
Survivability of Embryonic Memories: Analysis and Design Principles

 Lucian Prodan Mihai Udrescu Mircea Vladutiu

 Advanced Computing Systems and Architectures Laboratory

“Politehnica” University, Computer Department

 2 V. Parvan Blvd., 300223 Timisoara, Romania

www.acsa.utt.ro

+40-722-664779 +40-723-154989 +40-256-403258

lprodan@cs.utt.ro mudrescu@cs.utt.ro mvlad@cs.utt.ro

Abstract

This paper proposes an original approach to the

reliability analysis for Embryonics [4], by introducing the

accuracy threshold measure, borrowed from fault-tolerant

quantum computing theory, as one of the main parameters

for our qualitative assessment. The validity of this

technique is proven by comparison with the classical

reliability results; furthermore, it brings new perspectives

on designing reliable embryonic memory structures at both

the molecular and the cellular levels. Appropriate design

principles are provided on both information encoding

(concatenated codes) and storage (fault tolerant memory

structures).

1 Introduction

Computer evolution in present days faces a fine paradox,

arising from its dual nature: some applications require

speed above anything else, while others require highest

possible reliability. While each of the requirements has to

deliver its best, unfortunately, computers can only partially

fulfill them, therefore justifying a quest for different and

better-suited designs. Inspiration is constantly sought in

both their hardware and software designs. Since their

beginning, computers were protagonists of the quest for

performance. Once the benefits of computing power and

technological advances enabled the coming of the space

exploration era, a shifting in performance priorities was

encouraged. Demands for brute computing force (which

appears to have reached somewhat sufficient levels today)

began to lose ground to dependability requirements.

As stated by Avižienis et al., dependability can be

defined as “the ability of a system to avoid service failures

that are more frequent or more severe than is acceptable”

[1]. It is therefore a synthetic term that involves a list of

attributes including reliability, fault tolerance, availability,

and others. In the real world, a dependable system would

have to operate normally over long periods of time before

experiencing any fail (reliability, availability) and even in

the presence of faults (fault tolerance). The term

“acceptable” has an essential meaning within the

dependability’s definition, setting the upper limits of the

damage that can be supported by the system while still

remaining functional. This paper will elaborate upon

computing the threshold beyond which the damaging

effects become no longer acceptable, and, by consequence,

no longer recoverable from. All of the above being

considered, dependable systems are crucial for applications

that prohibit or limit human interventions, such as long

term exposure to aggressive (even hostile) or unknown

environments. The best examples are long term operating

machines, as required by managing deep-

underwater/nuclear activities and outer space exploration.

The quest of designing digital systems that offer

superior dependability can draw benefits from two distinct

sources. The first one has been around since the dawn of

times: Nature. Its living elements continuously demonstrate

a variety of solutions for achieving robustness in an error-

prone, macro-scale environment. There are numerous

similarities and differences between artificial, digital

computing systems and natural, living beings; although

such a thorough analysis is beyond the scope of this paper,

it is likely that the field of digital computing could exploit

some of the mechanisms implemented by Nature and adapt

them to the electronic environment. The result is the new

field of bio-inspired computing, a representative example

being the Embryonics project [3][16].

Another source of inspiration may be constituted by

novel computing paradigms, whose research has already

considered dependability-raising techniques. Opposed to

natural computing, which takes place in an error-prone,

macro-scale environment, the emerging field of quantum

computing relies on successful calculus in an error-prone,

micro-scale environment. Since errors are (as of yet)

intrinsic to quantum systems, a number of techniques were

established in order to overcome their damaging effects and

deliver consistent results. However, though a variety of

Proceedings of the 2005 NASA/DoD Conference of Evolution Hardware (EH’05)
0-7695-2399-4/05 $ 20.00 IEEE

methodologies for estimating dependability parameters

have been proposed, they usually remain localized and

rarely reach other architectures.

1.1 Paper outline

The basics of quantum computing together with the

accuracy threshold estimation technique will be revisited in

Section 2. After an introduction to the concepts and the

architecture of the Embryonics project, Section 3 will detail

the process of adapting this technique and present

arguments on its relevance to the bio-inspired computing

(and, in particular, to Embryonics). Qualitative results will

be compared to those provided by the more classical

reliability estimations. The suitability of the concatenated

coding technique (also inspired from quantum computing)

to memory structures in Embryonics will also be discussed,

together with the appropriate design principles. Section 4

argues, in qualitative terms (accuracy threshold), over

design decisions such as Hamming and concatenated

coding. Finally, Section 5 will present our conclusions and

thoughts for future work.

2 Fault-tolerant quantum computing

Quantum computation uses coherent atomic-scale

dynamics [13] and therefore takes place in a microscopic

environment. The information storage unit in quantum

computing is the quantum bit or qubit, which is presented

here in bra-ket notation [13]. Any qubit 0 10 1a a

is a normalized vector in a bi-dimensional Hilbert space,

with 0 and 1 as the orthonormal basis, and can be seen

as a simultaneous superposition of both classical binary

values. Parameters a0, a1 are called quantum

amplitudes and represent the square root of the associated

measurement probabilities for the superposed states 0

and 1 respectively, with 1
2

1
2

0 aa . The qubits can

be organized in linear structures called quantum registers,

encoding a superposition of all possible states of a

corresponding classical register [6]:
2 1

0

;

n

r i
i

a i

2 1
2

0

1, , i

n

i i
i

a a .

An essential promise of quantum computing is solving

in polynomial time problems that have only exponential

known classical solutions. However, the transition from

classical computing to this new paradigm is far from

immediate and beyond the scope of this paper. The new

computational environment requires a new set of problems

to be solved first [14][15] before any benefits are to be

drawn. Dealing with dependability issues constitutes a

priority in quantum computing because of its inner faulty

nature. Faults are native to the quantum environment since

a quantum state cannot be fully isolated from the

environment, which continuously attempts to measure it.

The state, in turn, decays to one of the basis (classical)

states, a phenomenon called decoherence. Although they

can be classified into 3 categories, namely bit flips, phase

shifts and small amplitude errors, faults can all be reduced

to bit flips [6][8]. Errors affecting the quantum computing

are considered to be uncorrelated, neither in space, nor in

time [8], therefore sharing the same model with soft fails

induced in digital devices by aggressive radiations.

In order to make accurate quantum computation

possible in an error-injecting environment, recovery

procedures are required; redundant coding presents a

choice of strategies for achieving fault tolerance. However,

the recovery process is by itself computational, and

therefore vulnerable to errors. In order to ensure a level of

fault tolerance that would make the prospect of a quantum

computation device feasible, the following questions have

to be raised: what is the accuracy threshold that still

warrants valid computation? Or, what is the upper bound of

the fault frequency that would still allow a successful

recovery? These questions were already answered in the

quantum context [8][17]; we will however revisit the

proposed qualitative assessment since we believe a similar

reasoning may also be applied to the Embryonics project

[4] and to fault-tolerant digital systems in general.

If the redundant, error-correcting coding allows the

correction of t faults, then an uncorrectable fault means that

at least t+1 faults occur before the recovery process can be

finalized. If the probability of a fault affecting the macro-

molecular information is , then an uncorrectable error

will happen with a probability of the order
1t

 [8][17].

Ideally, choosing a reasonably high value for t can make

the probability of an unrecoverable fault as small as

desired; however, the complexity of the code shows a steep

rise with the value of t, with a polynomial function of the

form
b

t , eventually leading to the situation when correcting

the data takes so long that the appearance of an

unrecoverable event becomes most likely. Then, the block

error probability (BEP) of t+1 errors accumulating in a

codeword before the recovery is complete (thus producing

an unrecoverable event) will have the form [8]:
1tb

BEP t t (1)

Minimizing the BEP function after parameter t yields:

0
dBEP t

dt
(2)

which results in:

1 1
11 1

ln ln 1 0 t bt te e
b t

(3)

Solving Equation 3 and assuming that t is large [8] gives:

Proceedings of the 2005 NASA/DoD Conference of Evolution Hardware (EH’05)
0-7695-2399-4/05 $ 20.00 IEEE

1
1 bt e (4)

Substituting this result into Equation 1, the minimum block

error probability MBEP then becomes of the form [8]:
1

1
exp bMBEP e b (5)

The result for MBEP is important with respect to

estimating the required accuracy for a reliable computation.

If we consider T as the time interval without any

unrecoverable error occurring, then:
1

 exp bT MBEP T (6)

From this equation, can then be extracted under the

form:

ln
b

T (7)

For the situation when no codes are used at all, the

accuracy decreases as the computation becomes longer and

therefore gives:
1

NoCodes T (8)

Equation 7 provides a qualitative assessment of the

computational accuracy threshold with error protecting

codes that is clearly superior to the case when no codes are

used at all (Equation 8). Due to the lack of standardization

when dependability measures are concerned [1],

establishing precise values is difficult. However, this

qualitative assessment delivers the necessary criteria for a

dependability comparison between two functionally

identical systems, before and after applying fault tolerance

measures.

3 Naturally-inspired dependability and the

Embryonics project

Natural computation occurs at a macroscopic scale, the

environment being subject to dynamic changes, which

affect living beings by inducing a variety of wounds and

illnesses (faults). Though the natural computation is also

error-prone, successful healing and recovery are quite

common: in a majority of cases, natural systems continue to

carry on their vital functions while their overall

functionality levels do not drop abruptly.

With the exception of unicellular organisms (bacteria),

multicellular organisms share some key features [4]:

multicellular organization divides the organism into a

finite number of cells, each accessing the same genetic

program;

cellular division and differentiation allow any cell to

generate daughter cell(s) with certain features through

execution of part(s) of the genome.

A consequence of these features is that each cell is

"universal", as it contains the whole of the organism’s

genetic material, the genome. This enables very flexible

redundancy strategies, the living organisms being capable

of self-repair (healing) or self-replication (cloning). These

two properties, based on a multicellular tissue, are

essentially unique to the living world.

The capacity of healing is what gives natural systems

their robustness. Fault tolerance is hierarchical, being

present at several different levels: redundancy and self-

repairing features can be found at molecular level (the

DNA contains redundancies and can repair a variety of

faults [10]), at the cellular level (cells do replace each other

in case of faults, faulty ones die and are eliminated while

new ones are grown) and even at higher levels (brain

hemispheres, for instance, are known to be able to transfer

some functionalities in case of damage). The success of

Nature’s solutions is proven by the uncountable variety of

living beings, with a life span up to several hundreds (for

the animal regnum) or even thousands (for the vegetal

regnum) of years; furthermore, considering the amounts of

time spent for evolving them, they are as close to perfection

as possible. This alone makes for a strong argument

supporting bio-inspiration in digital computing, an idea

enounced in the 1950s by John von Neumann, who may

also be considered the pioneer of reliable systems [5].

The Embryonics (from embryonic electronics) project

made its debut as long-term research aimed at exploring the

potential of biologically-inspired mechanisms adapted into

digital devices [4]. Rather than achieving a specific goal,

the purpose is building novel, massively parallel,

computational systems, that implement the key features

shared by all multicellular organisms and would also

borrow the remarkable robustness present in biological

entities.

As a bio-inspired digital platform, the key features

shared by all multicellular organisms are present in

Embryonics through a quasi-biological hierarchy based on

four levels of organization, as shown in Figure 1 [3][4].

The Embryonics project targets applications in which the

failure frequency must be very low to be “acceptable”.

The upmost level in Embryonics, similar to what is

found in nature, is the population level. One step down

inside the hierarchy the focus zooms to the population’s

components. This is the organismic level, and corresponds

to individual entities in a variety of functionalities and

sizes. Each entity may, however, be further decomposed

into smaller, simpler parts, called cells, and then,

molecules. A biological organism corresponds in the world

of digital systems to a complete computer, a biological cell

is equivalent to a processor, and the smallest part in

biology, the molecule, may be seen as the smallest,

programmable element in digital electronics.

The hierarchical architecture in Embryonics enables the

implementation of a multi-level self-repairing strategy. All

molecules are structurally identical and constitute a layer of

reconfigurable logic, thus providing support for universal

Proceedings of the 2005 NASA/DoD Conference of Evolution Hardware (EH’05)
0-7695-2399-4/05 $ 20.00 IEEE

computation. Any change in the functionality takes place

by altering the binary configuration, thus allowing for a

flexible redundancy strategy involving spares: every cell is

a rectangular array of molecules, involving both active and

spare columns.

Figure 1. Structural hierarchy in Embryonics [9]

Whenever a faulty molecule is detected, a

reconfiguration process is triggered at this level, the result

being the faulty molecule’s bypassing, together with the

closest spare molecule becoming active and taking over its

role. The reconfiguration process is shown in Figure 2;

inside a simple cell consisting of 3x3 molecules, molecule

E is detected as being faulty and is replaced by its closest

spare molecule from its right (molecule H) through signal

re-routing. The reconfiguration process at the molecular

level can protect the cell’s normal behavior as long as spare

molecules are available for repair. The situation when no

more spares are available for repair results in disabling (or

“killing”) the entire cell and triggering the reconfiguration

process at the higher, cellular level. Such a situation occurs,

for instance, when molecule H (which has now become

active) also suffers an error, shown in Figure 3.

Organisms are also rectangular structures, where cells

coexist as both active and spare columns. Figure 4 shows

an organism containing 6 active cells and 2 spare cells. Let

us suppose that an unrepairable error occurs inside cell C,

as a result of internal damage produced by errors that

occurred as described by Figure 2 and Figure 3. In this

situation, the cell will “die” and the reconfiguration process

at the cellular level will transfer the affected column’s

functionality by activating an available spare column.

A central purpose of the Embryonics’ bio-inspired

architecture is to ensure that the basic bricks are suitable for

building extremely dependable machines. Because design

flexibility also requires the existence of memory structures,

a new operating mode was added at the molecular level:

each molecule may be used either as programmable logic

(when in logic mode), or as a storage element with data

shifting features (when in memory mode). In order to

detect the presence of faults and to provide an

architecturally efficient compromise, both off-line and on-

line self-testing strategies were used initially for the logic

mode [16].

Figure 2. Reconfiguration at the molecular level [4][16]

Figure 3. Molecular reconfiguration failure. The cell “dies”,

triggering the reconfiguration at the cellular level [4][16]

However, the added flexibility [11][12] could not be

protected by employing the self-repairing mechanism, used

in case of the logic mode; a strategy based on redundant

coding was chosen in order to ensure the integrity of

storage data [9]. Therefore a fault tolerant memory

structure (which we called a macro-molecule) based on

Hamming-type codes would require the existence of

additional memory structures, together with corresponding

logic. Typically, a complete cell (see Figure 5) would

include 3 categories of molecules: logic molecules

(operating in logic mode and used for combinational logic

implementation), storage molecules (operating in memory

mode and used for micro-programmed machine

implementation) and spare molecules (used as provisions

for the reconfiguration mechanisms) [9].

Figure 4. Reconfiguration at the cellular level [4]

Previous research efforts have covered reliability

analysis in case of Embryonic cells made of logic-only

Proceedings of the 2005 NASA/DoD Conference of Evolution Hardware (EH’05)
0-7695-2399-4/05 $ 20.00 IEEE

operating molecules [7]. The addition of the new, fault-

tolerant memory structures called macro-molecules

changes the Embryonics architecture and therefore reflects

upon its reliability. At this point, it may be said that the

quantum and bio-inspired computing (through Embryonics)

do share some common ground: both target applications in

which reliable computation has to be performed in harsh,

error-injecting environments. Since error modeling is

similar, techniques already established in quantum

computing might be worth being considered for

Embryonics.

3.1 The computation accuracy threshold

 As long as a macro-molecule is concerned, T represents

the time frame required for an error to be corrected, the

worst case being a fault occurrence placed furthest from its

corresponding data output port [9][12]. Such a situation

occurs when the flipped data bit is positioned as the first bit

from a bottom row molecule, the shifting path until it may

be put into evidence and corrected being of length F M ,

where F is the storage dimension of the memory molecule

and M is the vertical dimension of the macro-molecule (or

the number of rows); thus T F M .

Of course, when no techniques ensuring fault tolerance

are implemented, T is proportional with the size of the data:
11

T FM N s (9)

As for parameter b (see Equation 1), it depends on the size

of the code as an expression of the gain in complexity with

its dimension. In our case the size of the dataword to be

protected results as t N s bits, where N represents the

horizontal dimension of the macro-molecule (or the total

number of columns) and s represents the number of spare

columns. A single error correcting Hamming code requires

a number of k additional control (or check) bits, where k

represents the smallest integer that satisfies the following

equation:

2
log 1k k N s (10)

Therefore, the total size of the codeword, including the

redundant bits results as t k N s

2
log 1 k N s , with the Hamming matrix being of

dimensions 2
k

k . As a result, any fault detection or

correction process needs at most a certain number of

computational steps that is given by the dimensions of the

Hamming matrix, which is of the order
2

logt t .

Parameter b can be estimated as the power of t that

approximates best the number of necessary

detection/correction steps, leading to the following

equation:

2
log

b
t c t t (11)

where c is a constant. Because there are several algorithms

performing the detection/correction process, we will choose

the value covering the worst case scenario; following

Equations 10 and 11 this value results as 2b , the macro-

molecular accuracy in case of integrated fault tolerance

measures being:
1

2ln FM (12)

Parameter N does not appear directly in Equation 12

since its influence is quantified by the gain in the code’s

complexity defined by parameter b (N signifies the number

of data bits that are to be protected, which in turn imposes

the number of redundant code bits and the total length of

the codeword). Equations 9 and 12 show how the macro-

molecular accuracy scales for situations with and without

error correction techniques. Plots for the accuracy trends

are given in Figure 6, showing superior scaling when using

error correcting codes as opposed to when no codes are

used at all.

Figure 5. A typical cell includes all 3 categories of molecules:

logic, memory, and spares

For a macro-molecule with no data error protection

mechanisms, the graph from Figure 6 (top) shows an

accuracy decrease when the overall storage capacity

increases. This is consistent with the fact that the

probability of an ocurring error is directly proportional with

the area of the macro-molecule. The situation changes

when error-correcting codes (or ECCs) are used. If each

row can recover from a single error, then the accuracy

dependencies show an increased efficiency with the

increase of storage area; however, the graph from Figure 6

(bottom) does not contain parameters involved in an

exhaustive manner, which probably leads to the final

results for the macro-molecular reliability being less

optimistic but, at the same time, superior to the case when

no fault tolerant measures are taken into account. The

qualitative results produced by the accuracy threshold

estimation technique should be similar to those provided by

the more classical reliability analyses.

Proceedings of the 2005 NASA/DoD Conference of Evolution Hardware (EH’05)
0-7695-2399-4/05 $ 20.00 IEEE

3.2 Reliability analysis of a complete cell

When regarded at molecular scale, an entire cell consists of

two categories of molecules, their functionality being

dictated by the mode they operate in: logic or memory.

There are no restrictions over the proportions in which

molecules may operate in a certain mode, being possible

for a cell to be made either of molecules operating in logic

mode only, molecules operating in any of the memory

modes, or any mixture between logic and memory modes.

Therefore, estimating the reliability of a cell is not a

trivial task, since it depends on the reliability of its

components [2], which operate quite differently.

Furthermore, due to their different strategies in case of

occurring faults, any reliability analysis has to be carried

out separately for logic molecules and memory molecules.

On one hand, a faulty logic molecule will be eliminated

through reconfiguration, a spare one being activated in

order to take its place, whereas a fault detected inside a

macro-molecule does not trigger any structural

reconfiguration measures at this level. The reconfiguration

at the higher (cellular) level is triggered by a failure of the

reconfiguration mechanism at the lower (molecular) level

[4][16]. We will not discuss the details of the failure of the

reconfiguration at the molecular level in case of logic

molecules

A non-recoverable situation inside a macro-molecule

could be addressed by two scenarios:

– since at least 2 bits worth of data will be damaged, the

result is a macro-molecule that contains altered data,

but the cell retains a certain level of overall

functionality;

– the KILL process is initiated, resulting in the death of

the entire cell. This is the scenario we chose to

implement in Embryonics.

Whether one scenario is a better choice that the other may

constitute a subject of debate, since it is difficult to say if

having a functional (but, at the same time, crippled) cell has

any advantages over not having that cell at all. Nature itself

encounters a similar problem, since cellular mutation does

not necessarily render the organism non-viable; however,

altered cellular information often leads to damaging effects

and illnesses, such as cancer.

3.2.1 Reliability of an ensemble of logic molecules

The reliability analysis of embryonic structures made

entirely by logic molecules has been previously addressed

[7]. We will, however, reconsider such an analysis as the

molecular internal architecture has been changed with the

addition of the memory operating mode [9][12]. Let us

consider that the logic molecules make up a rectangular

structure of M
* lines and N

* columns, of which S
* are

spares.

Such a logic structure was analyzed as being based on

the k-out-of-m reliability model, that is, the proper function

of the system as a whole is ensured as long as at least k

units out of a total of m are operating normally [7]. In our

case, considering that any detected fault inside a molecule

triggers a reconfiguration strategy that leads to the “death”

of the respective molecule, this means that no more than S*

errors (or faulty molecules) can be tolerated in a single row.

Therefore the reliability of a single row becomes of the

form:
*

*

* * *

* *

() 1

N i
N

N i t t

Row i

i N S

R t C e e (13)

Because the logic ensemble is built of M* rows, its overall

reliability results as:
*

() ()
M

LogicEnsemble Row
R t R t (14)

3.2.2 Reliability of a macro-molecule

We consider a non-fault tolerant macro-molecule of M lines

and N columns (of which S are spares), each molecule

storing F bits worth of data. Considering that is the

failure rate for a single flip-flop, the reliability of the entire

macro-molecule is then given by:
()

()
FM N S t

MMolR t e (15)

Parameters M
*, N

* and S
* are generally different than

parameters M, N and S since they characterize completely

different entities. Furthermore, the failure rate

considered for the elementary memory unit (the flip-flop)

may prove to be different than the failure rate
*

 used in

case of a logic molecule (which typically employs other

resources than a memory one), in which situation flip-flops

may be used under different operating conditions or not be

used at all.

The addition of single fault tolerance capabilities to a

macro-molecule with a number of t columns leads to the

employment of k additional columns (defined by Equation

10) required by the Control Memory. At each clock cycle,

genome data are read through access ports and new control

bits are computed (see Equation 16) and compared to those

stored by the Control Memory. Figure 5 presents the block

structure of a single fault-tolerant macro-molecule; the

macro-molecule storing genetic data has 4 columns, thus

requiring a number of k=3 additional columns used for

storing the redundant information.

The implementation of the Hamming code requires a

decision being made with respect to the structure of the

control memory, which could either make up for a second

macro-molecule or could leave each control memory

column operate independently.

The first situation unifies the control memory into a

single structure that requires a detailed analysis of a macro-

molecule’s data path specifics [9] in order to operate

correctly. Control data is computed according to Equation

Proceedings of the 2005 NASA/DoD Conference of Evolution Hardware (EH’05)
0-7695-2399-4/05 $ 20.00 IEEE

16, where
2:0

c are the redundant bits output by the Control

Memory and required for error correction:

2 4 6 8 10
0

0.005

0.01

0.015

0.02

F=8, N=4

F=16, N=6

Vertical dimension

M
ac

ro
-m

o
le

cu
la

r
ac

cu
ra

cy
 w

it
h

 n
o

 c
o

d
es

2 4 6 8 10
0.02

0.04

0.06

0.08

0.1

0.12

F=8

F=16

Vertical dimension

M
ac

ro
-m

o
le

cu
la

r
ac

cu
ra

cy
 w

it
h
 c

o
d
es

Figure 6. Macro-molecular accuracy variation without and

with codes

0 0 2 3

1 0 1 2

2 1 2 3 t

c u u u

c u u u

c u u u

(16)

Data is continuously shifted inside both the Genome and

the Control Memory [9], the process being shown

intuitively in Figure 7. It is important the two memories

maintain synchrony even after data permutation, in order to

preserve the consistency of Equation 16. At time t the Error

Correcting Logic (or ECL) reads the word
0 1 2 3 0 1 2

u u u u c c c

(Equation 16), which will shift into
3 0 1 2 2 0 1

u u u u c c c at time

t+1. If the data macro-molecule has a vertical dimension of

M lines (each molecule storing F data bits), then at time

1 1t F M (which is necessary for the data to travel

from the bottom to the output ports situated at the top of the

macro-molecule [9][12]) the ECL will read
3 0 1 2 2 0 1

u u u u c c c .

Computing the control data for this new configuration is

done by Equation 17, the identity with Equation 16

confirming the two macro-molecules (data and control)

remain in synchrony for a (7,3) Hamming code.

2 3 1 2

0 3 0 2

1 0 1 2 1 1t F M

c u u u

c u u u

c u u u

(17)

Figure 7. Data shifting inside Genome and Control Memory

for a (7,3) Hamming code implementation

The situation changes when a (15,4) Hamming code is

employed, the Genome and Control Memory being shown

in Figure 8. Control data is now computed according to

Equation 18:

0 0 3 4 6 8 9 10

1 0 1 3 5 6 7 8

2 1 2 4 6 7 8 9

3 2 3 5 7 8 9 10 t

c u u u u u u u

c u u u u u u u

c u u u u u u u

c u u u u u u u

(18)

At time t the ECL reads the word
0 1 2 3 4 5 6 7 8

u u u u u u u u u

9 10 0 1 2 3
u u c c c c , which will shift into

10 0 1 2 3 4 5 6 7 8 9 3
u u u u u u u u u u u c

0 1 2
c c c at time t+1. When this configuration reaches the

ECL, the new control data will be computed (Equation 19),

indicating the synchrony between the Genome and Control

macro-molecules was lost during data shifting. Therefore,

implementing a (15,4) Hamming code by using a Control

macro-molecule shows that the solution to the

synchronicity issue is not straightforward. However, it may

be possible to find the right configuration for the Hamming

matrix for preserving the synchrony, which has to be

carefully considered for the general case.

3 10 2 3 5 7 8 9

0 10 0 2 4 5 6 7

1 0 1 3 5 6 7 8

2 1 2 4 6 7 8 9 1 1t F M

c u u u u u u u

c u u u u u u u

c u u u u u u u

c u u u u u u u

After having investigated the possibility of implementing

the Control Memory as a standalone macro-molecule,

another possibility would be using independent columns to

provide the control data. However, the problem of

maintaining the synchrony between the genome and the

control memory structures remains: the relative position of

(19)

Proceedings of the 2005 NASA/DoD Conference of Evolution Hardware (EH’05)
0-7695-2399-4/05 $ 20.00 IEEE

data bits changes as they are shifted inside the genome

macro-molecule, thus violating Equation 18. A possible

solution would be to have separate genome macro-

molecules, with each providing one data bit to the ECL

unit. For a (7,3) Hamming code, this would mean the

existence of 4 genome macro-molecules (with identical

dimensions), as suggested in

Figure 9.

Figure 8. Data shifting inside Genome and Control Memory

for a (15,4) Hamming code implementation

Figure 9. Implementation of a fault-tolerant macro-molecule

with independent control memory columns

Estimating the reliability function for the storage

structure involved in a fault-tolerant macro-molecule must

take into consideration the fact that errors may accumulate

during the shifting process. Furthermore, data has to be

shifted M-1 lines in order to be read and, if required,

corrected, a process which is also subject to error

occurrence. The reliability function will therefore be of the

form of the likelihood describing the situation when at most

one error has occurred at the data access ports (consisting

of N genome and k control bits):

no fails single failMMol t Prob ProbR (20)

The first term of Equation 20 refers to the fact that no

errors occured at time t at the north border molecules,

where data is read at the N+k output ports:

no fails
N k t

Prob e (21)

The second term quantifies the likelihood of

experiencing a single fault at time t in a row, in any of the

M-1 remaining rows:
1

1 1

1
1single fails M N k N k t tProb C C e e (22)

Then the reliability of a fault-tolerant macro-molecule

results as:

1
1 1

N k t

MMol

N k t t

t

M N k

R e

e e
(23)

Plots based on Equations 15 and 23 are shown in Figure

10 for several macro-molecular dimensions. A qualitative

comparison between the two situations, when there is no

fault-tolerance present (top) and when single faults are

tolerated (bottom), points to a significant reliability

improvement brought by the addition of single fault-

tolerance strategy. Although establishing precise

measurements is difficult, the reliability plots are similar to

those given through accuracy threshold estimation, thus

supporting the relevance of this technique for Embryonics.

3.2.3 Reliability at the cellular level

Any cell within the Embryonics project is made of

molecules operating either in logic mode or in any of the

memory modes. A full reliability analysis at the cellular

level requires estimating the individual reliabilities of the

two component structures, macro-molecules and logic

ensemble, which are given by Equations 14 and 23,

respectively. All component structures are required to

perform properly in order to ensure the normal operations

of the cell; therefore the cell can be considered as a series

system in which each subsystem (be it macro-molecule or

logic ensemble) has to function if the system as a whole is

to function [2]. Therefore the cellular reliability function

may be derived as the product of the reliability functions of

its component subsystems as follows:

1

() () ()

n

Cell LogicEnsemble MMol i
i

R t R t R t (24)

where n is the number of macro-molecules present in the

cell.

4 From multiple-level self-repairing to

multiple-level coding

The accuracy threshold , from the quantum computing

context and the failure rate , from the bio-inspired

computing context, are not dissimilar: while gives the

error probability, gives the upper bound for the error

probability so as the computation is still valid. Therefore,

Proceedings of the 2005 NASA/DoD Conference of Evolution Hardware (EH’05)
0-7695-2399-4/05 $ 20.00 IEEE

we have:

max (25)

As long as the error rate remains below the accuracy

threshold, valid computations can be recovered from the

damaging effects of incurring errors. However, these

estimations only cover the time frame between an error

occurrence and the end of the recovery process, that is the

period between data damage and data restoration. While a

reasonable accuracy can be obtained by using error

correcting codes, the occurrence of errors becomes more

likely as the length of the computation increases [8]. Since

machines based on the Embryonics platform are intended

to operate over long periods of time (therefore involving

long computations), this primarily affects the memory

structures, since protective measures are already

implemented within the logic ones [3].

0 0.5 1 1.5 2
0

0.5

1

F=8, M=3, N=4

F=16, M=3, N=4

F=8, M=6, N=10

F=16, M=6, N=10

Time (million hours)

R
el

ia
b
il

it
y
 o

f
n
o
n
-F

T
 m

ac
ro

-m
o
le

cu
le

s

0 20 40 60 80 100
0

1

2

3

F=8, M=3, N=4

F=16, M=3, N=4

F=8, M=6, N=10

Time (million hours)

R
el

ia
b
il

it
y
 o

f
F

T
 m

ac
ro

-m
o
le

cu
le

s

Figure 10. Macro-molecular reliability without and with fault-

tolerance implemented

The fault tolerant quantum computation length limit can

be overcome by employing concatenated codes [8]; when

viewed at a higher resolution, each qubit is encoded by a

block of qubits. Embryonics offers a hierarchical

architecture, each level corresponding to a higher

resolution view. With information encoded at each level,

Embryonics seems natively endowed for implementing

concatenated codes, a first idea being presented in [11].

Moreover, the successful importing of the accuracy

threshold technique creates incentives for an also

successful adaptation of concatenated coding in

Embryonics.

Instead of storing binary words worth of data, fault-

tolerant macro-molecules can store bits that would in turn

assemble to provide data for the next hierarchical level an

encoded binary digit. At the cellular level, genetic

information may also be protected using the same or

similar Hamming codes as implemented at the molecular

level. If such is the case, and we accept the error rate at the

macro-molecular level as being , then an unrecoverable

error will occur with a probability of
2

. A concatenated

code [8] in which each bit at the cellular level is encoded

by 7 bits at the molecular level stored by fault-tolerant

macro-molecules will give the probability of an

unrecoverable error as
22 4

 (assuming errors are of

stochastic nature and uncorrelated). This is where error

coding and concatenation can work together against error

influences: while error coding lowers the probability of an

unrecoverable error, concatenation brings the possibility of

making it arbitrarily small by adding sufficient levels of

concatenation.

Let us consider the following scenario: at the molecular

level, genetic information is stored by fault-tolerant macro-

molecules as a (7,3) Hamming code [2]. Essentially, 4 bits

worth of genetic data are encoded into a 7-bit codeword,

which makes up the elementary piece of information at this

level. At the cellular level, these 7 bits are considered as a

single “bit” of actual data; by applying the same Hamming

encoding, 4 such “bits” require a number of 3 additional

control “bits”, the resulting codeword being able to recover

from an error affecting a single such “bit”. An

unrecoverable situation occurs when a double error affects

a codeword at the cellular level. However, this can only

happen if two sub-blocks fail simultaneously, which, in

turn, means that each of the two (7,3) Hamming codewords

have to experience a double error. Such a concatenated

code offers superior protection, the unrecoverable situation

occuring with a probability of
4

. The situation is depicted

in Figure 11, where higher level “bits” are encoded as

follows: a “1” at cellular level can be encoded at the

molecular level by any Hamming word with an odd number

of 1s, while a “0” can be encoded by any Hamming word

with an even number of 1s. In general, if N such levels of

concatenations are used, the probability of an

unrecoverable error decreases to
2N

, which becomes

negligible if is reasonably small.

From an engineering standpoint, concatenated coding

involves significant hardware overhead, with one bit at the

cellular level being encoded as 7 bits at the molecular level.

An “efficient” platform should theoretically employ only

minimal resources. However, Nature, as the best engineer,

Proceedings of the 2005 NASA/DoD Conference of Evolution Hardware (EH’05)
0-7695-2399-4/05 $ 20.00 IEEE

chose redundancy for any of its creations, which constitutes

hard evidence that redundancy should not be considered as

equivalent to resource wasting. If high redundancy seems a

problem for the moment, perhaps the real culprit lies under

current technological limitations.

5 Conclusions

This paper is supported by an analysis revealing

similarities between two emerging fields in modern

computing, namely quantum and bio-inpired fault-tolerant

computing. Driven by the same goal, surviving in an

aggressive and frequent faults inducing environment, both

fields share the same fault model. Moreover, we proved

that the qualitative reliability measures and fault-tolerance

techniques from quantum computing can be adapted to

embryonic memories, intended to operate reliably under

cosmic ray influences. The accuracy threshold is a valid

indicator that, although producing qualitative figures

similar to classical reliability analyses, provides a useful

perspective regarding design principles used for attaining

multiple-level fault-tolerance.

As shown in the core of the paper, the (7,3) Hamming

code has the property of maintaining the consistency of its

equations through the data shifting proces. Future work will

investigate the possibility of employing more extensive

(and therefore, more efficient) coding schemes.

Figure 11. Two-level concatenated coding in Embryonics

References

[1] Avižienis, A., Laprie, J.C., Randell, B., Landwehr, C. Basic

Concepts and Taxonomy of Dependable and Secure Computing.

IEEE Transactions on Dependable and Secure Computing, 1, 1

(Jan-Mar 2004), 11-33.

[2]Lala, P.K. Fault Tolerance and Fault Testable Hardware

Design. Prentice Hall, 1985.

[3]Mange, D., Sipper, M., Stauffer, A., Tempesti, G. Toward

Robust Integrated Circuits: The Embryonics Approach. In Proc.

IEEE, vol. 88, No. 4, April 2000, pp. 516-541.

[4] Mange, D. and Tomassini, M. eds. Bio-Inspired Computing

Machines: Towards Novel Computational Architectures. Presses

Polytechniques et Universitaires Romandes, Lausanne,

Switzerland, 1998.

[5] Neumann, J. Von. Probabilistic Logic and the Synthesis of

Reliable Organisms from Unreliable Components. In C.E.

Shannon, J. McCarthy (eds.) Automata Studies, Annals of

Mathematical Studies 34, Princeton University Press, 1956, 43-98.

[6] Nielsen, M.A., Chuang, I.L. Quantum Computation and

Quantum Information. Cambridge University Press, 2000.

[7] Ortega, C., Tyrrell, A. Reliability Analysis in Self-Repairing

Embryonic Systems. Proc. 1st NASA/DoD Workshop on

Evolvable Hardware, Pasadena CA, 1999, 120-128.

[8] Preskill, J. Fault Tolerant Quantum Computation. In H.K.

Lo, S. Popescu and T.P. Spiller, eds. Introduction to Quantum

Computation, World Scientific Publishing Co., 1998.

[9] Prodan, L., Udrescu, M., Vladutiu, M. Self-Repairing

Embryonic Memory Arrays. Proc. IEEE NASA/DoD Conference

on Evolvable Hardware, Seattle WA, 2004, 130-137.

[10] Prodan, L., Tempesti, G., Mange, D., and Stauffer, A.

Embryonics: Electronic Stem Cells. Proc. Artificial Life VIII, The

MIT Press, Cambridge MA, 2003, 101-105.

[11] Prodan, L., Tempesti, G., Mange, D., and Stauffer, A.

Embryonics: Artificial Cells Driven by Artificial DNA. Proc. 4th

International Conference on Evolvable Systems (ICES2001),

Tokyo, Japan, LNCS vol. 2210, Springer, Berlin, 2001, 100-111.

[12] Prodan, L., Tempesti, G., Mange, D., and Stauffer, A.

Biology Meets Electronics: The Path to a Bio-Inspired FPGA. In

Proc. 3rd International Conference on Evolvable Systems

(ICES2000), Edinburgh, Scotland, LNCS 1801, Springer, Berlin,

2000, 187-196.

[13] Spector, L. Automatic Quantum Computer

Programming: A Genetic Programming Approach. Kluwer

Academic Publishers, Boston MA, 2004.

[14] Udrescu, M., Prodan, L., Vladutiu, M. Using HDLs for

describing quantum circuits: a framework for efficient quantum

algorithm simulation. Proc. 1st ACM Conference on Computing

Frontiers, Ischia, Italy, 2004, 96-110.

[15] Udrescu, M., Prodan, L., Vladutiu, M. The Bubble Bit

Technique as Improvement of HDL-Based Quantum Circuits

Simulation. Proc. IEEE 38th Annual Simulation Symposium, San

Diego CA, April 2005, 217-224.

[16] Tempesti, G. A Self-Repairing Multiplexer-Based FPGA

Inspired by Biological Processes. Ph.D. Thesis No. 1827, Logic

Systems Laboratory, The Swiss Federal Institute of Technology,

Lausanne, 1998.

[17] Zalka, C. Threshold Estimate for Fault Tolerant

Quantum Computation. arXiv:quant-ph/9612028, v2, 28 Jul.

1997.

Proceedings of the 2005 NASA/DoD Conference of Evolution Hardware (EH’05)
0-7695-2399-4/05 $ 20.00 IEEE

