
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 29, NO. 1, FEBRUARY 1999 87

Promises and Challenges of Evolvable Hardware
Xin Yao, Senior Member, IEEE, and Tetsuya Higuchi

Abstract—Evolvable hardware (EHW) has attracted increas-
ing attention since the early 1990’s with the advent of easily
reconfigurable hardware, such as field programmable gate arrays
(FPGA’s). It promises to provide an entirely new approach to
complex electronic circuit design and new adaptive hardware.
EHW has been demonstrated to be able to perform a wide range
of tasks from pattern recognition to adaptive control. However,
there are still many fundamental issues in EHW that remain
open. This paper reviews the current status of EHW, discusses
the promises and possible advantages of EHW, and indicates
the challenges we must meet in order to develop practical and
large-scale EHW.

Index Terms—Adaptive hardware, evolutionary algorithms,
evolutionary computation, field programmable gate arrays
(FPGA’s), reconfigurable hardware.

I. INTRODUCTION

EVOLVABLE hardware (EHW) refers to hardware that
can change its architecture and behavior dynamically and

autonomously by interacting with its environment. At present,
almost all EHW use an evolutionary algorithm (EA) as their
main adaptive mechanism. One of the key motivations behind
EHW is to learn from nature since she has done so well
in evolving wonders such as ourselves (i.e., human beings)
without external forces. However,learningfrom nature is quite
different from copying it. There are many new challenges in
front of us if we want to harness the power of evolution in
EHW. This paper discusses the promises and challenges of
EHW in more detail in later sections.

There are different views on what EHW is, depending on
the purpose of EHW. One view regards EHW as “applications
of evolutionary techniques to circuit synthesis” [1, abstract].
Another view regards EHW as hardware that is capable
of online adaptation through reconfiguring its architecture
dynamically and autonomously [2]. Although these views are
closely related and quite similar to each other, they emphasize
different aspects of EHW. The former one uses simulated
evolution as an alternative to conventional specification-based
electronic circuit design, while the later uses it as an adaptive
mechanism. However, the line between the two is gray.

EHW is fundamentally different from the hardware imple-
mentation of EA’s, in which the hardware architecture does
not change and is used to implement EA functions, such
as selection, recombination, and mutation [3]–[5]. The main
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motivation for hardware implementation of EA’s is to speed
up the execution ofEA functions. Such speedup, however,
does not necessarily imply a faster EA application because it
does not speed up fitness evaluation, which is often the most
time-consuming part of an EA application. Discussion of EA’s
hardware implementation is beyond the scope of this paper.

EHW involves two major aspects—simulated evolution and
electronic hardware. According to different EA’s, e.g., genetic
algorithms (GA’s), genetic programming (GP), evolutionary
programming (EP), and evolution strategies (ES’s), and dif-
ferent electronic circuits, e.g., digital, analogue, and hybrid
circuits, used, we could classify EHW into different categories
along these two dimensions. There are, however, at least two
other important dimensions we should consider in investigat-
ing EHW, i.e., how the simulated evolution is realized and
what the simulated evolution is used for, because they have a
direct impact on the future research and development of EHW.

EHW is usually implemented on programmable logic
devices (PLD’s), such as field programmable gate arrays
(FPGA’s). The architecture of a PLD and thus its function are
determined by a set of architecture bits that can be changed
(i.e., reconfigured). In EHW, the simulated evolution is used
to evolve a good set of architecture bits to solve a particular
problem. According to de Garis [6], EHW can be classified
into two categories, i.e., extrinsic and intrinsic EHW. Extrinsic
EHW simulates evolution by software and only downloads
the best configuration to hardware in each generation; i.e., the
hardware is only reconfigured once. Intrinsic EHW simulates
evolution directly in its hardware; i.e., every chromosome
will be used to reconfigure the hardware. The EHW will be
reconfigured the same number of times as the population size
in each generation. Hirst [1] wrote a good survey paper along
this line. Sanchezet al. [7] described a phylogeny, ontogeny,
and epigenesis (POE) model that nicely captured some of the
characteristics of various EHW’s.

In this paper, we take a much broader view on EHW and
address some important issues not covered in Hirst’s and
Sanchezet al.’s surveys. We argue that there is a difference
between EHW used as an alternative to circuit design and
EHW as online adaptive hardware. Although the techniques
used to develop them may be very similar, the criteria used
to evaluate them are different. For EHW that is used as
an alternative to conventional circuit design, there are two
distinct phases. One is the evolutionary design phase, and the
other is the execution phase, which usually does not require
online adaptation (although it is possible). To achieve online
adaptation, EHW must adapt its architecturewhile operating
in the real environment. Many new issues arise when online
adaptation is required.
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The rest of this paper is organized as follows. Section II
reviews the work of evolving hardware as an alternative to
designing it from specifications, as is done in conventional
electronic circuit design. Section III discusses the attempt of
developing EHW for online adaptation. Sections IV and V
present some views toward EHW and other nonevolutionary
approaches to EHW. Finally, Section VI concludes this paper
with a summary of the paper and some remarks.

II. EVOLUTIONARY DESIGN OF ELECTRONIC CIRCUITS

Although EHW is a relatively new term, evolutionary design
of electronic circuits have been attempted for more than a
decade [8]–[10]. These early attempts did not design the
architecture or function of a circuit. They were only used to
optimize certain aspects of electronic circuit boards, e.g., cell
placement [9], [10] and compaction of symbolic layout [8].
In essence, such work is better described as combinatorial
optimization by EA’s.

Recent EHW work concentrates on evolutionary design of
electronic circuits, although the ultimate goal is to develop
online adaptive hardware. So far, few studies have been
reported on EHW, which adapts its architecture and function
while operating in a real physical environment.

According to the level of chromosome representation, the
design approach to EHW can be classified into the direct
and indirect ones. The direct approach to EHW encodes
circuit’s architecture bits as chromosomes, which specify the
connectivity and functions of different hardware components
(often at the gate level) of the circuit. In contrast, the indirect
approach does not evolve architecture bits directly. It uses
a higher level representation, such as trees or grammars,
as chromosomes. These trees or grammars are then used to
generate circuits.

A. Indirect Approach to Evolutionary Circuit Design

1) Evolving Digital Circuits: A typical example of the in-
direct approach is the evolution of a binary adder using
Hardware Description Language (HDL) programs [11]. In
this case, programs written in Structured Function Description
Language (SFL) were encoded as chromosomes and subject to
evolution [12]. The chromosome representation is a derivation
tree generated from a context-free grammar, which is called a
rewriting system [11]. Each tree can generate one SFL program
deterministically if the tree is “well-structured” [11, p. 372].
Programs generated by different derivation trees can cover all
possible programs in the SFL language, which is defined by
the grammar.

The root of a derivation tree is the start symbol of the
grammar. The internal nodes are nonterminal symbols of the
grammar, and the leaves are terminal symbols. The crossover
and mutation operators applied to derivation trees are similar
to those used in GP [13], [14], but with some constraints. A
branch (i.e., subtree) in a derivation tree can only be replaced
(through either crossover or mutation) by another one with
the same nonterminal node as the root (of the subtree). This
is equivalent to replace a production (i.e., rewriting) rule in
the grammar with another one having the same left-hand

side. Such restriction ensures that all offspring produced are
legal programs of the language. In addition to crossover and
mutation, gene duplication and deletion were also used to
modify derivation trees.

The idea of evolving the grammar itself was mentioned [11].
It was hoped that as the tasks to be performed by the hardware
became more and more complex, the grammar itself would
evolve to cope with the increasing complexity. A grammar
was represented by a production diagram, which is a directed
graph. The main genetic operator proposed was a kind of node
splitting operation [11].

Software simulation of evolving a binary adder using SFL
programs was carried out [11]. The task can be described as
follows.

The target is two input and one output circuit; inputting
two sequences of binary numbers from lowest figure, the
circuit produces the sum of the binary numbers from the
lowest figure in the output terminal. The correct circuit
must consider the carry from the lower bit, so it belongs
in a class of sequential circuits.

The fitness of each individual (i.e., a derivation tree/program)
was calculated by evaluating its correctness in adding two
1536-bit numbers, which include all possible combinations of
two 4-bit numbers [11, p. 376]. A complete binary adder circuit
was found in the experiment.

2) Related Work on Evolving Derivation Trees:The chro-
mosome representation scheme used in evolving the binary
adder was also studied by Whigham [15]–[17] independently
in a very different context. Whigham [15], [16] used a
grammar to incorporate biases into GP to learn difficult
and complex concepts. The major concern was to introduce
declarative biases into GP under the general framework of
inductive learning. There was no direct connection with EHW.

Whigham [15], [16] used similar crossover and mutation op-
erators to those used by Hemmiet al. [11]. A schema theorem
under the derivation tree representation and the crossover and
mutation was given [18]. The idea of evolving the grammar
itself was mentioned but not tested.

Whigham’s work provides a different view toward the
evolution of grammars. Such evolution can be regarded as
the evolution of biases; i.e., certain knowledge or heuristics
about what kind of circuits should be evolved. Such biases
would be accumulated and obtained through the evolution of
SFL programs and used to guide the evolution of grammars at
a higher level. The importance of biases in inductive learning
has long been recognized in the machine learning field and
will not be repeated here.

3) Evolving Analogue Circuits:In comparison with digital
circuits, analogue circuits are more difficult to design. Recent
work on evolving analogue circuits using GA’s [19] and GP
[20]–[24] shows an alternative to analogue circuit design using
the evolutionary approach. One of the key issues in such evolu-
tionary design is to find a suitable chromosome representation
of analogue circuits. This problem is quite similar to that in
evolutionary artificial neural networks (EANN’s) [25]–[27], in
which a good chromosome representation of EANN’s is also
very important.



YAO AND HIGUCHI: PROMISES AND CHALLENGES OF EVOLVABLE HARDWARE 89

In the GP approach to analogue circuit design, trees are
used to construct circuits. These circuit-constructing trees are
evolved by GP [20]–[24]. Each tree can contain connection-
modifying functions, component creating functions, and auto-
matically defined functions. A number of circuits, such as a
low-pass “brick wall” filter, an asymmetric bandpass filter, and
an amplifier using transistors, have been evolved successfully
[20], [23].

The work on evolving analogue circuits described here does
not belong to EHW in a strict sense because the evolution was
all implemented and simulated by software. The simulation
was carried out on a parallel computer system consisting of
64 Power PC 601 processors (80 MHz) arranged in a toroidal
mesh [20].

B. Direct Approach to Evolutionary Circuit Design

Instead of evolving indirectly HDL programs or trees that
specify circuit architecture and function, direct evolution of
architecture bits of PLD’s, such as FPGA’s, has also been
proposed [28], [29], [2]. The architecture bits of an FPGA
refer to those bits that specify its logic function and in-
terconnections. The architecture bits uniquely determine the
architecture and function of an FPGA. By evolving these bits
(i.e., chromosomes), hardware can be evolved.

It is worth pointing out here the distinction made earlier in
Section I of this paper between EHW used as an alternative to
circuit design and EHW as online adaptive hardware. Higuchi
et al. [28], [29], [2] have explicitly emphasized the latter
although some of the techniques they proposed can also be
used in evolutionary circuit design. The hardware evolution
described in this subsection is at the gate level since all
hardware functional units are simple logic gates, such as AND
and OR gates [30].

A software simulation of evolving a GAL16Z8 chip for
the six-multiplexor problem has been carried out to show the
potential of the gate level evolution [28]. The chromosome
used in the simulation had 108 bits, of which 12 bits were
used to specify the function of the logic cell [an output logic
macro cell (OLMC)] and 96 bits used to specify a fuse array
that determines interconnections between inputs and the logic
cell. A generational GA with uniform crossover, bit-flipping
mutation, and roulette wheel selection was used to evolve
a population of 100 such chromosomes. The fitness of each
chromosome was calculated by evaluating the gate array on
all 64 possible inputs. A correct six-multiplexor circuit was
evolved after about 2000 generations in one run. Experiments
on evolving other circuits, such as the exclusive-OR circuit, a
3-bit counter, and a four-state finite state machine, have also
been reported [29], [2].

Thompsonet al. [31]–[34] emphasized the importance of
unconstrained evolution of electronic circuits (including both
spatial and temporal constraints), and they provided both
theoretical arguments and experimental evidences to support
their points. They viewed electronic circuits more as dynamic
systems than as static ones. Such a view enabled them to
explore a wide range of potentials of EHW. It also revealed
some fundamental issues faced by EHW in general.

One of the experiments carried out by Thompson was the
evolution of a slow electronic oscillator using high-speed logic
gates [31], [33]. The aim of such an experiment was to find
out whether “the high-speed components can somehow be
assembled to give rise to slower dynamics, without explicitly
providing large time-constant resources or slow-speed clocks.”
[31] The experiment was quite different from others in that
both spatial and temporal constraints were removed. The
evolving circuit operated entirely in an asynchronous mode
without any clocks. The delay at each gate was assigned a
real-value “selected uniformly randomly from the range 1.0
to 5.0 nanoseconds.” The delay of connections was ignored,
i.e., set to zero.

Thompson [31] fixed the number of logic gates (also called
nodes) at 100 in his experiment and defined the fitness of an
individual as follows.

The objective was for node number 100 to produce a
square wave oscillation of 1 kHz, which means alter-
nately spending 0.5 10 s at logic 1 and at logic
0. If logic transitions were observed on the output of
node 100 during the simulation, with theth transition
occurring at time s, the average error in the time spent
at each level was calculated as

average error (1)

For the purpose of this equation, transitions were also
assumed to occur at the very beginning and end of the
trial, which lasted for 10 ms of simulated time. The
fitness was simply the reciprocal of the average error.

Each node (i.e., logic gate) required a genotype segment of
24 bits in the chromosome representation, which encoded the
node function and the sources of its inputs. Each chromosome
had a total of 101 segments, i.e., 2424 bits. The GA used
was a “generational one with elitism and linear rank-based
selection.” The population size was 30 [31].

In the fortieth generation of one run, the GA was able
to evolve an oscillator with approximately 4 kHz, while the
best individual in the random initial population was one with
approximately 18 MHz. The experiment did not continue after
40 generations due to “excessive processor time needed to
simulate this kind of network,” although “fitness was still
rising.” [31] A total of 68 gates were used in the 4-kHz
oscillator evolved by the GA.

C. Function Level Evolution

As can be seen from the experiments on the gate level
evolution, the size of chromosomes grows rapidly as the size
of EHW increases. According to Higuchiet al.’s estimation
[28], “FPGA’s require from 2000 to 30 000 architecture bits
to configure their circuits.” Evolution of chromosomes of such
sizes is inefficient even in hardware.

To address the issue, Higuchiet al. [30], [35], [36] proposed
the function level evolution for EHW. In the function level
evolution, high-level hardware functions, such as addition,
subtraction, sine, etc., rather than simple logic functions are
used as primitive functions in the evolution. Much more
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powerful circuits can be evolved using the function level
evolution [30], [35], [37], [38], [36]. Since the function level
evolution aims at online adaptation by EHW, it will be
discussed in more detail in Section III.

D. Advantages of Evolutionary Design

EHW has been used as an alternative to conventional
circuit design although the ultimate goal might be to develop
EHW that adapts in a real physical environment. Such an
evolutionary design approach offers a number of advantages
over the conventional one used by human designers although
there are some important issues that remain open.

First, the evolutionary design approach can explore a much
wider range of design alternatives than those that could be
considered by human beings. This has been shown by many
experiments in other design tasks, such as evolutionary design
of neural networks [39]–[43], building architectures [44], and
arts [45]. These experiments demonstrated how evolutionary
techniques could be applied to evolving novel designs that
were difficult to discover by human beings. However, all
of these experiments were carried out by software simula-
tion although some of the techniques used in these software
simulations will also be useful for EHW.

Second, the evolutionary design approach does not assume
a priori knowledge of any particular design domain. It can be
applied by users without resorting to domain experts. It can be
used in domains in which littlea priori knowledge is available
or in which such knowledge is very costly to obtain. As the
complexity of circuits increases, it becomes extremely difficult
to fully understand interactions among various components
of the circuits and their dynamics. The conventional design
approach tends to break down in such cases, while the evolu-
tionary approach would excel. In essence, the conventional
design approach specifieshow to design and implement a
circuit, while the evolutionary approach only specifieswhat
the circuit should implement, i.e., what required function or
behavior the circuit should have without worrying how to
achieve it.

Third, the evolutionary design approach can work with
varying degrees of constraints and special requirements, if nec-
essary, by incorporating them in chromosome representation
and fitness function. As mentioned above, the evolutionary
approach can work with littlea priori domain knowledge.
However, if some domain knowledge is available, it can be
used to improve the efficiency of the evolutionary design.
Using domain knowledge to improve EA’s has been shown
to be achievable and effective [46], [47].

E. Some Issues in Evolutionary Design of Electronic Circuits

1) Scalability of EHW: The importance of scalability has
been recognized by several researchers [28], [48]. It is a tough
problem faced not only by EHW researchers, but by other
researchers in the fields of evolutionary computation, artificial
neural networks, and artificial intelligence in general. To our
best knowledge, all EHW experiments conducted so far have
been on a small scale. That is, the EHW is small with much
fewer components in comparison with the circuits designed

by the conventional method. Even for these small EHW,
researchers have already experienced the high computational
cost of evolving circuits [28], [48].

The scalability of EHW could be divided into two re-
lated parts. The first part deals with the scalability of the
chromosome representation of electronic circuits. At present,
the length of chromosomes can be a couple of thousand
bits for 100 logic gates [31]. For a circuit with 1000 logic
gates, the expected length of chromosomes would be tens
of thousands of bits, which is very inefficient to process by
the current evolutionary techniques. Roughly speaking, if no
constraint is imposed on the connectivity of EHW, i.e., any
connectivity is possible, then the length of chromosome would
grow in the order of , in which is the number of
functional components (such as logic gates) in the EHW.
If connectivity is constrained to certain local neighborhood
around a functional component, would be achievable.
However, this comes with the cost ofconstraining the EHW,
something that we tried to avoid at the beginning when we
embarked on EHW.

The second part of EHW’s scalability concerns with the
computational complexity of an EA. This is a much more
important issue, which still remains open, than the scalability
of chromosome representation. Neither the worst nor average
case time complexity has been established for any EA. At
present, it is not unusual to carry out an EHW experiment
that runs for days. Yet the EHW used in these experiments
contained only 100 functional components or so. The question
is: how long will it take to evolve an EHW with 10 000
functional components using the current techniques?

2) Danger of Relying Too Much on Hardware Speed:Using
hardware to increase the speed of evolution seems to be
an answer to combat the high computational cost. While
hardware does offer limited temporary relief on the high
computational cost, it does not solve the problem. The sheer
speed of dedicated hardware is not the answer to a time
complexity issue. The importance of the time complexity and
the irrelevance of hardware speed can be seen clearly from
the following artificial example. Assume the average time
complexity of an EA applied to an EHW is , where

is the number of functional components in the EHW. If the
EHW with ten functional components requires
nanoseconds ( s) to evolve (in hardware of course),
a similar EHW with only 100 functional components would
need nanoseconds ( years) to evolve. That
is certainly not the time we would like to spend on EHW.

The above example shows the danger of relying too much
on hardware speed while overlooking the fundamental issue.
Fortunately, the time complexity of assumed in the
artificial example is not based on any theoretical or empir-
ical evidences. Unfortunately, there is still no result on the
time complexity of EHW. The possibility of an time
complexity, albeit small, does exist.

3) Fitness Evaluation and Circuit Verification/Testing:An
issue that arises in the evolutionary design of electronic circuits
is how to verify that the evolved circuit, i.e., EHW is correct.
This would not be an issue if a fitness function could be defined
such that a maximum fitness corresponds to a perfectly correct
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circuit. For example, in the six-multiplexor experiment [28], all
64 possible input combinations were used in fitness evaluation.
The maximum fitness implies a correct EHW. However, the
method will not work for circuits with a large number of inputs
since the number of possible input combinations increases
exponentially as the number of inputs increases.

Sometimes a fitness function that guarantees the circuit
correctness is very difficult to find without incurring heavy
computational cost in fitness evaluation. For example, in the
sequential binary adder experiment [11], the correctness of
evolved circuits had to be confirmed by human beings through
“reading the description of the program” [11, p. 376]. The
maximum fitness value did not guarantee the correctness of
a circuit. The fitness of a circuit in the sequential binary
adder experiment was defined by considering “all possible
combinations of two 4 bit numbers” [11, p. 376]. However,
this does not imply that a sequential binary adder that operates
correctly on all possible combinations of two 4-bit numbers
will be correct on all possible combinations of two five or more
bit numbers. This seems to be a complex problem related to
the fitness evaluation and stopping criteria used in EHW. It
is difficult for EHW to know when a correct circuit, not just
the one with the maximum fitness value, has been evolved
because the simulated evolution only manipulates thesyntax
not semanticsof encoded circuits.

Another example is the fitness definition used in evolving a
slow oscillator [31]. The fitness value of a circuit depends on
the value of in (1). A maximum fitness for a particulardoes
not imply the circuit will operate correctly for larger’s. If a
large is used in the fitness evaluation, the computational cost
will no doubt increase. The correctness issue addressed here
is related to the generalization ability of EHW if we viewed
EHW as a learning device not an alternative to circuit design.

Unconstrained hardware evolution can cause additional
problems in terms of circuit correctness since it exploits every
characteristic of electronic circuits and the environment in
which it is evaluated, regardless of whether a characteristic is
relevant. As Thompson pointed out [31], the behavior of EHW
may depend on such factors as fluctuations in temperature and
power supply. Exploitation of hardware must be traded against
EHW’s sensitivity to variations. It was suggested that EHW
could be evaluated under various situations to “make sure”
that it is not sensitive to small variations [31]. However, it
is not a simple task to achieve this. First, all characteristics
exploited by EHW must be varied. Second, the number of
variations for each characteristic must be sufficiently large. A
very high computational cost has to be paid for all of these. In
addition, it is difficult to find out what characteristics would
be exploited by EHW in the first place before we could vary
them.

4) Termination of Evolution:The difficulty in defining a
good fitness function, as mentioned in the previous subsection,
also leads to the difficulty in defining a stop criterion for the
simulated evolution. EHW does not know when it has found a
correct solution and thus should stop since a maximum fitness
value does not necessarily guarantee a correct circuit. In the
existing EHW experiments [28], [29], [2], [11], [31], the cor-
rectness of evolved circuits was established by human beings.

Another thing that is unclear from all of these experiments
is whether the correct circuit is the result of only one run or
multiple runs. If every single run can guarantee to produce a
correct circuit, there would be no problem. If not, how many
runs on average do we have to perform to get a correct circuit?
When should we stop? Although there are quite a few papers
analyzing the behaviors of an evolved circuit and showing
they are correct, it is unclear whether a circuit with similar
behaviors could be evolved from another separate run.

5) Other Issues:Other issues that need addressing in the
current EHW research include maintainability and understand-
ability of evolved circuits. Circuits evolved by EA’s are often
very difficult to understand and thus very difficult to maintain
by human beings. They are basically black boxes. In order to
use EHW successfully in a real-world environment, the EHW
must be maintainable. If the maintenance is carried out by
human experts, they must be able to understand the EHW,
which is an extremely difficult task. An entirely different
approach to maintainability would be to have the EHW itself
to detect and repair its faults. Mangeet al.’s work [49]–[52]
on self-repairing hardware might be a direction to go in for
the future.

III. EHW FOR LEARNING AND ONLINE ADAPTATION

The real attractiveness and power of EHW comes from
its potential as an adaptive hardware that can change its
behavior and improve its performance while executing in a
real physical environment (as opposed to simulation). Such
online adaptation is very difficult to achieve. The difficulty is
not caused by EHW, but by theonline requirement. In other
words, online adaptation would still be very difficult even if a
different approach from EHW is adopted.

At present, EHW has mostly been studied in terms of off-
line adaptation, except for a few examples [53]–[55]. That
is, EHW is not used in an execution mode while evolving.
For example, it is not used to control a real robot in a real
physical environment while evolving. This can be regarded as
the off-line learning phase of EHW. One of the reasons why
off-line learning is used is because of the trial-and-error nature
of EA’s. It is possible to produce very poor individuals by
random mutation or crossover in EA’s. These poor individuals
could cause severe damages or disasters to EHW or the
physical environment in which it is being evaluated, if there
is no additional technique to prevent them from happening.
For example, an EHW evolved to control a real robot could
produce such a poor controller that the robot would hit an
obstacle badly. This is certainly not the way to get a fitness
value of the controller in a real physical environment.

A. EHW Controllers

EHW controllers refer to those EHW that are used primarily
as controllers for robots or any other devices (such as ATM
switches or multiplexors) [37], [38], [56]–[60]. Mizoguchiet
al. [56] used EHW to control an artificial ant to follow the
John Muir Trail. The trail was placed on a grid. The controller
of the artificial ant, which was implemented by EHW through
simulation, had one input and two outputs. The input contained



92 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 29, NO. 1, FEBRUARY 1999

information about whether the trail exists in the cell in front of
it. The outputs controlled the actions of going straight, turning
left and turning right.

The technique used to evolve the EHW controller is the
same as that used by Hemmiet al. [11], which is described
briefly in Section II-A. Each configuration of the controller
was specified by an SFL program that was produced by
a derivation tree (i.e., a rewriting tree). Derivation trees
generated from the SFL grammar were represented as chromo-
somes and evolved by production genetic algorithms (PGA’s)
proposed by Mizoguchiet al. [56]. PGA’s employed six op-
erators: selection, crossover, mutation, duplication, insertion,
and deletion. The operators guarantee that all offspring will be
legal trees defined by the grammar. The fitness of an artificial
ant was determined by the number of cells on the trail that were
traversed within a time limit and the number of time steps used.
Traversing more cells on the trail with less time steps within
a time limit gave higher fitness. All cells of the trail, which
were fixed, were used in fitness evaluation. No testing on the
generalization ability of EHW was performed. As pointed out
by Mizoguchiet al.[56], their system “represents one approach
to designing hardware.” Adaptivity and generalization would
not be the major concern.

Another experiment on robot control was carried out by
Thompson [61], in which a real hardware robot controller
was evolved for wall-avoidance behavior. The controller’s
input came from two sonar heads pointing left and right,
respectively. Its output went to the motors for controlling
two wheels. For the hardware evolution, architecture bits (also
called “configuration memory”) of the EHW controller, which
was implemented in FPGA’s, were used as genotypes. They
determined functions of the functional blocks in the FPGA
and their interconnections. In other words, they determined
the whole function and thus behavior of the EHW controller.

In Thompson’s experiment [61], a genotypedirectly en-
coded all details of the EHW controller, including the clock in-
formation. For the simple wall-avoidance behavior, the length
of genotypes was 32 bits. A GA was used to evolve a
population of 30 such genotypes. Each genotype was evaluated
by evaluating how well the EHW controller performed for four
trials of 30 s each. The worst performance out of four was used
to determined the fitness. “For the final few generations, the
evaluations were extended to 90 seconds, to find controllers
that were not only good at moving away from walls, but also
staying away from them” [61].

Although Thompson [61] evolved real hardware controller
to control a real physical robot, simulation was still used in
fitness evaluation. However, his reason for using simulation
appears to be different from our concern about potential risks
of evaluating poor controller in a physical environment.

For convenience, The real evolving hardware con-
trolled the real motors, but the wheels were just spinning
in the air. The wheels’ angular velocities were mea-
sured, and used by a real time simulation of the motor
characteristics and motor dynamics to calculate how the
robot would move. The sonar echo signals were then
artificially synthesized and supplied in real time to the
hardware DSM. Realistic levels of noise were included

in the sensor and motor models, both of which were
constructed by fitting curves to experimental measure-
ments, including a probabilistic model for specular sonar
reflections [61].

Such an experiment belongs to the category of evolving real
hardware in a simulated environment [31, Section 13]. How
close the simulated environment (or models) is to the real
physical one will have a major impact on the performance
of evolved hardware in the real physical environment. The
good result achieved by Thompson [61] on the transfer from
the simulated to the real environment shows that a simulated
environment might be a solution to avoiding the potential risks
of evaluating poor controller in a physical environment.

B. EHW Recognizers and Classifiers

EHW recognizers and classifiers refer to those EHW that
are used primarily for pattern recognition and classification.
Higuchi et al. [28], [29], [2], [35], [30], [62] have carried
out a number of experiments using EHW to perform various
recognition and classification tasks. They used both the gate
and function level evolution.

For the gate level evolution, an EHW pattern recognition
system was developed to recognize noisy binary input patterns
[2], [30], [62]. The input pattern consisted of 8 8 pixels,
which were represented by 64 bits. There were three output
classes that were represented by 3 bits. During the learning
phase, the EHW recognizer was presented with the training
patterns. The chromosome representation scheme used was
different from that previously adopted by Higuchiet al. [28],
[29]. A variable-length chromosome representation scheme
was used, which only encoded nonempty (nonnil) entries in
the connectivity matrix of EHW (FPGA’s) [62], [63]. Such
a representation generated substantially shorter chromosomes
for sparsely connected FPGA’s. The GA used was similar
to messy GA’s with cut and splice operators [64]. The only
difference was that duplicated genes would be removed after
the splice operation.

The fitness of each individual (i.e., EHW recognizer) was
determined by both the error and complexity of the EHW
according to the MDL principle [65]. EHW with lower error
and lower complexity had higher fitness. Unlike most of the
experiments described previously, the EHW recognizer was
tested on a separate testing set, which was not used in training.
“The test data set consists of 30 patterns which are made by
adding some noises into the training patterns. One to five pixels
are selected randomly, and the values of the selected pixels are
inverted.” [62]. Fairly good results, which were average over
ten runs, were obtained from the experiment [62].

The gate level evolution was also adopted to develop
an EHW comparator used in a V-shape ditch tracer of an
industrial welding robot [2]. The EHW was used as a backup
system for the conventional logic comparator. It would take
over control from the conventional logic comparator only
when the conventional logic comparator failed due to circuit
faults [2].

For the function level evolution, experiments were carried
out with four well-known problems, i.e., the two intertwined
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spirals, the Iris data set, 2-D image rotation, and synthesis of a
four-state automaton [35], [30]. For all of these experiments,
an FPGA model consisting of 100 programmable floating
processing units (PFU’s) was used, which were arranged on
a 5 20 grid in a feedforward fashion. That is, the output
from one column of PFU’s would only be fed into the next
column. The two inputs to the FPGA could, however, be fed
into any PFU’s. A chromosome encoded the information about
the function selected by each PFU and the interconnections be-
tween PFU’s. The variable-length chromosome representation
scheme proposed by Kajitaniet al. [63], which was mentioned
above, was used in the experiments. However, the GA used
did not have any crossover operators. Only three types of
mutations were adopted: operand mutation, function mutation,
and insertion [35].

The fitness of each EHW in the function level evolution
only considered the error information [35]. The MDL principle
was not used. All four problems were investigated from the
point of view of EHW’s generalization ability. Testing results
were given along with the training results. Such experiments
were quite different from those aiming at EHW as a design
alternative. It was pointed out clearly that the final goal was
to achieve online adaptation, although the current work was
only concerned with offline adaptation [30], [35].

Other work on the function level evolution [36] include
EHW for adaptive equalization in digital mobile communica-
tions and lossy data compression.

The driving force behind the function level evolution was
to partially address the problem of scalability suffered by the
gate level evolution, especially for EHW that would be used
in industrial applications.

C. Cellular Programming

A research area closely related to EHW is cellular pro-
gramming, i.e., evolving cellular automata (CA) by simulated
evolution [66]. Sipperet al. [66], [55], [67], [68] and Mitchell
et al. [69], [70] have used EA’s to evolve, rather than design by
hand, CA’s that display complex behaviors and perform com-
plex computations. A hardware implementation was described
in [55] and [54].

D. Some Issues and Related Work in Adaptive EHW

Although adaptive EHW might be accused of being a
“seductive” phrase, it is used here to distinguish it from
evolutionary design of hardware and refer to the EHW that
requires generalization ability and online adaptation. There are
some fundamental and interesting issues in adaptive EHW that
are worth probing further. A comparison with some related
work would also help to foster cross fertilization between
EHW and other research areas and identify the potential niches
of EHW, where its advantages could be fully exploited.

1) Online Adaptation: In spite of the high hope of EHW,
no work has been reported on online adaptation by EHW.
Only offline adaptation by EHW has been achieved, in which
adaptation happens during the learning phase of EHW. It
should be noted that online adaptation means adaptation of
EHW, while it is executing in a real physical environment.

In a sense, online adaptation can also be viewed as real-time
adaptation. The meaning of “online” here is different from that
used in other contexts, such as online update of connection
weights for a backpropagation neural network.

Online adaptation requires EHW’s learning to be incremen-
tal and responsive. Such requirements do not seem to be met
by population-based evolutionary learning, which is used by
all EHW at present. The current population-based evolutionary
learning is not incremental because, if a new situation occurs
as a result of an environmental change, it would have to relearn
the newas well asold situations to deal with both.

Evolutionary learning at the population level is slow in
responding to environmental changes without local learning at
the individual level. The population-based learning is global
because learning can only be achieved through interactions
among different individuals, although it is possible to restrict
such interactions to a neighborhood.

It appears that “pure” population-based evolutionary learn-
ing would not be sufficient to cope with the requirements of
online adaptation. Local learning at the individual level could
be introduced to supplement it. Local learning can respond
much faster to environmental changes since such response can
be made at the local individual level. It has been shown in the
area of EANN’s that combining evolutionary learning at the
population level with local learning at the individual level is
feasible and beneficial [71], [25]–[27].

2) Generalization: Generalization is a key issue for any
learning or adaptive systems, including EHW. However, stud-
ies on this topic are relatively few in the area of EHW.
Some experiments on EHW did not address the issue since
the same training and testing data set was used, e.g., the
experiments with the artificial ant [56] and the four-state
automaton [35]. It is unclear how well the EHW could
generalize to different situations in these cases. In essence,
such experiments demonstrated the effectiveness of EHW as an
alternative to circuit design, but not necessarily as an adaptive
or learning system.

Most work on testing the generalization ability of EHW
was done by Higuchiet al. [2], [62], [35], [30]. For the EHW
pattern recognizer described in Section III-B, its performance
was tested on a noisy test data set different from the training
set [62]. For the Iris data set, different training and testing sets
were also used [35].

An issue that arises here is whether the maximum fitness
value corresponds to the best generalization. The issue is
somewhat similar to that raised in Section II-E3. For example,
a solution learned by the EHW pattern recognizer for identi-
fying three patterns was , and ,
where ’s were output and ’s
were input [62]. This was apparently not a good generalization
because the output class was determined by a single pixel
value. It meant that a single-bit noise at that particular position
would change the output of classification. The patterns used in
learning EHW recognizer were digits and letters. Recognizing
a digit or letter based on the presence or absence of a particular
pixel value does not seem to be correct. The fact that the
learned EHW had high fitness but not best generalization
implies that the EHW recognizer did not learn what we wanted
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it to learn. It is possible that the training set used in training
the EHW recognizer did not contain data of sufficient variety.
A better training set should improve EHW’s generalization.

Evaluating EHW’s generalization can be a difficult task due
to different implementations. This difficulty is closely related
to that of evaluating the generalization ability of evolutionary
learning systems in general. It is not uncommon to read papers
that only report a good system evolved at a certain number of
generations. It is unclear, however, whether such a good sys-
tem is the result of one particular run or the average of multiple
runs. Statistical analysis of the experimental results seems to
be missing. In addition, it is unclear how to decide when to
stop to get the good system. A more disciplined approach to
experimental studies of generalization in evolutionary learning
will greatly help EHW’s research.

3) Adaptive EHW and EANN’s:EANN’s refer to a class
of ANN’s in which evolution is another form of adaptation in
addition to learning [71], [25]–[27]. In particular, EANN’s that
adapt their architectures through simulated evolution and their
weights through learning (training) have been shown to be
successful in dealing with a number of benchmark problems
[39]–[43], [72].

Adaptive EHW is closely related to EANN’s. For example,
both the function level EHW (FEHW) [30], [35] and EPNet
[39]–[43] evolve feedforward architectures. Both can have
different node functions in an architecture [35], [73]. However,
node functions in FEHW usually have more variety. There
is currently no local learning in FEHW. No weights are
associated with connections in FEHW. FEHW’s adaptation
relies heavily on different compositions of its node functions.
In contrast, EPNet uses weights and local learning, but less
variety of node functions. It is unknown at present whether
FEHW with more node functions without weights would be
better than that with less node functions with weights in terms
of adaptation and hardware implementation. (It should be
pointed out that EPNet is a software package, and it is not
targeted at hardware implementation.)

Although EPNet is implemented in software, there are some
techniques that might be useful for EHW. For example, EPNet
uses validation sets and the order of mutations to improve the
generalization ability of learned systems. It grows an ANN by
splitting an existing node rather than adding a random one. The
process is similar to cell splitting in biology. It deletes or adds
a connection by evaluating the importance of the connection
first. It also maintains a close behavioral link between parents
and offspring, which is important for online adaptation in
which we do not want large fluctuations.

Local learning through adjusting weights could be intro-
duced into FEHW since each PFU (i.e., node) in FEHW
(implemented by function level FPGA’s) has four constant
generators that can be used to produce weights for up to
four inputs. Such local learning at the individual level can
be realized easily. The approach adopted in EPNet could be
borrowed or tailored to FHEW. The potential problem might
be the speed of such learning. The various types of node
function used in EHW will have a major impact on the speed.

4) Adaptive EHW and Genetic Programming:While
FEHW and EPNet manipulate acyclic, weighted, and directed

graphs by simulated evolution, GP [13] mainly manipulates
trees. They are closely related to each other because a tree
can be regarded as an acyclic directed graph and an acyclic
directed graph can be transformed into a tree by duplicating
nodes and branches.

FEHW and GP share the similarity that both adapt function
compositions and/or combinations without weights and local
learning. But their representations are different. FEHW ma-
nipulates acyclic, weighted, and directed graphs by simulated
evolution, while GP mainly manipulates trees. Although a tree
can be regarded as an acyclic directed graph and an acyclic
directed graph can be transformed into a tree by repeating
nodes and branches, FEHW is more flexible and general as it
can deal with cyclic graphs without much added complexity.

Just as the case in GP, FEHW also requires predefining
a set of primitive functions that can be used by each node.
One question, which was mentioned briefly in the previous
subsection, is why we need more than one node function
and what the benefits would be. GP systems that use only
one type of node function but with weights, such as the
STRONGANOFF system [74], seem to work quite well.

5) Disaster Prevention in Real-Time Online Evolution:It
was mentioned in the beginning of Section III that evaluating
an EHW in a real physical environment could cause severe
damages or disasters to EHW or the physical environment.
This potential risk restricts possible applications of EHW in
domains in which evaluating EHW in a real physical environ-
ment is impractical and an accurate simulation model of the
physical environment is difficult to obtain. In most EHW ap-
plications, fitness evaluation is the most time-consuming part
of the whole evolutionary process. The distinction between
intrinsic and extrinsic EHW does not seem to capture this char-
acteristic of EHW. It is only concerned with whether an EHW
is reconfigured once or multiple times for each generation [6].

The aforementioned risk stems from the trial-and-error
nature of EA’s and the black-box approach used by EA’s. An
EA only evolves chromosomessyntacticallynot semantically.
It does not understand evolved systems and the environment
as no explicit models are used. A possible way to get around
this problem is to develop a knowledge-based adaptive EHW,
where constraints and knowledge about the environment in
which EHW will be evaluated are incorporated into fitness
evaluation as its front end, such that any poor individuals that
may cause damages to themselves or the environment could be
detected and prevented from being passed to the real physical
environment.

IV. BEHAVIORAL VIEW OF EHW

Evolving electronic circuits faces many challenges and
open issues. Most of them are caused by the confusion
between evolving circuits and evolving circuit behaviors. This
confusion should be cleared before any further progress can
be made in EHW research. On the surface, it does not
seem to make much difference when circuits are evolved
or their behaviors are evolved. However, conceptually it is
inappropriate to evolve circuits. It is circuit behaviors that
should be and can be evolved. It is inherently hard to evolve
circuits. Why?
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Simulated evolution uses a fitness function to evaluate an
EHW individual. What does it actually evaluate? Is it really the
EHW circuit (connectivity, functional cells, etc.)? The answer
is no. It is the circuit’s behaviors that are evaluated. The fitness
function knows nothing directly about the circuit, and it is not
supposed to know it. Since it is the circuit behaviors that are
evaluated, the fitness value must depend on the environment
in which the EHW circuit is evaluated. Hence, the fitness
value is only a measurement of how good the circuit is in
that environment. It says nothing about the circuit’s behaviors
in a different environment. This is where the generalization
and circuit verification issues start coming in and bothering
the EHW research, as discussed in Sections III-D2 and II-E3.

In short, EHW should be regarded as an evolutionary
approach to behavior design rather than hardware design. Such
a behavioral view of EHW requires a different thinking on
EHW circuit design. It is no longer appropriate to talk about
what architecture or function a circuit should have. We should
start thinking of what behaviors are required from a circuit in
certain environments. Then EHW would become a powerful
means to evolve and implement such behaviors.

V. EHW THAT DOES NOT CHANGE

ITS CONFIGURATION BY AN EA

This paper is primarily concerned with EHW that uses
simulated evolution (notably EA’s) to evolve hardware. There
are other types of hardware that also use some biological ideas
other than evolution. For example, Mangeet al. [75]–[78],
[50]–[52], [49] have been working on self-reproducing and
self-repairing hardware based on some ideas from molecular
biology (genetics and embryology). The approach used was
built on von Neumann’s pioneering work on self-reproducing
automata [79].

de Garis [80]–[84] used CA in the CAM-BRAIN project
exclusively. The aim of the project is to grow and evolve
CA-based neural networks (i.e., artificial brains). However, it
is unclear what the neural networks are used for since little
information has been disclosed about experimental studies on
CAM-BRAIN. It is also unclear how the artificial brain is
going to learn or evolve after it has “grown up.”

VI. CONCLUSION

This paper reviews the current research on EHW. Emphasis
is given to EHW that employs simulated evolution to evolve
hardware. A number of issues are raised and discussed. In
particular, EHW research needs to address issues, such as scal-
ability, online adaptation, generalization, circuit correctness,
and potential risk of evolving hardware in a real physical
environment. It is argued that a theoretical foundation of
EHW should be established before rushing to large-scale EHW
implementations.

This paper also points out some related work, in which some
of the techniques could be applied to EHW. Two such related
areas are EANN’s and GP. EHW is a new research field in the
intersection between evolutionary computation and electronics.
New progresses in these two fields will continue to provide
EHW with new opportunities. For example, recent work on

fast hardware for computing exponential and trigonometric
functions [85] and work on built-in self-test (BIST) test pattern
generators [86] will no doubt widen the range of possible EHW
applications.
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