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Abstract

This paper proposes an original approach to the 

reliability analysis for Embryonics [4], by introducing the 

accuracy threshold measure, borrowed from fault-tolerant 

quantum computing theory, as one of the main parameters 

for our qualitative assessment. The validity of this 

technique is proven by comparison with the classical 

reliability results; furthermore, it brings new perspectives 

on designing reliable embryonic memory structures at both 

the molecular and the cellular levels. Appropriate design 

principles are provided on both information encoding 

(concatenated codes) and storage (fault tolerant memory 

structures).

1 Introduction

Computer evolution in present days faces a fine paradox, 

arising from its dual nature: some applications require 

speed above anything else, while others require highest 

possible reliability. While each of the requirements has to 

deliver its best, unfortunately, computers can only partially

fulfill them, therefore justifying a quest for different and 

better-suited designs. Inspiration is constantly sought in 

both their hardware and software designs. Since their 

beginning, computers were protagonists of the quest for 

performance. Once the benefits of computing power and 

technological advances enabled the coming of the space 

exploration era, a shifting in performance priorities was 

encouraged. Demands for brute computing force (which 

appears to have reached somewhat sufficient levels today) 

began to lose ground to dependability requirements. 

As stated by Avižienis et al., dependability can be 

defined as “the ability of a system  to avoid service failures 

that are more frequent or more severe than is acceptable”

[1]. It is therefore a synthetic term that involves a list of 

attributes including reliability, fault tolerance, availability, 

and others. In the real world, a dependable system would 

have to operate normally over long periods of time before 

experiencing any fail (reliability, availability) and even in 

the presence of faults (fault tolerance). The term 

“acceptable” has an essential meaning within the 

dependability’s definition, setting the upper limits of the 

damage that can be supported by the system while still 

remaining functional. This paper will elaborate upon 

computing the threshold beyond which the damaging 

effects become  no longer acceptable, and, by consequence, 

no longer recoverable from. All of the above being 

considered, dependable systems are crucial for applications 

that prohibit or limit human interventions, such as long 

term exposure to aggressive (even hostile) or unknown 

environments. The best examples are long term operating 

machines, as required by managing deep-

underwater/nuclear activities and outer space exploration. 

The quest of designing digital systems that offer 

superior dependability can draw benefits from two distinct 

sources. The first one has been around since the dawn of 

times: Nature. Its living elements continuously demonstrate 

a variety of solutions for achieving robustness in an error-

prone, macro-scale environment. There are numerous 

similarities and differences between artificial, digital 

computing systems and natural, living beings; although 

such a thorough analysis is beyond the scope of this paper, 

it is likely that the field of digital computing could exploit 

some of the mechanisms implemented by Nature and adapt 

them to the electronic environment. The result is the new 

field of bio-inspired computing, a representative example 

being the Embryonics project [3][16]. 

Another source of inspiration may be constituted by 

novel computing paradigms, whose research has already 

considered dependability-raising techniques. Opposed to 

natural computing, which takes place in an error-prone, 

macro-scale environment, the emerging field of quantum 

computing relies on successful calculus in an error-prone, 

micro-scale environment. Since errors are (as of yet) 

intrinsic to quantum systems, a number of techniques were 

established in order to overcome their damaging effects and 

deliver consistent results. However, though a variety of 
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methodologies for estimating dependability parameters 

have been proposed, they usually remain localized and 

rarely reach other architectures. 

1.1 Paper outline 

The basics of quantum computing together with the 

accuracy threshold estimation technique will be revisited in 

Section 2. After an introduction to the concepts and the 

architecture of the Embryonics project, Section 3 will detail 

the process of adapting this technique and present 

arguments on its relevance to the bio-inspired computing 

(and, in particular, to Embryonics). Qualitative results will 

be compared to those provided by the more classical 

reliability estimations. The suitability of the concatenated 

coding technique (also inspired from quantum computing) 

to memory structures in Embryonics will also be discussed, 

together with the appropriate design principles. Section 4 

argues, in qualitative terms (accuracy threshold), over 

design decisions such as Hamming and concatenated 

coding.  Finally, Section 5 will present our conclusions and 

thoughts for future work. 

2 Fault-tolerant quantum computing

Quantum computation uses coherent atomic-scale 

dynamics [13] and therefore takes place in a microscopic 

environment. The information storage unit in quantum 

computing is the quantum bit or qubit, which is presented 

here in bra-ket notation [13]. Any qubit 0 10 1a a

is a normalized vector in a bi-dimensional Hilbert space, 

with 0  and 1  as the orthonormal basis, and can be seen 

as a simultaneous superposition of both classical binary 

values. Parameters a0, a1  are called quantum 

amplitudes and represent the square root of the associated 

measurement probabilities for the superposed states 0

and 1  respectively, with 1
2

1
2

0 aa . The qubits can 

be organized in linear structures called quantum registers,

encoding a superposition of all possible states of a 

corresponding classical register [6]: 
2 1

0

;

n

r i
i

a i

2 1
2

0

1,  ,  i

n

i i
i

a a .

An essential promise of quantum computing is solving 

in polynomial time problems that have only exponential 

known classical solutions. However, the transition from 

classical computing to this new paradigm is far from 

immediate and beyond the scope of this paper. The new 

computational environment requires a new set of problems 

to be solved first [14][15] before any benefits are to be 

drawn. Dealing with dependability issues constitutes a 

priority in quantum computing because of its inner faulty 

nature. Faults are native to the quantum environment since 

a quantum state cannot be fully isolated from the 

environment, which continuously attempts to measure it. 

The state, in turn, decays to one of the basis (classical) 

states, a phenomenon called decoherence. Although they 

can be classified into 3 categories, namely bit flips, phase 

shifts and small amplitude errors, faults can all be reduced 

to bit flips [6][8]. Errors affecting the quantum computing 

are considered to be uncorrelated, neither in space, nor in 

time [8], therefore sharing the same model with soft fails 

induced in digital devices by aggressive radiations.  

In order to make accurate quantum computation 

possible in an error-injecting environment, recovery 

procedures are required; redundant coding presents a 

choice of strategies for achieving fault tolerance. However, 

the recovery process is by itself computational, and 

therefore vulnerable to errors. In order to ensure a level of 

fault tolerance that would make the prospect of a quantum 

computation device feasible, the following questions have 

to be raised: what is the accuracy threshold that still 

warrants valid computation? Or, what is the upper bound of 

the fault frequency that would still allow a successful 

recovery? These questions were already answered in the 

quantum context [8][17]; we will however revisit the 

proposed qualitative assessment since we believe a similar 

reasoning may also be applied to the Embryonics project 

[4] and to fault-tolerant digital systems in general. 

If the redundant, error-correcting coding allows the 

correction of t faults, then an uncorrectable fault means that  

at least t+1 faults occur before the recovery process can be 

finalized. If the probability of a fault affecting the macro-

molecular information is , then an uncorrectable error 

will happen with a probability of the order 
1t

 [8][17]. 

Ideally, choosing a reasonably high value for t can make 

the probability of an unrecoverable fault as small as 

desired; however, the complexity of the code shows a steep 

rise with the value of t, with a polynomial function of the 

form
b

t , eventually leading to the situation when correcting 

the data takes so long that the appearance of an 

unrecoverable event becomes most likely. Then, the block 

error probability (BEP) of t+1 errors accumulating in a 

codeword before the recovery is complete (thus producing 

an unrecoverable event) will have the form [8]: 
1tb

BEP t t (1)

Minimizing the BEP function after parameter t yields: 

0
dBEP t

dt
(2)

which results in: 

1 1
11 1

ln ln 1 0  t bt te e
b t

(3)

Solving Equation 3 and assuming that t is large [8] gives: 
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1
1 bt e (4)

Substituting this result into Equation 1, the minimum block

error probability MBEP then becomes of the form [8]: 
1

1
exp bMBEP e b (5)

The result for MBEP  is important with respect to 

estimating the required accuracy for a reliable computation. 

If we consider T as the time interval without any 

unrecoverable error occurring, then: 
1

  exp bT MBEP T (6)

From this equation,  can then be extracted under the 

form:

ln
b

T (7)

For the situation when no codes are used at all, the 

accuracy decreases as the computation becomes longer and 

therefore gives: 
1

NoCodes T (8)

Equation 7 provides a qualitative assessment of the 

computational accuracy threshold with error protecting 

codes that is clearly superior to the case when no codes are 

used at all (Equation 8). Due to the lack of standardization 

when dependability measures are concerned [1], 

establishing precise values is difficult.  However, this 

qualitative assessment delivers the necessary criteria for a 

dependability comparison between two functionally 

identical systems, before and after applying fault tolerance 

measures.

3 Naturally-inspired dependability and the 

Embryonics project 

Natural computation occurs at a macroscopic scale, the 

environment being subject to dynamic changes, which 

affect living beings by inducing a variety of wounds and 

illnesses (faults). Though the natural computation is also 

error-prone, successful healing and recovery are quite 

common: in a majority of cases, natural systems continue to 

carry on their vital functions while their overall 

functionality levels do not drop abruptly. 

With the exception of unicellular organisms (bacteria), 

multicellular organisms share some key features [4]: 

multicellular organization divides the organism into a 

finite number of cells, each accessing the same genetic 

program; 

cellular division and differentiation allow any cell to 

generate daughter cell(s) with certain features through 

execution of part(s) of the genome. 

A consequence of these features is that each cell is 

"universal", as it contains the whole of the organism’s 

genetic material, the genome. This enables very flexible 

redundancy strategies, the living organisms being capable 

of self-repair (healing) or self-replication (cloning). These 

two properties, based on a multicellular tissue, are 

essentially unique to the living world. 

The capacity of healing is what gives natural systems 

their robustness. Fault tolerance is hierarchical, being 

present at several different levels: redundancy and self-

repairing features can be found at molecular level (the 

DNA contains redundancies and can repair a variety of 

faults [10]), at the cellular level (cells do replace each other 

in case of faults, faulty ones die and are eliminated while 

new ones are grown) and even at higher levels (brain 

hemispheres, for instance, are known to be able to transfer 

some functionalities in case of damage). The success of 

Nature’s solutions is proven by the uncountable variety of 

living beings, with a life span up to several hundreds (for 

the animal regnum) or even thousands (for the vegetal 

regnum) of years; furthermore, considering the amounts of 

time spent for evolving them, they are as close to perfection 

as possible. This alone makes for a strong argument 

supporting bio-inspiration in digital computing, an idea 

enounced in the 1950s by John von Neumann, who may 

also be considered the pioneer of reliable systems [5]. 

The Embryonics (from embryonic electronics) project 

made its debut as long-term research aimed at exploring the 

potential of biologically-inspired mechanisms adapted into 

digital devices [4]. Rather than achieving a specific goal, 

the purpose is building novel, massively parallel, 

computational systems, that implement the key features 

shared by all multicellular organisms and would also 

borrow the remarkable robustness present in biological 

entities. 

As a bio-inspired digital platform, the key features 

shared by all multicellular organisms are present in 

Embryonics through a quasi-biological hierarchy based on 

four levels of organization, as shown in Figure 1 [3][4]. 

The Embryonics project targets applications in which the 

failure frequency must be very low to be “acceptable”. 

The upmost level in Embryonics, similar to what is 

found in nature, is the population level. One step down 

inside the hierarchy the focus zooms to the population’s 

components. This is the organismic level, and corresponds 

to individual entities in a variety of functionalities and 

sizes. Each entity may, however, be further decomposed 

into smaller, simpler parts, called cells, and then, 

molecules. A biological organism corresponds in the world 

of digital systems to a complete computer, a biological cell 

is equivalent to a processor, and the smallest part in 

biology, the molecule, may be seen as the smallest, 

programmable element in digital electronics. 

The hierarchical architecture in Embryonics enables the 

implementation of a multi-level self-repairing strategy. All 

molecules are structurally identical and constitute a layer of 

reconfigurable logic, thus providing support for universal 
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computation. Any change in the functionality takes place 

by altering the binary configuration, thus allowing for a 

flexible redundancy strategy involving spares: every cell is 

a rectangular array of molecules, involving both active and 

spare columns. 

Figure 1. Structural hierarchy in Embryonics [9] 

Whenever a faulty molecule is detected, a 

reconfiguration process is triggered at this level, the result  

being the faulty molecule’s bypassing, together with the 

closest spare molecule becoming active and taking over its 

role. The reconfiguration process is shown in Figure 2; 

inside a simple cell consisting of 3x3 molecules, molecule 

E is detected as being faulty and is replaced by its closest 

spare molecule from its right (molecule H) through signal 

re-routing. The reconfiguration process at the molecular 

level can protect the cell’s normal behavior as long as spare 

molecules are available for repair. The situation when no 

more spares are available for repair results in disabling (or 

“killing”) the entire cell and triggering the reconfiguration 

process at the higher, cellular level. Such a situation occurs, 

for instance, when molecule H (which has now become 

active) also suffers an error, shown in Figure 3. 

Organisms are also rectangular structures, where cells 

coexist as both active and spare columns. Figure 4 shows 

an organism containing 6 active cells and 2 spare cells. Let 

us suppose that an unrepairable error occurs inside cell C, 

as a result of internal damage produced by errors that 

occurred as described by Figure 2 and Figure 3. In this 

situation, the cell will “die” and the reconfiguration process 

at the cellular level will transfer the affected column’s 

functionality by activating an available spare column. 

A central purpose of the Embryonics’ bio-inspired 

architecture is to ensure that the basic bricks are suitable for 

building extremely dependable machines. Because design 

flexibility also requires the existence of memory structures, 

a new operating mode was added at the molecular level: 

each molecule may be used either as programmable logic 

(when in logic mode), or as a storage element with data 

shifting features (when in memory mode). In order to 

detect the presence of faults and to provide an 

architecturally efficient compromise, both off-line and on-

line self-testing strategies were used initially for the logic 

mode [16]. 

Figure 2. Reconfiguration at the molecular level [4][16] 

Figure 3. Molecular reconfiguration failure. The cell “dies”, 

triggering the reconfiguration at the cellular level [4][16] 

However, the added flexibility [11][12] could not be 

protected by employing the self-repairing mechanism, used 

in case of the logic mode; a strategy based on redundant 

coding was chosen in order to ensure the integrity of 

storage data [9]. Therefore a fault tolerant memory 

structure (which we called a macro-molecule) based on 

Hamming-type codes would require the existence of 

additional memory structures, together with corresponding 

logic. Typically, a complete cell (see Figure 5) would 

include 3 categories of molecules: logic molecules 

(operating in logic mode and used for combinational logic 

implementation), storage molecules (operating in memory 

mode and used for micro-programmed machine 

implementation) and spare molecules (used as provisions 

for the reconfiguration mechanisms) [9]. 

Figure 4. Reconfiguration at the cellular level [4] 

Previous research efforts have covered reliability 

analysis in case of Embryonic cells made of logic-only 
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operating molecules [7]. The addition of the new, fault-

tolerant memory structures called macro-molecules 

changes the Embryonics architecture and therefore reflects 

upon its reliability. At this point, it may be said that the 

quantum and bio-inspired computing (through Embryonics) 

do share some common ground: both target applications in 

which reliable computation has to be performed in harsh, 

error-injecting environments. Since error modeling is 

similar, techniques already established in quantum 

computing might be worth being considered for 

Embryonics. 

3.1 The computation accuracy threshold 

 As long as a macro-molecule is concerned, T represents 

the time frame required for an error to be corrected, the 

worst case being a fault occurrence placed furthest from its 

corresponding data output port [9][12]. Such a situation 

occurs when the flipped data bit is positioned as the first bit 

from a bottom row molecule, the shifting path until it may 

be put into evidence and corrected being of length F M ,

where F is the storage dimension of the memory molecule 

and M is the vertical dimension of the macro-molecule (or 

the number of rows); thus T F M .

Of course, when no techniques ensuring fault tolerance 

are implemented, T is proportional with the size of the data: 
11

T FM N s (9)

As for parameter b (see Equation 1), it depends on the size 

of the code as an expression of the gain in complexity with 

its dimension. In our case the size of the dataword to be 

protected results as t N s  bits, where N represents the 

horizontal dimension of the macro-molecule (or the total 

number of columns) and s represents the number of spare 

columns. A single error correcting Hamming code requires 

a number of k additional control (or check) bits, where k

represents the smallest integer that satisfies the following 

equation: 

2
log 1k k N s (10)

Therefore, the total size of the codeword, including the 

redundant bits results as t k N s

2
log 1 k N s , with the Hamming matrix being of 

dimensions 2
k

k . As a result, any fault detection or 

correction process needs at most a certain number of 

computational steps that is given by the dimensions of the 

Hamming matrix, which is of the order 
2

logt t .

Parameter b can be estimated as the power of t that 

approximates best the number of necessary 

detection/correction steps, leading to the following 

equation: 

2
log

b
t c t t (11)

where c is a constant. Because there are several algorithms 

performing the detection/correction process, we will choose 

the value covering the worst case scenario; following 

Equations 10 and 11 this value results as 2b , the macro-

molecular accuracy in case of integrated fault tolerance 

measures being: 
1

2ln FM (12)

Parameter N does not appear directly in Equation 12 

since its influence is quantified by the gain in the code’s 

complexity defined by parameter b (N signifies the number 

of data bits that are to be protected, which in turn imposes 

the number of redundant code bits and the total length of 

the codeword). Equations 9 and 12 show how the macro-

molecular accuracy scales for situations with and without 

error correction techniques. Plots for the accuracy trends 

are given in Figure 6, showing superior scaling when using 

error correcting codes as opposed to when no codes are 

used at all. 

Figure 5. A typical cell includes all 3 categories of molecules: 

logic, memory, and spares 

For a macro-molecule with no data error protection 

mechanisms, the graph from Figure 6 (top) shows an 

accuracy decrease when the overall storage capacity 

increases. This is consistent with the fact that the 

probability of an ocurring error is directly proportional with 

the area of the macro-molecule. The situation changes 

when error-correcting codes (or ECCs) are used. If each 

row can recover from a single error, then the accuracy 

dependencies show an increased efficiency with the 

increase of storage area; however, the graph from Figure 6 

(bottom) does not contain parameters involved in an 

exhaustive manner, which probably leads to the final 

results for the macro-molecular reliability being less 

optimistic but, at the same time, superior to the case when 

no fault tolerant measures are taken into account. The 

qualitative results produced by the accuracy threshold 

estimation technique should be similar to those provided by 

the more classical reliability analyses. 
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3.2 Reliability analysis of a complete cell 

When regarded at molecular scale, an entire cell consists of 

two categories of molecules, their functionality being 

dictated by the mode they operate in: logic or memory. 

There are no restrictions over the proportions in which 

molecules may operate in a certain mode, being possible 

for a cell to be made either of molecules operating in logic 

mode only, molecules operating in any of the memory 

modes, or any mixture between logic and memory modes. 

Therefore, estimating the reliability of a cell is not a 

trivial task, since it depends on the reliability of its 

components [2], which operate quite differently. 

Furthermore, due to their different strategies in case of 

occurring faults, any reliability analysis has to be carried 

out separately for logic molecules and memory molecules. 

On one hand, a faulty logic molecule will be eliminated 

through reconfiguration, a spare one being activated in 

order to take its place, whereas a fault detected inside a 

macro-molecule does not trigger any structural 

reconfiguration measures at this level. The reconfiguration 

at the higher (cellular) level is triggered by a failure of the 

reconfiguration mechanism at the lower (molecular) level 

[4][16]. We will not discuss the details of the failure of the 

reconfiguration at the molecular level in case of logic 

molecules

A non-recoverable situation inside a macro-molecule 

could be addressed by two scenarios: 

– since at least 2 bits worth of data will be damaged, the 

result is a macro-molecule that contains altered data, 

but the cell retains a certain level of overall 

functionality; 

– the KILL process is initiated, resulting in the death of 

the entire cell. This is the scenario we chose to 

implement in Embryonics. 

Whether one scenario is a better choice that the other may 

constitute a subject of debate, since it is difficult to say if 

having a functional (but, at the same time, crippled) cell has 

any advantages over not having that cell at all. Nature itself 

encounters a similar problem, since cellular mutation does 

not necessarily render the organism non-viable; however, 

altered cellular information often leads to damaging effects 

and illnesses, such as cancer. 

3.2.1 Reliability of an ensemble of logic molecules 

The reliability analysis of embryonic structures made 

entirely by logic molecules has been previously addressed 

[7]. We will, however, reconsider such an analysis as the 

molecular internal architecture has been changed with the 

addition of the memory operating mode [9][12]. Let us 

consider that the logic molecules make up a rectangular 

structure of M
* lines and N

* columns, of which S
* are 

spares.

Such a logic structure was analyzed as being based on 

the k-out-of-m reliability model, that is, the proper function 

of the system as a whole is ensured as long as at least k

units out of a total of m are operating normally [7]. In our 

case, considering that any detected fault inside a molecule 

triggers a reconfiguration strategy that leads to the “death” 

of the respective molecule, this means that no more than S*

errors (or faulty molecules) can be tolerated in a single row. 

Therefore the reliability of a single row becomes of the 

form:
*

*

* * *

* *

( ) 1

N i
N

N i t t

Row i

i N S

R t C e e (13)

Because the logic ensemble is built of M* rows, its overall 

reliability results as: 
*

( ) ( )
M

LogicEnsemble Row
R t R t (14)

3.2.2 Reliability of a macro-molecule

We consider a non-fault tolerant macro-molecule of M lines 

and N columns (of which S are spares), each molecule 

storing F bits worth of data. Considering that  is the 

failure rate for a single flip-flop, the reliability of the entire 

macro-molecule is then given by: 
( )

( )
FM N S t

MMolR t e (15)

Parameters M
*, N

* and S
* are generally different than 

parameters M, N and S since they characterize completely 

different entities. Furthermore, the failure rate 

considered for the elementary memory unit (the flip-flop) 

may prove to be different than the failure rate 
*

 used in 

case of a logic molecule (which typically employs other 

resources than a memory one), in which situation flip-flops 

may be used under different operating conditions or not be 

used at all. 

The addition of single fault tolerance capabilities to a 

macro-molecule with a number of t columns leads to the 

employment of k additional columns (defined by Equation 

10) required by the Control Memory. At each clock  cycle, 

genome data are read through access ports and new control 

bits are computed (see Equation 16) and compared to those 

stored by the Control Memory. Figure 5 presents the block 

structure of a single fault-tolerant macro-molecule; the 

macro-molecule storing genetic data has 4 columns, thus 

requiring a number of k=3 additional columns used for 

storing the redundant information. 

The implementation of the Hamming code requires a 

decision being made with respect to the structure of the 

control memory, which could either make up for a second 

macro-molecule or could leave each control memory 

column operate independently. 

The first situation unifies the control memory into a 

single structure that requires a detailed analysis of a macro-

molecule’s data path specifics [9] in order to operate 

correctly. Control data is computed according to Equation 
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16, where 
2:0

c  are the redundant bits output by the Control 

Memory and required for error correction: 
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Figure 6. Macro-molecular accuracy variation without and 

with codes 

0 0 2 3

1 0 1 2

2 1 2 3 t

c u u u

c u u u

c u u u

(16)

Data is continuously shifted inside both the Genome and 

the Control Memory [9], the process being shown 

intuitively in Figure 7. It is important the two memories 

maintain synchrony even after data permutation, in order to 

preserve the consistency of Equation 16. At time t the Error 

Correcting Logic (or ECL) reads the word 
0 1 2 3 0 1 2

u u u u c c c

(Equation 16), which will shift into 
3 0 1 2 2 0 1

u u u u c c c  at time 

t+1. If the data macro-molecule has a vertical dimension of 

M lines (each molecule storing F data bits), then at time 

1 1t F M  (which is necessary for the data to travel 

from the bottom to the output ports situated at the top of the 

macro-molecule [9][12]) the ECL will read 
3 0 1 2 2 0 1

u u u u c c c .

Computing the control data for this new configuration is 

done by Equation 17, the identity with Equation 16 

confirming the two macro-molecules (data and control) 

remain in synchrony for a (7,3) Hamming code. 

2 3 1 2

0 3 0 2

1 0 1 2 1 1t F M

c u u u

c u u u

c u u u

(17)

Figure 7. Data shifting inside Genome and Control Memory 

for a (7,3) Hamming code implementation 

The situation changes when a (15,4) Hamming code is 

employed, the Genome and Control Memory being shown 

in Figure 8. Control data is now computed according to 

Equation 18: 

0 0 3 4 6 8 9 10

1 0 1 3 5 6 7 8

2 1 2 4 6 7 8 9

3 2 3 5 7 8 9 10 t

c u u u u u u u

c u u u u u u u

c u u u u u u u

c u u u u u u u

(18)

At time t the ECL reads the word 
0 1 2 3 4 5 6 7 8

u u u u u u u u u

9 10 0 1 2 3
u u c c c c , which will shift into 

10 0 1 2 3 4 5 6 7 8 9 3
u u u u u u u u u u u c

0 1 2
c c c  at time t+1. When this configuration reaches the 

ECL, the new control data will be computed (Equation 19), 

indicating the synchrony between the Genome and Control 

macro-molecules was lost during data shifting. Therefore, 

implementing a (15,4) Hamming code by using a Control 

macro-molecule shows that the solution to the 

synchronicity issue is not straightforward. However, it may 

be possible to find the right configuration for the Hamming 

matrix for preserving the synchrony, which has to be 

carefully considered for the general case. 

3 10 2 3 5 7 8 9

0 10 0 2 4 5 6 7

1 0 1 3 5 6 7 8

2 1 2 4 6 7 8 9 1 1t F M

c u u u u u u u

c u u u u u u u

c u u u u u u u

c u u u u u u u

After having investigated the possibility of implementing 

the Control Memory as a standalone macro-molecule, 

another possibility would be using independent columns to 

provide the control data. However, the problem of 

maintaining the synchrony between the genome and the 

control memory structures remains: the relative position of 

(19)
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data bits changes as they are shifted inside the genome 

macro-molecule, thus violating Equation 18. A possible 

solution would be to have separate genome macro-

molecules, with each providing one data bit to the ECL

unit. For a (7,3) Hamming code, this would mean the 

existence of 4 genome macro-molecules (with identical 

dimensions), as suggested in  

Figure 9. 

Figure 8. Data shifting inside Genome and Control Memory 

for a (15,4) Hamming code implementation 

Figure 9. Implementation of a fault-tolerant macro-molecule 

with independent control memory columns 

Estimating the reliability function for the storage 

structure involved in a fault-tolerant macro-molecule must 

take into consideration the fact that errors may accumulate 

during the shifting process. Furthermore, data has to be 

shifted M-1 lines in order to be read and, if required, 

corrected, a process which is also subject to error 

occurrence. The reliability function will therefore be of the 

form of the likelihood describing the situation when at most 

one error has occurred at the data access ports (consisting 

of N genome and k control bits): 

no fails single failMMol t Prob ProbR (20)

The first term of Equation 20 refers to the fact that no 

errors occured at time t at the north border molecules, 

where data is read at the N+k output ports: 

no fails
N k t

Prob e (21)

The second term quantifies the likelihood of 

experiencing a single fault at time t in a row, in any of the 

M-1 remaining rows: 
1

1 1

1
1single fails M N k N k t tProb C C e e (22)

Then the reliability of a fault-tolerant macro-molecule 

results as: 

1
1 1

N k t

MMol

N k t t

t

M N k

R e

e e
(23)

Plots based on Equations 15 and 23 are shown in Figure 

10 for several macro-molecular dimensions. A qualitative 

comparison between the two situations, when there is no 

fault-tolerance present (top) and when single faults are 

tolerated (bottom), points to a significant reliability 

improvement brought by the addition of single fault-

tolerance strategy. Although establishing precise 

measurements is difficult, the reliability plots are similar to 

those given through accuracy threshold estimation, thus 

supporting the relevance of this technique for Embryonics.  

3.2.3 Reliability at the cellular level 

Any cell within the Embryonics project is made of 

molecules operating either in logic mode or in any of the 

memory modes. A full reliability analysis at the cellular 

level requires estimating the individual reliabilities of the 

two component structures, macro-molecules and logic 

ensemble, which are given by Equations 14 and 23, 

respectively. All component structures are required to 

perform properly in order to ensure the normal operations 

of the cell; therefore the cell can be considered as a series 

system in which each subsystem (be it macro-molecule or 

logic ensemble) has to function if the system as a whole is 

to function [2]. Therefore the cellular reliability function 

may be derived as the product of the reliability functions of 

its component subsystems as follows: 

1

( ) ( ) ( )

n

Cell LogicEnsemble MMol i
i

R t R t R t (24)

where n is the number of macro-molecules present in the 

cell.

4 From multiple-level self-repairing to 

multiple-level coding 

The accuracy threshold , from the quantum computing 

context and the failure rate , from the bio-inspired 

computing context, are not dissimilar: while  gives the 

error probability,  gives the upper bound for the error 

probability so as the computation is still valid. Therefore, 
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we have: 

max (25)

As long as the error rate  remains below the accuracy 

threshold, valid computations can be recovered from the 

damaging effects of incurring errors. However, these 

estimations only cover the time frame between an error 

occurrence and the end of the recovery process, that is the 

period between data damage and data restoration. While a 

reasonable accuracy can be obtained by using error 

correcting codes, the occurrence of errors becomes more 

likely as the length of the computation increases [8]. Since 

machines based on the Embryonics platform are intended 

to operate over long periods of time (therefore involving 

long computations), this primarily affects the memory 

structures, since protective measures are already 

implemented within the logic ones [3].

0 0.5 1 1.5 2
0

0.5

1

F=8, M=3, N=4

F=16, M=3, N=4

F=8, M=6, N=10

F=16, M=6, N=10

Time (million hours)

R
el

ia
b
il

it
y
 o

f 
n
o
n
-F

T
 m

ac
ro

-m
o
le

cu
le

s

0 20 40 60 80 100
0

1

2

3

F=8, M=3, N=4

F=16, M=3, N=4

F=8, M=6, N=10

Time (million hours)

R
el

ia
b
il

it
y
 o

f 
F

T
 m

ac
ro

-m
o
le

cu
le

s

Figure 10. Macro-molecular reliability without and with fault-

tolerance implemented 

The fault tolerant quantum computation length limit can 

be overcome by employing concatenated codes [8]; when 

viewed at a higher resolution, each qubit is encoded by a 

block of qubits. Embryonics offers a hierarchical 

architecture, each level corresponding to a higher 

resolution view. With information encoded at each level, 

Embryonics seems natively endowed for implementing 

concatenated codes, a first idea being presented in [11]. 

Moreover, the successful importing of the accuracy 

threshold technique creates incentives for an also 

successful adaptation of concatenated coding in 

Embryonics. 

Instead of storing binary words worth of data, fault-

tolerant macro-molecules can store bits that would in turn 

assemble to provide data for the next hierarchical level an 

encoded binary digit. At the cellular level, genetic 

information may also be protected using the same or 

similar Hamming codes as implemented at the molecular 

level. If such is the case, and we accept the error rate at the 

macro-molecular level as being , then an unrecoverable 

error will occur with a probability of 
2

. A concatenated 

code [8] in which each bit at the cellular level is encoded 

by 7 bits at the molecular level stored by fault-tolerant 

macro-molecules will give the probability of an 

unrecoverable error as 
22 4

 (assuming errors are of 

stochastic nature and uncorrelated). This is where error 

coding and concatenation can work together against error 

influences: while error coding lowers the probability of an 

unrecoverable error, concatenation brings the possibility of 

making it arbitrarily small by adding sufficient levels of 

concatenation.

Let us consider the following scenario: at the molecular 

level, genetic information is stored by fault-tolerant macro-

molecules as a (7,3) Hamming code [2]. Essentially, 4 bits 

worth of genetic data are encoded into a 7-bit codeword, 

which makes up the elementary piece of information at this 

level. At the cellular level, these 7 bits are considered as a 

single “bit” of actual data; by applying the same Hamming 

encoding, 4 such “bits” require a number of 3 additional 

control “bits”, the resulting codeword being able to recover 

from an error affecting a single such “bit”. An 

unrecoverable situation occurs when a double error affects 

a codeword at the cellular level. However, this can only 

happen if two sub-blocks fail simultaneously, which, in 

turn, means that each of the two (7,3) Hamming codewords 

have to experience a double error. Such a concatenated 

code offers superior protection, the unrecoverable situation 

occuring with a probability of 
4

. The situation is depicted 

in Figure 11, where higher level “bits” are encoded as 

follows: a “1” at cellular level can be encoded at the 

molecular level by any Hamming word with an odd number 

of 1s, while a “0” can be encoded by any Hamming word 

with an even number of 1s. In general, if N such levels of 

concatenations are used, the probability of an 

unrecoverable error decreases to 
2N

, which becomes 

negligible if  is reasonably small. 

From an engineering standpoint, concatenated coding 

involves significant hardware overhead, with one bit at the 

cellular level being encoded as 7 bits at the molecular level. 

An “efficient” platform should theoretically employ only 

minimal resources. However, Nature, as the best engineer, 
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chose redundancy for any of its creations, which constitutes 

hard evidence that redundancy should not be considered as 

equivalent to resource wasting. If high redundancy seems a 

problem for the moment, perhaps the real culprit lies under 

current technological limitations. 

5 Conclusions

This paper is supported by an analysis revealing 

similarities between two emerging fields in modern 

computing, namely quantum and bio-inpired fault-tolerant 

computing. Driven by the same goal, surviving in an 

aggressive and frequent faults inducing environment, both 

fields share the same fault model. Moreover, we proved 

that the qualitative reliability measures and fault-tolerance 

techniques from quantum computing can be adapted to 

embryonic memories, intended to operate reliably under 

cosmic ray influences. The accuracy threshold is a valid 

indicator that, although producing qualitative figures 

similar to classical reliability analyses, provides a useful 

perspective regarding design principles used for attaining 

multiple-level fault-tolerance. 

As shown in the core of the paper, the (7,3) Hamming 

code has the property of maintaining the consistency of its 

equations through the data shifting proces. Future work will 

investigate the possibility of employing more extensive 

(and therefore, more efficient) coding schemes. 

Figure 11. Two-level concatenated coding in Embryonics 
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