1. Information about the Program

1.1 Higher education institution	Politehnica University of Timişoara
1.2 Faculty ² / Department ³	Automation and Computers/ Computers
1.3 Chair	-
1.4 Domain of study	Computers and Information Technology
1.5 Study level	Bachelor
1.6 Study programme / Qualification	Computers / Engineer

2. Information about the Course

2.1 Course		Con	Computer Architecture				
2.2 Lecturer		Asis	Asist. dr. ing. Flavius Oprițoiu				
2.3 Academic staff for seminars/labs		Drd	ing. Andreea Bozesan				
2.4 Study year	2	2.5 Semester	3	2.6 Assessment type	Е	2.7 Course type	Mandatory

3. Total time estimated (hours/ semester of didactical activities)

3.1 Hours / week	4	of which:	3.2 lecture hours	2	3.3 seminar/lab hours	6	2		
3.4 Total curriculum hours	59	of which:	3.5 lecture hours	28	3.6 seminar/lab hours	6	28		
Time distribution									
Study using manuals, support mater	ials, bibl	liography and	d notes				28		
Supplementary documentation in lib	ary, spe	eciality electr	onic platforms and or	n site			9		
Supplementary preparation for semi	nars/lab	s, homework	s, reviews, portofolio	s and essa	ys		25		
Tutoring activities							3		
Exams									
Other									
3.7 Total - hours of individual study 65									
			3.8	Total - hou	rs per semester	124			
			a.	Credits		5			

4. Prerequisites (if appropriate)

4.1 curriculum	Electrical Engineering Fundamentals; Digital Logic
4.2 competencies	 Elementary knowledge of Physics and Mathematics

5. Conditions (if appropriate)

5.1 for lectures	Spacious classroom, Support materials: laptop, projector, blackboard.		
5.2 for seminars/labs	 Laboratory with at least 15-20 computers – Hardware design and simulation environments, reconfigurable platforms, course specific test equipment, blackboard 		

¹ Formularul corespunde Fișei Disciplinei promovată prin OMECTS 5703/18.12.2011 (Anexa3); 2

Se înscrie numele facultății care gestionează programul de studiu căruia îi aparține disciplina;

³ Se înscrie numele departamentului căruia i-a fost încredințată susținerea disciplinei și de care aparține titularul cursului;

6. Specific competencies acquired

Professional competencies ⁴	 Operating with fundamentals of sciences, engineering, and computer science Designing hardware, software and communication components Problem solving using the instruments of computer science and engineering Improving the performance of hardware, software and communication systems Designing, managing the lifecycle, integration and integrity of hardware, software and communication systems
Transversal competencies	•

7. Objectives of the course (issued from the list of the comptenecies acquired)

	 Introduce the specific notions and terminology pertaining to the structure of a computer system and its components
7.2 Specific objectives	 Offering an overview over the structure of a computing system Presenting the general notions of arithmetic in computer systems Design and implementation of arithmetic and logic units Acquire control unit design and debug skills

8. Content

8.1 Lecture	Hours	Instruction methods				
1. REPRESENTATION OF NUMBERS IN COMPUTING	9	Lectures are held in a classical				
SYSTEMS		manner enhanced by sufficient				
1.1. Information classification		examples The interrogative				
1.2. Representation of fixed point numbers		tooching approach is supported				
1.3. Representation of floating point numbers						
2. FUNCTIONAL ANALYSIS AND SYNTHESIS OF BINARY AND	10	by ample discussions of the				
DECIMAL ADDING AND SUBTRACTING DEVICES		important aspects.				
2.1. Serial adders						
2.2. Parallel adders						
2.3. Parallel subtractors						
3. FUNCTIONAL ANALYSIS AND SYNTHESIS OF BINARY	9					
MULTIPLICATION DEVICES						
3.1. Binary multiplication methods						
3.2. Synthesis of sequential binary multiplier						
3.3. Binary multiplication speedup						
References						
1. J. L. Hennessy, D. A. Patterson: "Computer Architecture: A Qu	antitative Approach", Morga	an Kaufman, editia a IV-a, 2006,				
ISBN: 0123704901						
2. M. Vladutiu: " Computer Arithmetic: Algorithms and Hardware I	2. M. Vladutiu: "Computer Arithmetic: Algorithms and Hardware Implementations", Springer, ISBN: 364218314X					
3. D. A. Patterson, J. L. Hennessy: "Computer Organization and Design: the hardware/software interface", Morgan Kaufman,						
editia a IV-a, 2012, ISBN: 0123747503						
4. R. E. Bryant, D. R. O'Hallaron: "Computer Systems: A Programmer's Perspective", Addison Wesley, editia a II-a, 2010,						
ISBN: 0136108040						
8.2 Seminar/lab	Hours	Instruction methods				
1. Introduction to Hardware Description Languages	2	Introduction to the assignment,				
2. Presenting Verilog language	3	discussion, questions, computer				
3. Verilog components	2					
4. Case study: Binary adder-subtractor	4	EPGA platform				
5. Component instantiation	3					
6. Testbench modules	4	7				
7. Case study: Carry Lookahead Adder	3	7				
8. Modelsim environment	2	7				
9. Verilog components simulation	3	7				
10. Application: Robertson multiplier	2	7				
References						
1. Jean-Pierre Deschamps, Gery J.A. Bioul, Gustavo D. Sutter: "S	Synthesis of Arithmetic Circ	uits: FPGA, ASIC and Embedded				
Systems" Wiley-Interscience, 2006, ISBN: 0471687839						

2. Mi Lu: "Arithmetic and Logic in Computer Systems" Wiley-Interscience, 2004, ISBN: 0471469459

3. John F. Wakerly: "Digital Design: Principles and Practices", Prentice Hall, editia a IV-a, 2005, ISBN: 0131733494

⁴ Aspectul competențelor profesionale va fi tratat cf. Metodologiei OMECTS 5703/18.12.2011. Se vor prelua competențele care sunt precizate în Registrul Național al Calificărilor din Învățământul Superior RNCIS (<u>http://www.rncis.ro/portal/page? pageid=117,70218& dad=portal& schema=PORTAL</u>) pentru domeniul de studiu de la pct. 1.4 și programul de studii de la pct. 1.6 din această fișă.

9. Correlation between the course content and the requirements of the specialists in the field and the expectations of the main employers

- Knowledge of the structural components of a computer is essential in designing a digital system and, at the same time, ensures an elementary level of competence in evaluation and maintenance of a hardware-software system.
- The vast majority of the representative employers in the field require knowledge of the computer systems structure, in general, and, in particular, abilities to optimize an application for a particular hardware implementation platform.

10. Assessment

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in final mark
	Synthetic presentation of a concept introduced in the course	Written examination	25%
10.4 Lecture	Make use of the acquired design abilities in solving a problem similar to the examples presented in the course	Written examination	30%
10.5 Seminar /labs	Completing the laboratory assignments	Presenting the simulation and synthesis results and defending the proposed solution	25%
	Homework	Presenting the solution and defending the proposed approach	15%
	Classroom presence	Mark the student presence	5%
10.6 Minimal performanc mastering the spec	;e standards (minimal specific knowledge rec ific knowledge)	juired for passing the exam, the means	to assess
 Understanding dat Knowledge of the fu binary subtractors 	a representation modes in computers: sign-r indamental solutions for binary addition: desi	nagnitude, C1, C2 codes and the IEEE ign of Ripple Carry, Carry Lookahead ad	754 standard dders as well as

- Comprehension of binary multiplication methods: design of sequential and combinational structures for multiplication including Robertson's and Booth's methods
- Digital design skills: constructing a control unit by using the One Hot method

11. International compatibility

- 1 Carnegie Mellon University <u>http://www.ece.cmu.edu/~ece740/f13/doku.php</u>
- 2 Berkeley University http://inst.eecs.berkeley.edu/~cs152/sp13
- 3 Stanford University <u>http://class2go.stanford.edu/EE282/Spring2013</u>

Date	Signature of the course instructor	Signatures of the academic staff for seminars/labs
	Asist. Flavius Opriţoiu	Drd. Andreea Bozeşan
_		
Date of	approval in the Department	Signature of the Department Director
		Prof. Vladimir Crețu