproach to maintainability would be to have the EHW itself
bit numbers. This seems to be a complex problem relatedttodetect and repair its faults. Mange al.’s work [49]-[52]
the fitness evaluation and stopping criteria used in EHW. ah self-repairing hardware might be a direction to go in for
is difficult for EHW to know when a correct circuit, not justthe future.
the one with the maximum fithess value, has been evolved
because the simulated evolution only manipulatessyrgax ll. EHW EOR LEARNING AND ONLINE ADAPTATION
not semanticsof encoded circuits. .
Another example is the fitness definition used in evolving a '€ 'eal attractiveness and power of EHW comes from

slow oscillator [31]. The fitness value of a circuit depends thF hpoFentlaI da.s an ad_aptlve fhardware tEf”I‘t can chang.e Its
the value oft in (1). A maximum fitness for a particulardoes ehavior and improve its performance while executing in a

not imply the circuit will operate correctly for largédrs. If a real physical environment (as opposed to simulation). Such

largef is used in the fitness evaluation, the computational co%'?“ne adadptgtlong\jvvel;rytdl;fflct:rli;}p achleye. Thetdllffml:Lty IS
will no doubt increase. The correctness issue addressed H?e%cause y » out by ine requirement. In other

is related to the generalization ability of EHW if we viewedNordS' online adaptation would still be very difficult even if a

EHW as a learning device not an alternative to circuit desigﬂ'.f:fftrent app;roEa;r\}vfrrc]) m EHV\{I |sbadopt(tada. dint f off
Unconstrained hardware evolution can cause additional present, as mostly been studied in terms or off-

problems in terms of circuit correctness since it exploits eve e adaptation, except for a few examples [53]55]. That

characteristic of electronic circuits and the environment i’ ERW ISI no_tt l_Jsed tm and etxecutltonlmodelwhgetgvolvmg.l
which it is evaluated, regardless of whether a characteristic i F example, 1t 1S not used 1o control a real robot In a rea

relevant. As Thompson pointed out [31], the behavior of EH yS|ca! enwronment while evolving. This can be regarded as
may depend on such factors as fluctuations in temperature A .off-llne '?a”?'”g phgse of EHW. One O.f the reasons why
power supply. Exploitation of hardware must be traded agair? -line learning is used is because of the trial-and-error nature

EHW’s sensitivity to variations. It was suggested that EH EA’s. It is possible to produce very poor individuals by

could be evaluated under various situations to “make qu@n?gm mutation or cr((;ssover in EA;.‘ Thtese %Oogﬂwlduali
that it is not sensitive to small variations [31]. However, jpould cause severe damages or disasters to or the

is not a simple task to achieve this. First, all characteristiggys'caI gQV|ronment n which it is being evaluated, if thgre
exploited by EHW must be varied. Second, the number no additional technique to prevent them from happening.

variations for each characteristic must be sufficiently large. AT example, an EHW evolved to control a real robot could

very high computational cost has to be paid for all of these. Pri)oduce such a poor controller that the robot would hit an

addition, it is difficult to find out what characteristics would’ stacle badly. This is certainly not the way to get a fitness

be exploited by EHW in the first place before we could var\)c"Jllue of the controller in a real physical environment.

them.

4) Termination of Evolution:The difficulty in defining a A EHW Controllers
good fitness function, as mentioned in the previous subsectionEHW controllers refer to those EHW that are used primarily
also leads to the difficulty in defining a stop criterion for thas controllers for robots or any other devices (such as ATM
simulated evolution. EHW does not know when it has foundswitches or multiplexors) [37], [38], [56]-[60]. Mizoguclei
correct solution and thus should stop since a maximum fitnesls [56] used EHW to control an artificial ant to follow the
value does not necessarily guarantee a correct circuit. In th@hn Muir Trail. The trail was placed on a grid. The controller
existing EHW experiments [28], [29], [2], [11], [31], the cor-of the artificial ant, which was implemented by EHW through
rectness of evolved circuits was established by human beingisnulation, had one input and two outputs. The input contained
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information about whether the trail exists in the cell in front of in the sensor and motor models, both of which were

it. The outputs controlled the actions of going straight, turning constructed by fitting curves to experimental measure-

left and turning right. ments, including a probabilistic model for specular sonar
The technique used to evolve the EHW controller is the reflections [61].

same as that _used by Hemiei aI._[ll], WhiCh is described g,ch gn experiment belongs to the category of evolving real
briefly in Section 1I-A. Each configuration of the Contm”erhardware in a simulated environment [31, Section 13]. How
was specified by an SFL program that was produced Rqe the simulated environment (or models) is to the real
a derivation tree (i.e., a rewriting tree). Derivation treeﬁhysical one will have a major impact on the performance
generated from the SFL grammar were represented as Chroi0e,olved hardware in the real physical environment. The
somes and evo_lved by _product|on gen’et|c algorlthms_ (PGAéé)od result achieved by Thompson [61] on the transfer from
proposed by Mizoguchet al. [56]. PGA’s employed SiX 0P- e simulated to the real environment shows that a simulated

erators: selection, crossover, mutation, duplication, insertiQth,ironment might be a solution to avoiding the potential risks
and deletion. The operators guarantee that all offspring will I%? evaluating poor controller in a physical environment.
legal trees defined by the grammar. The fitness of an artificial

ant was determined by the number of cells on the trail that were . -
traversed within a time limit and the number of time steps use@. EHW Recognizers and Classifiers

Traversing more cells on the trail with less time steps within EHW recognizers and classifiers refer to those EHW that
a time limit gave higher fitness. All cells of the trail, whichare used primarily for pattern recognition and classification.
were fixed, were used in fitness evaluation. No testing on thgguchi et al. [28], [29], [2], [35], [30], [62] have carried
generalization ability of EHW was performed. As pointed oWut a number of experiments using EHW to perform various
by Mizoguchiet al.[56], their system “represents one approacfecognition and classification tasks. They used both the gate
to designing hardware.” Adaptivity and generalization woulgnd function level evolution.
not be the major concern. For the gate level evolution, an EHW pattern recognition
Another experiment on robot control was carried out byystem was developed to recognize noisy binary input patterns
Thompson [61], in which a real hardware robot controllep], [30], [62]. The input pattern consisted of 8 8 pixels,
was evolved for wall-avoidance behavior. The COﬂtrO”er’ﬁ/hich were represented by 64 bits. There were three output
input came from two sonar heads pointing left and rightlasses that were represented by 3 bits. During the learning
respectively. Its output went to the motors for COﬂtrO”ing)hase, the EHW recognizer was presented with the training
two wheels. For the hardware evolution, architecture bits (a|§@_tterns_ The chromosome representation scheme used was
called “configuration memory”) of the EHW controller, whichdifferent from that previously adopted by Higuaki al. [28],
was implemented in FPGA’s, were used as genotypes. THg9]. A variable-length chromosome representation scheme
determined functions of the functional blocks in the FPGAvas used, which on|y encoded nonempty (nonni|) entries in
and their interconnections. In other words, they determingge connectivity matrix of EHW (FPGA's) [62], [63]. Such
the whole function and thus behavior of the EHW controllery representation generated substantially shorter chromosomes
In Thompson's experiment [61], a genotypirectly en- for sparsely connected FPGA’s. The GA used was similar
coded all details of the EHW controller, including the clock into messy GA's with cut and splice operators [64]. The only
formation. For the simple wall-avoidance behavior, the lengtifference was that duplicated genes would be removed after
of genotypes was 32 bits. A GA was used to evolve fe splice operation.
population of 30 such genotypes. Each genotype was evaluategthe fitness of each individual (i.e., EHW recognizer) was
by evaluating how well the EHW controller performed for fougietermined by both the error and complexity of the EHW
trials of 30 s each. The worst performance out of four was usgécording to the MDL principle [65]. EHW with lower error
to determined the fitness. “For the final few generations, ta@d lower complexity had higher fitness. Unlike most of the
evaluations were extended to 90 seconds, to find COﬂtrO”@sﬁjeriments described previ0u5|y' the EHW recognizer was
that were not only good at moving away from walls, but alsgssted on a separate testing set, which was not used in training.
stayingaway from them” [61]. “The test data set consists of 30 patterns which are made by
Although Thompson [61] evolved real hardware controllefdding some noises into the training patterns. One to five pixels
to control a real physical robot, simulation was still used igre selected randomly, and the values of the selected pixels are
fitness evaluation. However, his reason for using simulatigfverted.” [62]. Fairly good results, which were average over
appears to be different from our concern about potential risih runs, were obtained from the experiment [62].
of evaluating poor controller in a physical environment. The gate level evolution was also adopted to develop
For convenience,.. The real evolving hardware con- an EHW comparator used in a V-shape ditch tracer of an
trolled the real motors, but the wheels were just spinning industrial welding robot [2]. The EHW was used as a backup
in the air. The wheels' angular velocities were mea- system for the conventional logic comparator. It would take
sured, and used by a real time simulation of the motor over control from the conventional logic comparator only
characteristics and motor dynamics to calculate how the when the conventional logic comparator failed due to circuit
robot would move. The sonar echo signals were then faults [2].
artificially synthesized and supplied in real time to the  For the function level evolution, experiments were carried
hardware DSM. Realistic levels of noise were included out with four well-known problems, i.e., the two intertwined
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spirals, the Iris data set, 2-D image rotation, and synthesis offiaa sense, online adaptation can also be viewed as real-time
four-state automaton [35], [30]. For all of these experimentagdaptation. The meaning of “online” here is different from that
an FPGA model consisting of 100 programmable floatingsed in other contexts, such as online update of connection
processing units (PFU’'s) was used, which were arranged weights for a backpropagation neural network.
a 5 x 20 grid in a feedforward fashion. That is, the output Online adaptation requires EHW's learning to be incremen-
from one column of PFU’s would only be fed into the nextal and responsive. Such requirements do not seem to be met
column. The two inputs to the FPGA could, however, be fday population-based evolutionary learning, which is used by
into any PFU’s. A chromosome encoded the information aboait EHW at present. The current population-based evolutionary
the function selected by each PFU and the interconnections learning is not incremental because, if a new situation occurs
tween PFU’s. The variable-length chromosome representatsia result of an environmental change, it would have to relearn
scheme proposed by Kajitaet al. [63], which was mentioned the newas well asold situations to deal with both.
above, was used in the experiments. However, the GA usedtvolutionary learning at the population level is slow in
did not have any crossover operators. Only three types reSponding to environmental changes without local learning at
mutations were adopted: operand mutation, function mutatiaghe individual level. The population-based learning is global
and insertion [35]. because learning can only be achieved through interactions
The fitness of each EHW in the function level evolutiommong different individuals, although it is possible to restrict
only considered the error information [35]. The MDL principlesuch interactions to a neighborhood.
was not used. All four problems were investigated from the It appears that “pure” population-based evolutionary learn-
point of view of EHW’s generalization ability. Testing resultsing would not be sufficient to cope with the requirements of
were given along with the training results. Such experimengsiline adaptation. Local learning at the individual level could
were quite different from those aiming at EHW as a desigse introduced to supplement it. Local learning can respond
alternative. It was pointed out clearly that the final goal wasuch faster to environmental changes since such response can
to achieve online adaptation, although the current work wae made at the local individual level. It has been shown in the
only concerned with offline adaptation [30], [35]. area of EANN’s that combining evolutionary learning at the
Other work on the function level evolution [36] includepopulation level with local learning at the individual level is
EHW for adaptive equalization in digital mobile communicafeasible and beneficial [71], [25]-[27].
tions and lossy data compression. 2) Generalization: Generalization is a key issue for any
The driving force behind the function level evolution wasearning or adaptive systems, including EHW. However, stud-
to partially address the problem of scalability suffered by thies on this topic are relatively few in the area of EHW.
gate level evolution, especially for EHW that would be use8ome experiments on EHW did not address the issue since

in industrial applications. the same training and testing data set was used, e.g., the
experiments with the artificial ant [56] and the four-state
C. Cellular Programming automaton [35]. It is unclear how well the EHW could

A research area closelv related to EHW is cellular prcg_eneralize to different situations in these cases. In essence,
y auch experiments demonstrated the effectiveness of EHW as an

gramming, i.e., evolving cellular automata (CA) by simulate X L . ; .
evolution [66]. Sippekt al. [66], [55], [67], [68] and Mitchell alternatlye to circuit design, but not necessarily as an adaptive
' ’ ’ or learning system.

Et al.[69],’[70] hav_e used EA'S to evolve,_ rather than design by Most work on testing the generalization ability of EHW

and, CA'’s that display complex behaviors and perform com- . .

lex computations. A hardware implementation was describ&d- done by H.'QUChm aI: [2], [.62]’ [35]’ [30]. Fpr the EHW

p p p

in [55] and [54]. pattern recognizer qlescrlbed in Secthn II-B, its performa'm'ce
was tested on a noisy test data set different from the training

] ) set [62]. For the Iris data set, different training and testing sets

D. Some Issues and Related Work in Adaptive EHW were also used [35].

Although adaptive EHW might be accused of being a An issue that arises here is whether the maximum fitness
“seductive” phrase, it is used here to distinguish it frormalue corresponds to the best generalization. The issue is
evolutionary design of hardware and refer to the EHW thabmewhat similar to that raised in Section II-E3. For example,
requires generalization ability and online adaptation. There aesolution learned by the EHW pattern recognizer for identi-
some fundamental and interesting issues in adaptive EHW thgng three patterns wa®o = Iso, O1 = I13, and Oy = I,
are worth probing further. A comparison with some relatedhere O;'s (0 < ¢ < 2) were output and;’s (0 < j < 63)
work would also help to foster cross fertilization betweewere input [62]. This was apparently not a good generalization
EHW and other research areas and identify the potential nichecause the output class was determined by a single pixel
of EHW, where its advantages could be fully exploited.  value. It meant that a single-bit noise at that particular position

1) Online Adaptation:In spite of the high hope of EHW, would change the output of classification. The patterns used in
no work has been reported on online adaptation by EHWarning EHW recognizer were digits and letters. Recognizing
Only offline adaptation by EHW has been achieved, in whichdigit or letter based on the presence or absence of a particular
adaptation happens during the learning phase of EHW. piixel value does not seem to be correct. The fact that the
should be noted that online adaptation means adaptationledrned EHW had high fitness but not best generalization
EHW, while it is executing in a real physical environmentimplies that the EHW recognizer did not learn what we wanted
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it to learn. It is possible that the training set used in trainingraphs by simulated evolution, GP [13] mainly manipulates
the EHW recognizer did not contain data of sufficient varietyrees. They are closely related to each other because a tree
A better training set should improve EHW'’s generalization. can be regarded as an acyclic directed graph and an acyclic
Evaluating EHW'’s generalization can be a difficult task dudirected graph can be transformed into a tree by duplicating
to different implementations. This difficulty is closely relatechodes and branches.
to that of evaluating the generalization ability of evolutionary FEHW and GP share the similarity that both adapt function
learning systems in general. It is not uncommon to read papemmnpositions and/or combinations without weights and local
that only report a good system evolved at a certain numberleérning. But their representations are different. FEHW ma-
generations. It is unclear, however, whether such a good sgfulates acyclic, weighted, and directed graphs by simulated
tem is the result of one particular run or the average of multipévolution, while GP mainly manipulates trees. Although a tree
runs. Statistical analysis of the experimental results seemsctn be regarded as an acyclic directed graph and an acyclic
be missing. In addition, it is unclear how to decide when tdirected graph can be transformed into a tree by repeating
stop to get the good system. A more disciplined approachnodes and branches, FEHW is more flexible and general as it
experimental studies of generalization in evolutionary learnirggn deal with cyclic graphs without much added complexity.
will greatly help EHW's research. Just as the case in GP, FEHW also requires predefining
3) Adaptive EHW and EANN'sEANN's refer to a class a set of primitive functions that can be used by each node.
of ANN'’s in which evolution is another form of adaptation inOne question, which was mentioned briefly in the previous
addition to learning [71], [25]-[27]. In particular, EANN’s thatsubsection, is why we need more than one node function
adapt their architectures through simulated evolution and thaind what the benefits would be. GP systems that use only
weights through learning (training) have been shown to lmme type of node function but with weights, such as the
successful in dealing with a number of benchmark problelSfRONGANOFF system [74], seem to work quite well.
[39]-[43], [72]. 5) Disaster Prevention in Real-Time Online Evolutioh:
Adaptive EHW is closely related to EANN’s. For examplewas mentioned in the beginning of Section Il that evaluating
both the function level EHW (FEHW) [30], [35] and EPNetan EHW in a real physical environment could cause severe
[39]-[43] evolve feedforward architectures. Both can hawdamages or disasters to EHW or the physical environment.
different node functions in an architecture [35], [73]. However his potential risk restricts possible applications of EHW in
node functions in FEHW usually have more variety. Thedomains in which evaluating EHW in a real physical environ-
is currently no local learning in FEHW. No weights arament is impractical and an accurate simulation model of the
associated with connections in FEHW. FEHW's adaptatigrhysical environment is difficult to obtain. In most EHW ap-
relies heavily on different compositions of its node functionglications, fithess evaluation is the most time-consuming part
In contrast, EPNet uses weights and local learning, but lesfsthe whole evolutionary process. The distinction between
variety of node functions. It is unknown at present whethdéntrinsic and extrinsic EHW does not seem to capture this char-
FEHW with more node functions without weights would becteristic of EHW. It is only concerned with whether an EHW
better than that with less node functions with weights in ternis reconfigured once or multiple times for each generation [6].
of adaptation and hardware implementation. (It should beThe aforementioned risk stems from the trial-and-error
pointed out that EPNet is a software package, and it is neature of EA’s and the black-box approach used by EA’s. An
targeted at hardware implementation.) EA only evolves chromosomesyntacticallynot semantically
Although EPNet is implemented in software, there are sonfiedoes not understand evolved systems and the environment
techniques that might be useful for EHW. For example, EPNa$ no explicit models are used. A possible way to get around
uses validation sets and the order of mutations to improve tiés problem is to develop a knowledge-based adaptive EHW,
generalization ability of learned systems. It grows an ANN byhere constraints and knowledge about the environment in
splitting an existing node rather than adding a random one. Tlwbich EHW will be evaluated are incorporated into fitness
process is similar to cell splitting in biology. It deletes or addevaluation as its front end, such that any poor individuals that
a connection by evaluating the importance of the connectioray cause damages to themselves or the environment could be
first. It also maintains a close behavioral link between parerttstected and prevented from being passed to the real physical
and offspring, which is important for online adaptation irenvironment.
which we do not want large fluctuations.
Local learning through adjusting weights could be intro-
duced into FEHW since each PFU (i.e., node) in FEHW Evolving electronic circuits faces many challenges and
(implemented by function level FPGA'’s) has four constardpen issues. Most of them are caused by the confusion
generators that can be used to produce weights for up kietween evolving circuits and evolving circuit behaviors. This
four inputs. Such local learning at the individual level canonfusion should be cleared before any further progress can
be realized easily. The approach adopted in EPNet could e made in EHW research. On the surface, it does not
borrowed or tailored to FHEW. The potential problem mighéeem to make much difference when circuits are evolved
be the speed of such learning. The various types of node their behaviors are evolved. However, conceptually it is
function used in EHW will have a major impact on the speethappropriate to evolve circuits. It is circuit behaviors that
4) Adaptive EHW and Genetic Programmingvhile should be and can be evolved. It is inherently hard to evolve
FEHW and EPNet manipulate acyclic, weighted, and directedcuits. Why?

IV. BEHAVIORAL VIEW OF EHW
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Simulated evolution uses a fitness function to evaluate &ast hardware for computing exponential and trigonometric
EHW individual. What does it actually evaluate? Is it really théunctions [85] and work on built-in self-test (BIST) test pattern
EHW circuit (connectivity, functional cells, etc.)? The answegenerators [86] will no doubt widen the range of possible EHW
is no. It is the circuit’'s behaviors that are evaluated. The fitnesgplications.
function knows nothing directly about the circuit, and it is not
supposed to know it. Since it is the circuit behaviors that are REFERENCES
?Valuated’ the fltness. Val.ue. must depend on the enVIr.Onm? A. J. Hirst, “Notes on the evolution of adaptive hardware, Piroc. 2nd
in Wh'?h the EHW circuit is evaluated. Hence, the T'".'es. Int. Conf. Adaptive Comput. Eng. Design (ACEDC'96)Parmee, Ed.
value is only a measurement of how good the circuit is ir2] T. Higuchi, M. lwata, I. Kajitani, H. Iba, T. Furuya, and B. Manderick,
that environment. It says nothing about the circuit's behaviors “Evolvable hardware and its applications to pattern recognition and
. . C. 2 . fault-tolerant systems,” ifoward Evolvable Hardware: The Evolution-
in a d_|ﬁe':ent t’-.?l’?VIr(_)nment. This is Whe'je th_e generahzat!on ary Engineering Approaghvol. 1062, E. Sanchez and M. Tomassini,
and circuit verification issues start coming in and botherin ) EdS(.3 Eerlin, GC?ranarfl\IVZISpringAer-a/ercljag, 1996, pp. 11|8—1_3h5. or th

. H : _ _ . ranam an . Nelson, “ ardware genetic algorithm for the
the EHW research, as discussed in Sections I1I-D2 a”‘?' II-E3: traveling salesman problem on splash 2,”Rroc. 5th Int. Workshop
In short, EHW should be regarded as an evolutionary Field Programmable Logic ApplicatOxford, U.K., Aug. 1995, pp.
approach to behavior design rather than hardware design. Su[c]h 25%—3?- « A Samal and S. Seth “HGA: A hard based y

i . . . s . D. Scott, A. Samal, and S. Seth, “ : ardware based genetic
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EHW circuit design. It is no longer appropriate to talk about 53-59.
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