
UNIVERSITATEA ”POLITEHNICA” DIN TIMIŞOARA

1920UU

Quantum Circuits Engineering: Efficient

Simulation and Reconfigurable Quantum

Hardware

Ph.D. Thesis

Mihai UDRESCU-MILOSAV

Computer Engineering Department

Politehnica University of Timişoara

Timişoara, Romania

Advisor: Prof. Mircea Vlăduţiu, UPT

November 25, 2005

2

i

Abstract

In the quantum computational framework, there are polynomial time solving algorithms
for problems having exponential classical solutions. The quest is - on one hand - to search
if there are other possible effective quantum algorithms and - on the other hand - to be able
to produce efficient implementations for the already known algorithms. The most feasible
implementation of quantum algorithms is based on the quantum circuit (gate network) model.

Our work aims at bridging the gap between classical hardware CAD with design automa-
tion techniques, and quantum circuit design rules. This attempt would be extremely difficult
without the possibility of the efficient quantum circuit simulation. Thus, our first direction
was to try using Hardware Description Languages (HDLs) for simulating quantum circuits,
because their property of being able to describe - in a compact manner - the circuit with
both structural and behavioral (functional) architectures isolates the inner source of simula-
tion complexity: the entanglement. Our analysis showed that the probability of simulation
improvement just by using the HDL procedure is small. Therefore, we developed a special
algorithm for avoiding entangled state representations, the bubble bit technique, which is ef-
fective at least when dealing with specific algorithm states. Our simulation framework has
the ability of fault injection, in order to create incentive for validation of quantum circuit
fault tolerance strategies and algorithms. The other direction of this Ph.D. work is to find
common ground for reliability techniques and assessment methodologies from the Embryonics
project and fault tolerant quantum computation. Embryonics is a biologically inspired re-
configurable hardware project, which is suitable for attaining reliability in aggressive, critical
environments, similar to quantum computation in terms of fault model and fault occurrence
frequency. Adopting the accuracy threshold as reliability measure in Embryonic memories
is benefic. Also, when considering a reconfigurable strategy (reconfigurable quantum gate
arrays - rQGAs) in quantum computation fault tolerant stabilizer encoding, the appropriate
reliability measure is drastically improved.

When entanglement is not present, it is possible to describe the circuit and the processed
quantum states in a structural manner, employing only polynomial resources for simulation.
By contrast, when entanglement is detected in the processed state, the circuit has to be de-
scribed with a behavioral architecture, and exponential resources must be used in this case.
That happens because, when entanglement occurs between two quantum subsystems, their
overall state cannot be represented correctly as a reunion (assuming implicit tensor product
state composition) of the two individual subsystem states. The practical implementation of
the initial simulation methodology requires that each circuit be described both by structural
and functional (behavioral) architectures. For a gate network, if entanglement is detected in
the previous or next quantum state, then the functional architecture has to be selected to
describe it; otherwise the structural architecture is chosen. We adopted the matrix represen-
tation of quantum states and unitary operators; therefore the quantum states are type array
of complex signals. Efficient automated extraction of non-entangled qubit group states is not
conceivable unless we have some a priori information about the overall state: the so-called
simulation shortcuts. When dealing with states from certain points in the circuits imple-

ii

menting specific algorithms, we have that knowledge because of the characteristic form these
states exhibit. We have performed an analysis concerning the effectiveness of our method-
ology, for specific states from Shor and Grover algorithms. Unfortunately, as shown by our
case study for Shor, Deutsch-Jozsa and Grover algorithms, the probability of success for the
extraction algorithms is decreasing exponentially with the number of qubits in the processed
state. Nevertheless, the HDL-based simulation methodology can be further improved. The
bubble bit coding technique creates a new entanglement-free-represented state. Therefore,
the simulation works with equivalent gate networks operating on corresponding bubble-coded
non-entangled states, and after applying the unitary operator the original state can be re-
stored. This way, the unitary transform is obtained with at most n [2 × 1]-size matrixes, with
the expense of memorizing O (n2) size records. The bubble bit procedure can also be used
for simulated fault injection, according to the fault models. We present here experimental
and assessment results describing the most important contributions of our Ph.D. work in the
simulation part. The simulation runtimes show an important runtime improvement at the
expense of a polynomial memory overhead, as compared with our reference simulator (QuIDD
Pro, developed by the Quantum Circuits Group at University of Michigan).

The need for fault tolerance is vital in quantum computation, due to the omnipresent
nature of quantum decoherence errors. A specific reliability parameter was defined, under
the form of the accuracy threshold. If the quantum circuit’s fault tolerance dictates accuracy
greater or equal with the threshold, then it could be used for arbitrary long reliable quantum
computation. The quantum circuit fault tolerance techniques - even the most recent ones -
use the concatenated coding for both protected data and ancilla qubits. Our reconfigurable
quantum hardware strategy employs a quantum nature (i.e. superposition of classical basis
states) configuration register in order to have a superposition of error detection and correction
circuits at the same time. The starting idea is that if the gate error probability is ξ, and we
have k superposed correction circuits then, after the measurement of the configuration register,
the overall circuit error probability becomes ξk (negligible for a small ξ). We developed a
reconfigurable quantum circuit, the so-called reconfigurable Quantum Gate Array (rQGA),
which we assessed with the accuracy threshold measure. Our analytical estimate of the
accuracy threshold shows that the rQGA solution clearly dominates the actual technologic
accuracy limit, thus allowing for arbitrary long fault tolerant quantum computation. This
way, the rQGA technique can replace the concatenated coding, a solution that is vulnerable
in the presence of correlated faults.

The last part of the thesis is dedicated to the implementation of the Quantum Genetic
Algorithms (QGA). Our solution is based on an already known quantum algorithm (the
maximum finding algorithm) and on a specially designed oracle, which reduces the entire
QGA problem to Grover’s search algorithm. The conclusion is that the genetic strategy is not
applicable to the quantum computation environment, with the crossover and mutation genetic
operators becoming useless. The complexity of the proposed Reduced Quantum Genetic
Algorithm is linear, thus proving the superiority of the quantum computing in yet another
computation field.

iii

Rezumat

În cadrul computaţiei cuantice există algoritmi care rezolvă ı̂n timpi polinomiali probleme
care au soluţii clasice exponenţiale. Obiectivul este – pe de o parte – de a proiecta alţi al-
goritmi cuantici eficienţi şi – pe de altă parte – de a putea produce implementări eficiente
pentru algoritmii deja cunoscuţi. Cea mai fezabilă implementare a algoritmilor cuantici este
bazată pe modelul circuit (sau reţea de porţi). Lucrarea noastră este concepută pentru a
face legătura ı̂ntre proiectarea asistată de calculator (CAD) din hardware-ul clasic, bazată pe
proiectarea automatizată, şi regulile de proiectare ale circuitelor cuantice. Această tentativă
ar fi extrem de dificilă ı̂n absenţa posibilităţii de a simula circuitele cuantice ı̂n mod eficient.
Astfel, prima direcţie a acestei teze de doctorat constă ı̂n ı̂ncercarea de a folosi limbajele de
descriere hardware (HDL) pentru simularea circuitelor cuantice, datorită proprietăţii aces-
tora de a putea descrie – ı̂ntr-o manieră compactă – circuitul cu arhitecturi structurale şi
comportamentale (funcţionale) şi care face ca izolarea entanglement-ului ca sursă principală
a complexităţii de simulare să fie posibilă. Analiza pe care am efectuat-o arată faptul că
probabilitatea de a reduce timpii de simulare doar prin folosirea procedurii de simulare HDL
este mică. Prin urmare, am dezvoltat un algoritm special, pentru evitarea reprezentărilor
afectate de entanglement ale stărilor cuantice, aşa-numita tehnică bubble bit, care este efi-
cientă cel puţin atunci când sunt procesate stări specifice anumitor algoritmi. Metodologia
noastră de simulare este ı̂nzestrată şi cu abilitatea de a injecta defecte, ı̂n ideea de a face
posibilă procedura de validare a strategiilor şi algoritmilor de toleranţă la defectare. Cealaltă
direcţie a activităţii doctorale reflectate ı̂n această teză constă ı̂n ı̂ncercarea de a găsi teren
comun pentru tehnicile de fiabilizare şi metodologiile de evaluare aferente proiectului Em-
bryonics pe de o parte, şi calculul cuantic tolerant la defecte pe de altă parte. Embryonics
este un proiect hardware inspirat din biologie, care este pretabil obţinerii fiabilităţii ı̂n medii
critice, agresive, similare calculului cuantic ı̂n termini de model al defectului şi al frecvenţei
de apariţie. Adoptarea pragului de acurateţe ca măsură a fiabilităţii ı̂n memoriile Embryon-
ics este benefică. Deasemenea, atunci când luăm ı̂n consideraţie o strategie reconfigurabilă
(matrici reconfigurabile de porţi cuantice – rQGAs) pentru computaţia cuantică tolerantă la
defectare şi coduri stabilizatoare, se imbunătăţeşte drastic gradul de fiabilitate.

Atunci când fenomenul de entanglement nu este present, este posibil să descriem circuitul
cuantic şi stările procesate ı̂n manieră structurală, revendicând doar resurse polinomiale pen-
tru simulare. În schimb, atunci când entanglement-ul este detectat ı̂n starea procesată, cir-
cuitul trebuie să fie descris printr-o arhitectură comportamentală, şi simularea va dicta acum
utilizarea unor resurse exponenţiale. Acest lucru se ı̂ntâmplă deoarece, atunci când apare
entanglement-ul pentru două subsisteme cuantice, starea lor generală nu poate fi reprezen-
tată correct ca simpla reuniune a stărilor cuantice aferente celor două subsisteme individuale
(am presupus că produsul tensorial este unealta implicită de compunere a stărilor individuale).
Implementarea practică a metodologiei iniţiale de simulare necesită ca fiecare circuit să fie
descris prin ambele arhitecturi: structurală şi comportamentală (funcţională). Dacă pentru
o reţea de porţi cuantice entanglement-ul este detectat ı̂n starea precedentă sau următoare,
atunci arhitectura funcţională este selectată pentru a o descrie; altminteri se selectează arhi-
tectura structurală. În cadrul acestei abordări, am ales reprezentarea matriceală a stărilor
cuantice şi a operatorilor unitari; prin urmare, stările cuantice sunt reprezentate ca tip vec-
tor de numere complexe. Extragerea automată eficientă, a stărilor cuantice representând

iv

grupuri de qubiţi care nu se află ı̂n entanglement, nu este de conceput fără a avea la dispoziţie
informaţie apriorică referitoare la starea cuantică generală: aşa-numitele scurtături de simu-
lare. Atunci când avem de a face cu stări din anumite puncte ale circuitelor ce implementează
algoritmi specifici, vom avea la dispoziţie acea informaţie apriorică, datorită aspectului car-
acteristic pe care ı̂l au aceste stări. Am efectuat o analiză privitoare la eficienţa metodologiei
de simulare HDL, pentru stări specifice din algoritmii Shor şi Grover. Din nefericire, aşa cum
se arată ı̂n studiul nostru de caz pentru algoritmii Shor, Deutsch-Jozsa şi Grover, probabili-
tatea ca algoritmii de extracţie să fie ı̂ncununaţi de succes descreşte exponenţial cu numărul
de qubiţi ai stării procesate. Fără ı̂ndoială, metodologia de simulare bazată pe limbajele de
descriere hardware (HDLs) poate fi ı̂mbunătăţită ı̂n continuare. Tehnica de codificare bub-
ble bit crează o nouă reprezentare lipsită de entanglement. Prin urmare, simularea se face
cu reţele de porţi cuantice echivalente ce operează pe stări codificate prin metoda bubble
bit; după aplicarea transformării unitare starea originală poate fi restaurată. În acest fel,
transformarea unitară este obţinută cu cel mult n matrici de dimensiune [2 × 1], cu preţul
memorării unor ı̂nregistrări de dimensiune O (n2). Procedura bubble bit poate deasemenea
să fie folosită pentru injecţia simulată de defecte, ı̂n concordanţă cu modelul de defectare.
În cadrul acestei lucrări se prezintă rezultate experimentale şi analitice ce descriu cele mai
importante contribuţii ı̂n domeniul simulării HDL-bubble-bit. Timpii de simulare arată o
ı̂mbunătăţire semnificativă cu preţul unui consum suplimentar polinomial de memorie, prin
comparaţie cu simulatorul referinţă (QuIDD Pro, dezvoltat de către Quantum Circuits Group
de la University of Michigan).

Necesitatea toleranţei la defectare este vitală ı̂n calculul cuantic, datorită naturii om-
niprezente a erorilor de decoerenţă. În plus, a fost definit un parametru specific fiabilităţii,
sub forma pragului de acurateţe. Dacă toleranţa la defectare a circuitului cuantic dictează
o acurateţe mai mare sau egală cu pragul, atunci poate fi folosit pentru un calcul cuantic
fiabil pe o perioadă arbitrar de lungă. Tehnicile de toleranţă la defectare pentru circuitele
cuantice (chiar şi cele mai recente) folosesc codificarea concatenată atât pentru datele codifi-
cate cât şi pentru qubiţii auxiliari (ancilla). Strategia noastră pentru hardware-ul cuantic fac
uz de un registru de configurare de natură cuantică (superpoziţie de stări clasice ale bazei),
pentru a avea o superpoziţie simultană de circuite corectoare de erori. Ideea de plecare este
că dacă probabilitatea de defectare a porţilor este ξ, şi avem k circuite corectoare de erori
superpuse, atunci, după măsurarea registrului de configurare, probabilitatea de apariţie a
erorii ı̂n circuitul ca ı̂ntreg devine ξk (neglijabilă pentru un ξ sufficient de mic). Am proiec-
tat un circuit reconfigurabil cuantic (rQGA), pe care l-am evaluat cu ajutorul pragului de
acurateţe. Estimarea noastră analitică pentru pragul de acurateţe demonstrează că soluţia
rQGA este mult deasupra limitei tehnologice de acurateţe, permiţând calculul cuantic toler-
ant la defectare arbitrar de lung. Astfel, tehnica rQGA poate ı̂nlocui codificarea concatenată,
o soluţie vulnerabilă la acţiunea defectelor corelate.

Ultima parte a tezei este dedicată implementării Algoritmilor Genetici Cuantici (QGA).
Soluţia propusă este bazată pe un algoritm cuantic deja cunoscut (algoritmul găsirii max-
imului) şi pe un oracol proiectat ı̂n mod special, care reduce ı̂ntreaga problematică rQGA la
algoritmul de căutare al lui Grover. Concluzia este că strategia genetică nu poate fi aplicată
ı̂n mediul computaţional cuantic, deoarece operatorii genetici de crossover şi mutaţie sunt in-
utili. Complexitatea algoritmului propus (Reduced Quantum Genetic Algorithm) este liniară,
probând astfel superioritatea calculului cuantic ı̂ntr-un nou domeniu computaţional.

v

Published papers and impact

This thesis is supported by the following published papers as first author:

• M. Udrescu, L. Prodan, M. Vlăduţiu, ”A new perspective in simulating quantum cir-
cuits”, Proc. LBP AAAI GECCO pp.283-290, Chicago IL (2003).

• M. Udrescu, L. Prodan, M. Vlăduţiu, ”Using HDLs for Describing Quantum Circuits:
A Framework for Efficient Quantum Algorithm Simulation”, Proc. 1st ACM Conf. On
Computing Frontiers pp.96-110 (Ischia, April 2004).

• M. Udrescu, L. Prodan, M. Vlăduţiu, ”The Bubble Bit Technique as Improvement of
HDL-Based Quantum Circuits Simulation.” IEEE 38th Annual Simulation Symposium,
San Diego CA, USA, IEEE Press, pp. 217-224 (April 2 - 8, 2005).

• M. Udrescu, L. Prodan, M. Vlăduţiu, ”Simulated Fault Injection in Quantum Circuits
with the Bubble Bit Technique.” 7th International Conference on Adaptive and Natural
Computing Algorithms (ICANNGA), Coimbra, Portugal, Springer WienNewYork pp.
276-279 (March 21 - 23, 2005).

• M. Udrescu, L. Prodan, M. Vlăduţiu, ”Improving Quantum Circuit Dependability with
Reconfigurable Quantum Gate Arrays”, 2nd ACM Conference On Computing Frontiers,
ACM Press, pp. 133-144 (Ischia, Italy, 2005).

Other papers with relevance to particular aspects of this thesis (published as second author):

• L. Prodan, M. Udrescu, M. Vlăduţiu, ”Self-Repairing Embryonic Memory Arrays”,
IEEE NASA/DoD Conference on Evolvable Hardware, Seattle WA, USA, June 24 - 26,
pp. 130-137, (2004).

• L. Prodan, M. Udrescu, M. Vlăduţiu, ”Reliability Assessment in Embryonics Inspired
by Fault-Tolerant Quantum Computation”, Proc. 2nd ACM Conference On Computing
Frontiers, ACM Press, pp. 323-333 (Ischia, Italy, 2005).

• L. Prodan, M. Udrescu, M. Vlăduţiu, ”Multiple-Level Concatenated Coding in Embry-
onics: A Dependability Analysis”, GECCO (ACM-SIGEVO), pp. 941-948, Washigton,
DC, USA, (June 25-29 2005).

• L. Prodan, M. Udrescu, M. Vlăduţiu, ”Survivability of Embryonic Memories: Analysis
and Design Principles”, IEEE NASA/DoD Conference on Evolvable Hardware (EH’05),
pp. 280-289, Washington, DC, USA, (June 29 - July 1, 2005).

This work was prepared by 3 Ph.D. reports presented in the Computer Engineering De-
partmant of University ”Politehnica” of Timişoara, with the second one, entitled ”Quantum
Algorithms Implementation: Circuit Design Principles and Entanglement Analysis”, being
cited in the following book:

vi

• Lee Spector, ”Automatic Quantum Computer Programming: A Genetic Programming
Approach”, Kluwer Academic Publishers, (2004).

The presentation of this Ph.D. thesis, as a whole, was accepted at the ACM SIGDA Ph.D.
forum, within the ACM/IEEE Design Automation Conference:

• M. Udrescu, ”Using Hardware Engineering in Quantum Computation: Efficient Circuit
Simulation and Reliability Improvement”, SIGDA Ph.D. Forum at Design Automation
Conference, (Anaheim, CA, 2005).

vii

Acknowledgements

This thesis reflects the author’s original perspective on reliable quantum circuit simulation
and design. Its contributions arise after years of personal strive but – in a multidisciplinary
field – the ideas exchanged with others often make the difference. Therefore, in a way, this
work belongs also to the people whose ideas found fertile ground in my efforts. It would
be impossible to thank, individually, all the people that helped me throughout this process;
therefore I will kindly ask for indulgence from all the ones that I may have missed.

Research is not the easiest of jobs – besides sagacity, it takes dedication and confidence,
and for acquiring each of these perks one has to be constantly encouraged and helped. I was
privileged during this journey, as being lured into the world of research by my first advisor,
Professor Radu-Ioan Stoinescu, and then by my mentor, Professor Mircea Vlăduţiu. However,
along this difficult path, is due to my parents, my wife and my son, that I augmented my
capacity to withstand hitting snags. My work would have never soared without their love and
care.

I thank professor Mircea Vlăduţiu for his constant support, for sharing his outstand-
ing knowledge of reliable computer architectures, and for driving me into this computer-
engineering-oriented view of quantum computation. A great influence for this thesis came from
my colleague and friend Lucian Prodan; together with professor Vlăduţiu we have founded
the Advanced Computing Systems and Architectures (ACSA) laboratory, a project which is
fed by our common enthusiasm. Our students from ACSA were also very important; Nicola
Velciov and Cristian Ruican have constantly helped me with formatting papers and preparing
conference presentations.

Two dear friends, Claire Russell and George Heath, provided most of the important papers
and books that have shaped the way I approached research. I take this opportunity to thank
them again.

I am also grateful to professors Radu Mărculescu and Lee Spector as their advices and
encouragements have oriented this thesis on the right track, and to Mr. Florin Talpeş the
general manager of SoftWin, who has supported me in order to attend a very important
conference.

This thesis has also been supported by the Romanian government grant CNCSIS nr.
643/2005, ACM SIGMicro (2004) and ACM SIGDA (2005) traveling grants.

viii

Contents

1 Introduction 1
1.1 Motivation . 2

1.1.1 Industry requirements . 4
1.2 Thesis goals . 5

1.2.1 Simulation problems . 6
1.2.2 Status-quo in reliable quantum computation 9
1.2.3 Genetic algorithms and quantum computation 11

1.3 Objectives summary . 12
1.4 Thesis outline . 13

2 The HDL-Based Simulation Framework 15
2.1 Preliminaries . 15
2.2 Quantum computational background . 15

2.2.1 Basic operations and notation . 16
2.2.2 Quantum algorithms . 20

2.3 A HDL-based perspective . 23
2.3.1 Circuit model interpretation . 23
2.3.2 HDL involvement . 25
2.3.3 Methodology implementation . 27

2.4 Methodology effectiveness . 30
2.4.1 Automated extraction of non-entangled information 30
2.4.2 Non-entanglement probabilities . 36

2.5 Experimental results . 42

3 The Bubble Bit Technique 45
3.1 Preliminaries . 45
3.2 Shor’s algorithm simulation . 46

3.2.1 Bubble insertion algorithm . 46
3.2.2 Example and experimental results . 47

3.3 Simulation of Grover’s algorithm . 50
3.3.1 Bubble-bit insertion . 52

3.4 Simulated fault injection . 55
3.4.1 Preliminaries . 55
3.4.2 Sketching the guidlines for the QUERIST project 60

3.5 Specific problems in the quantum environment 60

ix

x CONTENTS

3.5.1 Setup phase . 62

3.5.2 Simulation phase . 64

3.5.3 Data processing phase . 64

4 Reliability with Reconfigurable Quantum Hardware 67

4.1 Preliminaries . 67

4.1.1 Contributions . 68

4.2 Quantum fault tolerance . 68

4.2.1 Quantum faults . 69

4.2.2 Quantum error detection and correction 69

4.2.3 Putting it all together . 73

4.2.4 Accuracy threshold . 74

4.3 A bird’s eye critical view . 75

4.3.1 The big picture . 75

4.3.2 Issues to be settled . 77

4.4 The rQHW-based solution . 78

4.4.1 Motivation . 78

4.4.2 rQGA structure . 79

4.4.3 Quantum configuration . 81

4.5 Code genaration with rQHW . 83

4.5.1 Encoder with classical configuration . 84

4.5.2 Stabilizer code with steane ancilla . 85

4.5.3 Accuracy threshold analysis . 88

4.6 Summary . 89

4.6.1 Achievements . 89

4.6.2 Issues to be settled . 90

5 Evolvable Quantum Hardware 91

5.1 Preliminaries . 92

5.1.1 Motivation . 92

5.1.2 Objective . 92

5.2 Quantum genetic algorithms . 92

5.2.1 Running GAs in a quantum computational environment 93

5.2.2 Mathematical formalism . 94

5.3 A new approach . 96

5.3.1 Computing the maximum . 96

5.4 The oracle . 98

5.4.1 Solving problem α) . 98

5.4.2 Building the oracle . 99

5.5 Reduced quantum genetic algorithm . 101

5.6 Quantum evolutionary strategy . 102

5.7 Summary . 104

CONTENTS xi

6 Conclusions 105
6.1 Thesis relevance . 108

6.1.1 Δ1 – Simulation . 108
6.1.2 Δ2 – Fault tolerance . 108
6.1.3 Δ3 – Evolvable quantum hardware . 108

6.2 Contributions . 108
6.2.1 Δ1 – Simulation . 109
6.2.2 Δ2 – Fault tolerance . 110
6.2.3 Δ3 – Evolvable quantum hardware . 110

6.3 Future work . 111
6.3.1 Δ1 – Simulation . 112
6.3.2 Δ2 – Fault tolerance . 112
6.3.3 Δ3 – Evolvable quantum hardware . 112

A VHDL Description of Elementary Quantum Gates 115
A.1 Hadamard gate . 116
A.2 Negation gate . 116
A.3 Rotation gate . 117
A.4 Conditional phase-shift gate . 118
A.5 XOR and Toffoli gates . 119
A.6 Swap gate . 120
A.7 Quantum adders . 120

B Deutsch-Jozsa Algorithm Simulation 125
B.1 Time diagrams for VHDL simulation of Deutsch’s algorithm 127

B.1.1 For a balanced oracle . 127
B.1.2 For a constant oracle . 127

C Grover Algorithm Simulation (2-qubit querry) 131

D Running a genetic application on a quantum computer 143

xii CONTENTS

List of Figures

1.1 ACSA laboratory overview. 3
1.2 The Universal Classical Computer with a Quantum Oracle, after Omer [66].

The Quantum Coprocessor must include a task selection logic and a classi-
cal to quantum translator. The other way conversion is made by employing
measurement. 7

2.1 The circuit model of quantum computation. 16
2.2 The Hadamard gate: symbol used in diagrams and VHDL description. 18
2.3 General form of the CNOT gate: corresponding logic diagram and VHDL

description. 19
2.4 Circuit implementing the Deutsch-Jozsa algorithm [62]. 21
2.5 Circuit implementing Grover’s algorithm. 22
2.6 Quantum interpretation of the Y-diagram. 24
2.7 The quantum hardware interpretation of HDLs involvement in circuit synthesis. 25
2.8 Example of approaching the HDL simulation of a quantum circuit. 26
2.9 Entanglement example. 27
2.10 VHDL data set example. 28
2.11 Relevant pieces of VHDL code. 29
2.12 Non-entanglement circuit reduction. 29
2.13 HDL-based, entanglement-aware, quantum circuit simulation model. 30
2.14 Example of groups of entangled qubits. Qubits q0, q4, q5, q6, q7 are in the first

group, q1, q2 in the second, while q3 is single. 31
2.15 Algorithm 1 described with a flowchart, where n is the number of qubits. Set

and Seti are two variables indicating the set of allowed 1-qubit matrixes: ’=0’
for constant, and ’=1’ for balanced. 32

2.16 Algorithm 2 described with a flowchart, where n is the number of qubits. Here,
q is the individual qubit - matrix form - state, and Q,Qo the entangled overall
states of the qubits that cannot be extracted. 33

2.17 Flowchart describing Algorithm 3 for extracting a d-depth entangled qubit
group from the given state. 35

2.18 Qubit group extraction Algorithm 4. 37
2.19 Probability p1 of extracting one non-entangled qubit; evolution with the num-

ber of qubits (m). 38
2.20 Probability p2 of extracting all the qubits as non-entangled; evolution with the

number of qubits (m). 38

xiii

xiv LIST OF FIGURES

2.21 Probability p3 of extracting one of the possible d-depth entangled qubit groups,
for 2 ≤ d < m. 39

2.22 Probabilities of non-complete (Pnc) and non-total entangled (Pnt) states, with
the number of qubits (m). 40

2.23 Algorithm 5: non-entangled qubit group extraction from an arbitrary state. . . 41

2.24 Deutsch-Jozsa with the Odd-Even circuit. 42

2.25 Deutsch-Jozsa implementation with the Parity circuit. 42

2.26 Time diagram with relevant signals of the Deutsch-Jozsa circuit simulation
the Parity circuit, with an 8-qubit query register. Each gate is considered as
operating with a 10 ns delay. 43

2.27 Deutsch-Jozsa simulation runtimes: structural Vs. behavioral. 44

3.1 Quantum circuit simulation model, when the bubble bit technique is employed. 46

3.2 Bubble bit insertion technique. 47

3.3 A) The 1-qubit full adder; B) obtaining a 2-qubit adder from 1-qubit Σ cells. . 48

3.4 Bubble bit procedure results. 49

3.5 Bubble bit procedure example. 50

3.6 Extra memory requirements. 51

3.7 Grover algorithm circuit for a 2-qubit search register. The oracle UO can be
any of the a)-d) gates; also an entanglement analysis is provided by showing
where it appears and where it is absent. 51

3.8 Bubble bit insertion rules for Grover algorithm states. 52

3.9 Relevant states for Grover algorithm simulation. 53

3.10 Bubble bit insertion results for 2-qubit Grover search simulation. 53

3.11 Bubble bit insertion procedure for |ψ3〉. 54

3.12 2-qubit search Grover equivalent circuit, obtained with the bubble-bit technique
in order to allow structural (i.e. polynomial) simulation. 54

3.13 Data types required by bubble record representation. 55

3.14 VHDL gate level implementation (entity-architecture pair) for bubble bit state
transformation. 56

3.15 Time diagram resulted from VHDL simulation of Grover’s algorithm, without
the bubble bit technique. 57

3.16 Time diagram resulted from VHDL simulation of Grover’s algorithm, with the
bubble bit technique. 58

3.17 HDL bubble bit runtime results for Grover algorithm simulation, compared
with the reference complexity. 59

3.18 Memory overhead dictated by bubble records for Grover algorithm simulation.
A trendline is added to the sample data, showing polynomial growth. 59

3.19 An overview of the QUERIST project. 61

3.20 The bubble bit HDL simulation model, when fault injection is applied according
to the error and fault occurence models presented in [76]. 62

3.21 The effect of faulty gate operation on the processed qubits: a) gate bit-flip
fault, b) gate phase-shift fault. 63

3.22 Circuit for singular bit-flip error correction. 65

LIST OF FIGURES xv

3.23 Bubble records produced by simulating error correction with the circuit from
Figure 3.22. 65

4.1 The circuit that returns the Steane encoding of an arbitrary state. 69

4.2 Ancilla coding: A) Shor’s tecnique; B) Steane’s technique; C) Verfication for
Steane’s ancilla, where the ”State ancilla coding” blocks contain the circuit
from B) except the rightmost level of Hadamard gates. 71

4.3 Single quantum bit-flip error correcting circuit with Steane ancilla coding. . . 72

4.4 Error-correction with stabilizer generator measurement, Steane ancilla, and
syndrome computation according to the check matix. 72

4.5 Graphical representation of accuracy degree required for the corresponding N ,
for different p’s: 3 for xi1, 4 for xi2, 5 for xi3. xi4 corresponds to the no-coding
situation, while ref is the reference accuracy (i.e. the accuracy allowed by
today’s state of the art technology). 74

4.6 Concatenated coding: each qubit can be encoded by a block of sub-qubits. . . 75

4.7 Classical fault tolerance approach for safe recovery. 76

4.8 Steane safe recovery procedure. 76

4.9 Concatenated coding affected by correlated errors. 77

4.10 Reconfigurable quantum gate array: the involved registers. 78

4.11 Linear connection of basic reconfigurable quantum gate arrays, allowed by the
second limitation. 79

4.12 Special conditioned gates: a) Hadamard, and b) qubit measurement. 81

4.13 The basic reconfigurable cell for stabilizer encoding solutions. 82

4.14 When the configuration register has a quantum nature, the same reconfigurable
quantum gate array acts as a superposition of k simultaneous distinct circuits.
These circuits share the same input state and the same output qubits. The
output qubits encode a superposition of the superposed circuits distinct outputs. 84

4.15 Circuit for setting the 6-qubit configuration state, from Equation 4.45. 88

4.16 Evolution of accuracy threshold value for rQHW stabilizer codes (’xir’ function)
with the number of computational steps (N). The technological accuracy limit
(’lim’) is also provided for comparison. 90

5.1 Evolvable quantum hardware. 91

5.2 The basics of fitness function construction: when is applied to valid individuals
it produces a value in the valid area (upper half: |10 . . . 00〉 . . . |11 . . . 11〉) of the
fitness register, whereas when applied to invalid individuals, the corresponding
values in the fitness register will always be in the invalid area (lower half:
|00 . . . 00〉 . . . |01 . . .11〉). 99

5.3 The format of the fitness register, for the oracle implementation that is based
on a two’s complement approach. 100

5.4 Oracle implementation for a fitness register having the structure from Figure
5.3. 100

5.5 A comparison between the classical and quantum evolutionary (and genetic)
algorithm strategy, inspired by [96]. 103

xvi LIST OF FIGURES

6.1 Emergent technology sequence, according to the Emerging Research Devices,
within the ITRS [126]. 106

6.2 The parametric comparison between new technologies and CMOS – with re-
spect to speed, size, cost, and energy consumption – according to ITRS [126]. . 107

A.1 Hadamard gate representation and corresponding unitary matrix. 116
A.2 Negation gate representation and corresponding unitary matrix. 116
A.3 Rotation gates representation with corresponding unitary matrixes. 117
A.4 A n-qubit conditional phase-shift gate representation, with the 2n × 2n-size

corresponding unitary matrix. 118
A.5 CNOT gates: a) XOR; b) TOFFOLI; c) the general CNOT operating on n

qubits. 119
A.6 The symbol and corresponding unitary matrix for the SWAP gate. 120
A.7 1-Qubit full quadder, implemented with unitary gatesXOR and TOFF [63][113].121
A.8 A 1-qubit full quadder operating over a superposition of possible classical states

for inputs x and y. Carry in is |1〉 in this example, |ψ〉 is the state of inputs x
and y (|x, y〉) while |φ〉 is the state of the 4-qubit output. 122

A.9 An n-qubit adder obtained by rippling the carry. Note that we need n scratch
qubits for completing this operation. 123

A.10 The symbol for the n-qubit, used in quantum networks, with its details con-
tained in Figure A.9. 123

B.1 Simulation results for Deutsch-Jozsa algorithm, when the oracle is a balanced
function. 128

B.2 Simulation results for Deutsch-Jozsa algorithm, when the oracle is a constant
function. 129

List of Tables

2.1 Deutsch-Jozsa algorithm simulation results. 44

3.1 Quantum full adder simulation results. 49
3.2 Experimental results for modulo adder and multiplier (simulation time). 50

4.1 Steane code’s syndrome interpretation, with the rightmost row indicating the
position of the bit-flip error. 73

4.2 The rows present the basis configurations which can be superposed with mini-
mum gate usage (qubits q0, q1 . . . q11 are the ordered positions of the filled dots
from Equation 4.39). 87

D.1 All the chromosome binary combinations, valid and invalid, with the corre-
sponding fitness values. 144

xvii

xviii LIST OF TABLES

Chapter 1

Introduction

Computer science and engineering have reached the degree of maturity where the difficulties
and limitations are identified, and the frontiers of computation are tackled in an endeavoring
paradigm-shifting effort. At first glance, this burden is mainly supported by computer science;
however, the complexity of today’s computational problems has made this quest ubiquitous.

Researchers from all the computing directions – computer science, computer engineering,
software engineering, and information systems – are striving towards grand objectives, as the
classical computing establishment does not even provide incentive for salvation from what it
seems a dreadful curse: even the most marginal improvements are yielded with exhausting
efforts. The promise is that new technologies, accompanied by new computing paradigms will
save the day.

There are two main reasons to be lured by this new trend; one has a qualitative nature,
whereas the other deals with the quantitative aspects of computation. This thesis deals with
two emerging technologies: quantum computing and adaptive, reconfigurable computation.
They both have dual qualitative-quantitative motivations, although one may note the poten-
tial epistemological arrogance of quantum computation. What Richard Feynman has foreseen
[31] – today’s quantum computing frenzy – also opened a topical interest discussion on the
inner nature of computation [18]. Defined as ”computation that uses atomic scale dynam-
ics” [96], offering a framework for powerful algorithms, quantum computation may also be
required as Moore’s law dictates 1 atom/bit in 2010 ∼ 2020.

The qualitative approach is related to the very demanding attempt, in terms of resources,
to simulate quantum processes. The majority of these quantum processes, in order to be
simulated on a classical computer, require exponential algorithms. Richard Feynman [30] has
sugested that all these problems could be overcomed by building a quantum computer. This
potential quantum computer ”will have no problem in simulating itself” [30]. Given this fact,
a new question was rised: if the hypotetical quantum computer is able to simulate quantum
processes in polinomial time, then it can solve in the same manner other hard problems [70] (i.e.
problems that, given a classical computational context, could be approached in the best case
with exponential algorithms). In 1985, David Deutsch theoretically built a universal quantum
Turing machine [24], a priceless tool for defining new algorithmic complexity classes: (EQP,

BQP, BQTime(T(n))). Also, it was demonstrated that, at least theoretically, P ⊆ EQP and
BPP ⊆ BQP ⊆ P#P ⊆ PSPACE [11]. Almost a decade after Deutsch’s breakthrough article, Peter
Shor has published the first quantum algorithms able to solve, polynomially, integer factoring

1

2 CHAPTER 1. INTRODUCTION

and discrete logarithms. These two are hard problems in the context of classical computation
[89].

The second motivation, the quantitative approach, is a discussion on the limits of inte-
grated circuits manufacturing technology. Today, there is a lot of discussion whether Moore’s
law is obsolete or not. But a lot of the arguments related with this discussion were pointed
out a long time ago, starting with the 1960s: the works of Rolf Landauer, and later Charles
Bennett, constitute the basis of reversible computing theory [8][9][53]. The universal gate for
the reversible computing the Toffoli gate is also extremely important for quantum circuits
[10]. The practical implementations of the quantum gates, networks and circuits, including
error detection and correction, are based on several technologies, independently developed:
Ion Trap at the National Institute for Standards and Technology (NIST), Cavity QED at
Caltech, and NMR at Stanford, Berkeley and MIT [15][32].

With all this spectacular evolution of the quantum computing theoretical aspects and the
unquestionable technological progress, it’s still not clear whether the prospect of building a
scalable quantum computer is feasible. The answer to the problem of quantum computer
feasibility must come not only from the physicists making their esoteric research in very
expensive laboratories. Computer engineering has also its part in this huge effort. The
simulation of quantum circuitry, although employs exponential algorithms, has given eloquent
results about the impact of errors and the opportunity of building fault tollerant quantum
circuits [63]. Simulation of quantum circuits itself has capitalized on computer engineering
research efforts, while vital aspects as fault tolerance would not be possible to approach
without taking into account the engineering issues.

1.1 Motivation

Although quantum computing is, undisputedly, a paradigm that was created and advocated
mainly by physicists and mathematicians, today it is widely considered that engineering is
also vital [62][77]. As a fact, the most prestigious computer engineering scientific conferences
and journals have adopted emerging technology tracks where quantum and reconfigurable
computing are highly placed.

This thesis was motivated by the attempt to bring together classical computer hardware
design and test and the novel, emerging technologies. This also was a source of inspiration
for establishing a new computing laboratory at ”Politehnica” University of Timişoara: the
Advanced Computing Systems and Architectures (ACSA) Laboratory. Its fundamental, in-
nate principles, which draw their essence from the above mentioned thesis motivation, are
presented in Figure 1.1; it is a set of interfering computing fields spanned by the classical and
novel computation axes.

In the quantum computational framework there are polynomial time solving algorithms,
for problems having exponential classical solutions. The quest is – on one hand – to search if
there are other possible effective quantum algorithms and – on the other hand – to be able
to produce efficient implementations for the already known algorithms. The most feasible
implementation of quantum algorithms is based on the quantum circuit (gate network) model
[25] [27]. Our work aims at bridging the gap between classical hardware CAD with design
automation techniques and quantum circuit design rules. This attempt would be extremely

1.1. MOTIVATION 3

difficult without the possibility of efficient quantum circuit simulation. Thus, our first di-
rection was to try using Hardware Description Languages (HDLs) for simulating quantum
circuits, because their property of being able to describe – in a compact manner – the circuit
with both structural and behavioral (functional) architectures isolates the inner source of
simulation complexity: the entanglement [29][77].

Bio-Inspired

Computing

Quantum

Computing

Computer Architecture

and Design

Computer Reliability

and Testing

Novel

computing

axis

Classical

computing

axis

-Quantum circuit synthesis

-Quantum circuit simulation

-Reliable quantum circuits

-Simulated Fault Injection in QC

- Fault tolerance improvement

and assessment in Embryonics

Novel

computing

axis

- EHW Design with FPGAs

Figure 1.1: ACSA laboratory overview.

The other direction of this PhD work is finding common ground for reliability techniques
and assessment methodologies from the Embryonics project and fault tolerant quantum com-
putation. Embryonics is a biologically inspired reconfigurable hardware project [57], which is
suitable for attaining reliability in aggressive, critical environments [79], similar to quantum
computation in terms of fault model and fault occurrence frequency. Adopting the accuracy
threshold as reliability measure in Embryonic memories is benefic [80]. Also, when consid-
ering a reconfigurable strategy (reconfigurable quantum gate arrays – rQGAs) in quantum
computation fault tolerant stabilizer encoding, the appropriate reliability measure may be
drastically improved.

4 CHAPTER 1. INTRODUCTION

This second direction opens up a new discussion, which could be of great importance for
computer science in general. Initially, the quest is to design a quantum circuit that is suitable
for supporting evolvable hardware applications. As the reconfigurable (or programmable)
quantum gate arrays are not new – being theoretically underpinned [61], the entire problems
relies on finding a quantum computation implementation for genetic algorithms. As defined
in the fundamental literature of this field, the evolvable hardware is a reconfigurable device
(circuit) which is configured by evolutionary means, usually a genetic algorithm (EHW =
RHW + GA, or evolvable hardware = reconfigurable hardware + genetic algorithms) [102].
The Quantum Genetic Algorithms or QGAs (i.e. genetic algorithms running on a quantum
computer) are controversial as far as their implementation is concerned; in this thesis a new
perspective is presented: by making use of the exponential quantum computer parallelism, the
maximum finding algorithm [2] and a specially designed oracle circuit, the genetic algorithm
is reduced to Grover search [37] which solves the problem in O (

√
n) time.

1.1.1 Industry requirements

The motivation presented in this section may seem theoretical and pretty much detached
from the actual industry problems. But the fact is that the industry is seriously taking
into consideration the aspects related to the emerging technologies, and quantum circuits in
particular.

The new challenges facing supercomputing applications will put a strain on the supporting
technology. It is clear that we will need to build at least zeta-flops computers in order to deal
with some very complex unsolved problems like: long-duration climate modeling, controlled-
fusion reactor simulation, network security simulation, molecular modeling, and so forth [20].
In this context, the software and architecture requirements must be met by the underlying
technology, and it seems that the classical solutions are not good enough [19].

The industry representatives have quickly reacted to these emerging problems, and founded
a global organization called ITRS (International Technology Roadmap for Semiconductors),
which is jointly sponsored by European Semiconductor Industry Association, Japan Elec-
tronics and Informational Technology Industries Association, Korea Semiconductor Industry
Association, Taiwan Semiconductor Industry Association, and Semiconductor Industry Asso-
ciation from U.S.A. As this organization defines its documents, they are about a continuous
evaluation of the semiconductor technology requirements, aimed at increasing the perfor-
mance of the integrated circuits. This effort is supported by industry, suppliers, academia,
research groups, and governments [126].

The results of the ITRS assessments are published as ITRS reports, which are annually
updated. The 2004 update contains a report on ”Emerging Research Devices” [126]. Within
this document, the ”Emerging Research Architectures” chapter contains a section called ”Co-
herent Quantum Computing” ([126], pages 37–40), in which the quantum computation fault
tolerance requirements are evaluated. Table 64, ”Emerging Research Architecture Imple-
mentations” [126] is listing the following defect tolerance imperative for coherent quantum
computing devices: ”error correcting algorithms needed”. This industry conclusion is further
stressing the importance of quantum FTAMs (Fault Tolerance Algorithms and Methodolo-
gies), that are making an important direction of this thesis (Chapter 4).

The ”Emerging Research Materials” chapter from the same document was added in the

1.2. THESIS GOALS 5

2004 update for the first time, emphasizing in the ”Modeling and Simulation” section ([126],
page 55) the importance of reducing simulation complexity. As already mentioned, an impor-
tant part of the present thesis deals with this extremely important research problem (Chapters
2 and 3).

1.2 Thesis goals

As this work is structured on two main directions, one of which having an important ex-
tension, there are 3 main objectives: efficient simulation of quantum circuits, improving the
dependability of the quantum circuits with rQGA, and implementing QGAs (Quantum Ge-
netic Algorithms).

Attaining these objectives means that some very important aspects of quantum compu-
tation are approached. First of all, simulating quantum computation processes in general –
and quantum circuits in particular – is usually exponential. The source of this exponential
simulation complexity depends on the level of abstraction that is used. From our perspective,
which is on the unitary (or gate) level, the main source of simulation complexity is the en-
tanglement [62] [77]. On the other hand, the entanglement is essential for making quantum
algorithms more efficient than their classical counterparts [29] and it cannot be removed from
the quantum states involved in simulations. However, we can use some a priori knowledge
about the particular pattern of the states processed by specific algorithms – the so-called sim-
ulation shortcuts [96] – along with clever state coding techniques [107], in order to reduce the
computational burden dictated by simulation of quantum algorithms on classical computers.

The second objective deals with a extremely important issue, because in quantum com-
putation dependability is not just a quality indicator, it is vital [75][76]. The state-of-the-art
here is intended to prove the feasibility of quantum computation, by improving the accuracy
threshold as main reliability attribute. The already developed techniques are using special
state encoding (similar to classical ECCs), concatenated coding and structural redundancy,
so that for an component fault rate of the order of ξ, the overall circuit error rate would be
of the order of ξ2. For a sufficiently small ξ, given by intrinsic component fault tolerance
(like, for instance, the ones described by [1]) the overall circuit reliability can be sufficiently
improved.

However, the assumed fault model [76] is not taking into account the correlated errors,
even if these errors are unavoidable from an engineering point of view, at the same time
making the concatenated coding effort useless [109]. The solution can arise from a much
flexible implementation platform, under the form of pQGAs (programmable Quantum Gate
Arrays) or rQGAs (reconfigurable Quantum Gate Arrays) [61][109].

It was already mentioned that, generally, the artificial intelligence approach considers al-
most all computations as searches, and therefore quantum computation can be involved as
Grover’s algorithm provides important search speedups [96]. Also, important work [43][44]
proves that Grover’s algorithm can be used for significant speedups of specific purpose searches.

After defining rQGA structures, the initial intention was to define a framework for im-
plementing Evolvable Quantum Hardware (EQHW) as rQGA + QGA (Quantum Genetic
Algorithms). The QGAs, as defined by Giraldi et al. [33] are the quantum algorithms that
perform genetic-based searches. Our approach reduces any GA in quantum computation to

6 CHAPTER 1. INTRODUCTION

Grover’s search, by defining a special purpose oracle quantum circuit and performing the
quantum maximum finding algorithm [2].

1.2.1 Simulation problems

In order to approach the aspects concerning the simulation of quantum computation, the
research must rely on a quantum computer model, based on formal mathematics. In turn,
simulation is used to reveal important issues like entanglement effect, error impact and quan-
tum error correction [90], or techniques for building quantum hardware [121].

Quantum computing itself emerged from the attempt to simulate quantum systems [30].
But, although the simulation is often considered to be a tool used in theoretical approaches,
it could also be employed for quantum hardware design, i.e. adapted design automation and
computer-aided design techniques. In doing that, one must select an appropriate model. In
his surveys [65][66], Omer summarizes the models used by quantum computing researchers,
for theoretical and practical purposes: mathematical, machine, circuit, and algorithmic.

These models are valid for any computing device, classic or quantum. Therefore, the
general models from above have classical expressions with quantum counterparts. From a
mathematical point of view, a computer is modeled by partial recursive functions having as
quantum counterpart unitary operators. The machine model in classical computing is given
by the Universal Turing Machine (TM). For quantum computation we have the Universal
Quantum Turing Machine (QTM) [11][24]. The circuit model is the logical gates circuit
model for the classical digital computer and quantum gates circuit (or network) model for the
quantum computer. Also, from the algorithmic perspective, the model for classical computer
is the universal programming language with the quantum programming languages (QPLs) as
quantum counterpart. Of course, there are other important quantum computing models like
the Quantum Cellular Automata [112], but they are out of the scope of this thesis.

The circuit model

If the goal is to build a quantum computing device, then we must employ some specific design
techniques (inspired from classical CAD). The substantiation of these techniques must be
sustained by an appropriate model. The best conceivable model is the quantum gates model.
Simulation according to this model [25] means that we perform gate-level or unitary-level
simulation [96].

Because of the extreme hardness in designing efficient quantum algorithms [62][77], there
are just few such examples. An efficient quantum algorithm is an algorithm running on a
quantum computer, able to solve a problem dramatically better (i.e. polynomial time) than
a classical algorithm. For example, in computational complexity terms, an efficient quantum
algorithm solving a problem could be in BQP with the best classical algorithm solving the same
problem in EXP. The point here is obvious: given the quantum algorithm design limitations
it would be extremely unprofitable to build an expensive universal machine, which would be
able to outperform a classical computer only when solving a few specific problems. Hence the
best prospect for involving quantum computing in computer manufacturing is an universal
classical computer with a quantum oracle [66]. This quantum oracle could be seen as a co-
processor – the processor is a classical computer passing specific hard tasks to the quantum

1.2. THESIS GOALS 7

co-processor, which has several hardwired hard algorithms (see Figure 1.2).
From our view, we need a tool to simulate quantum algorithms and, at the same time, to

help designing quantum gate networks according to the circuit model. In classical computing,
for hardware design we have such simulation tools: the Hardware Description Languages
(HDLs) [5][6][22].

Classical
processor

{
Input

Output
Data

{Program
Instructions

Quantum
coprocessor

�

Task selection

Classical data

Measurement outcome

Classical physics
environment

Quantum
world

Figure 1.2: The Universal Classical Computer with a Quantum Oracle, after Omer [66].
The Quantum Coprocessor must include a task selection logic and a classical to quantum
translator. The other way conversion is made by employing measurement.

Entanglement

The information storage unit in quantum computing is the quantum bit or qubit, which is
presented here in bra-ket notation [62]. Any qubit |ψ〉 is a normalized vector in a H2 Hilbert
space, with {|0〉, |1〉} as the orthonormal basis: |ψ〉 = a0|0〉 + a1|1〉. Parameters a0, a1 ∈ C

are called quantum amplitudes, and represent the square root of the associated measurement
probabilities of the basis states |0〉 and |1〉 respectively, with |a0|2 + |a1|2 = 1.

The qubits can be organized in linear structures called quantum registers, encoding a
superposition of all possible states of the corresponding classical register. For a n-qubit
quantum register, its corresponding state is a normalized vector in a H2n

space, |ψr〉 =∑2n−1
i=0 ai|i〉, where

∑2n−1
i=0 |ai|2 = 1, i ∈ N. When the individual qubit states are known (for

example |ψA〉 = a0|0〉 + a1|1〉 and |ψB〉 = a2|0〉 + a3|1〉) the tensor product gives the overall
state |ψA〉 ⊗ |ψB〉 = a0a2|00〉 + a0a3|01〉 + a1a2|10〉 + a1a3|11〉. The matrix representation
provides for a straightforward form of the quantum state; the above 2-qubit tensor product

is

[
a0

a1

]
⊗

[
a2

a3

]
=

[
a0a2 a0a3 a1a2 a1a3

]†
.

For a quantum register state, we have entanglement iff it cannot be represented as a
tensor product of its parts [62]. Let us consider the following 2-qubit example, where |ψ1〉 =
1√
2
(|00〉 + |01〉) and |ψ2〉 = 1√

2
(|00〉 + |11〉) ; we say that state |ψ1〉 is not entangled while

|ψ2〉 is entangled, because |ψ1〉 = |0〉 ⊗
[

1√
2
(|0〉 + |1〉)

]
, but there are no |φ1〉 and |φ2〉 qubits

so that the relation |ψ2〉 = |φ1〉 ⊗ |φ2〉 is satisfied.

8 CHAPTER 1. INTRODUCTION

The quantum circuits are constrained networks of gates, with no cloning and no feedback
allowed [10][62]. The quantum gate is the physical device implementing an unitary operator,
which represents the quantum state transform. Due to the unitary property, all quantum
operators are reversible.

In this thesis approach, the entanglement is considered as the main source of
simulation complexity. The explanation, assuming the matrix representation of quantum
states, resides in the following example. If a quantum circuit is processing a 16-qubit state,
then for non-entanglement the circuit handles 16 [2 × 1] matrixes, whereas for the entan-
glement situation it will have to handle 1 [216 × 1] matrix. Summarizing, in the absence of
entanglement processing a 16-qubit state 32 matrix elements (i.e. complex numbers) are han-
dled; but when entanglement occurs the number of matrix elements to be handled becomes
exponential: 216.

Related work

Because the stakes are high when it comes to quantum computer simulation, and its com-
plexity reduction techniques, there are many attempts to build efficient quantum computer
simulators. These attempts are aimed at different level of abstraction.

For instance, Obenland and Despain [63][64] have designed a simulator at physical level
– corresponding to the trapped ions technology [15]. This simulator was used for assessing
the feasibility of the trapped ion technology by modeling the quantum errors as laser device
angle errors [96].

At the higher level – the algorithmic level – a fine example is provided by Omer’s Quantum
Programming Language [65][66]. This metalanguage is very good for synthetically describing
the quantum algorithms but, because it does not deal with the actual implementations of the
algorithms, it cannot approach any simulation shortcut speculation [96].

This thesis’ concern is related to the unitary-transformation-level or gate-level simulation.
From our computer hardware, engineering view, the most representative simulator at this
level is QuIDD Pro – developed by the Quantum Circuits Group from University of Michigan
[73][114][115][116][117]. This simulator is based on a special quantum state encoding, inspired
by the Binary Decision Diagram theory. Due to the fact that the QuIDD encoding provides
compression, the first advantage of this simulator is the reduction of the simulation memory
overhead. Also, the simulation runtime is improved, as reported [114][115], although the
complexity problem is not fundamentally solved.

The QuIDD encoding process is far for being efficient, as this condensed representation is
not a straightforward one. Also, processing the encoded state attains efficiency only in some
particular cases. Fortunately, when simulating specific useful quantum algorithms, advan-
tageous state patterns are encountered – the so-called simulation shortcuts [96] – therefore
this simulation framework is more efficient than the previous ones, while remaining robust
and gate-oriented. However, this simulator cannot provide means for performing any kind of
tradeoff between time and space complexity.

Still, the simulation theoretical complexity [111] [118] is far from being attained. The
conditions for polynomial quantum computer simulation was also defined in theory, under the
form of Gottesman-Knill theorem [62]. The QuIDD simulation procedure uses an engineering
approach, which is not trying to solve the complexity problem the way it is prescribed by

1.2. THESIS GOALS 9

the quantum computer science theory. Summarizing, the most robust and representative
gate-level quantum computer simulator has the following advantages and drawbacks:

The advantages:

A1) it significantly reduces the simulation memory overhead;

A2) the simulation runtime is improved in comparison with previous gate-level simulators;

A3) the special encoding technique uses a compressed symbolic representation, which is
similar to binary decision diagrams, that are familiar to the computer engineers;

A4) the encoded quantum states are appropriate for capitalizing on the simulation shortcuts.

With all these very important achievements, there are still some problems to be solved:

P1) the simulation runtime improvement does not even make the simulation sub-exponential;

P2) the memory-time tradeoff is impossible within this simulation framework;

P3) the solution does not tackle the fundamental causes of the simulation complexity;

P4) the experimental results are provided only for one quantum algorithm: Grover’s algo-
rithm.

1.2.2 Status-quo in reliable quantum computation

Unlike classical computation [7], where we have intrinsic fault-tolerance of the components
and therefore dependability is just a quality indicator, in quantum computation it is vital.
The quantum world has an erroneous nature, because the macroscopic environment is con-
stantly trying to measure the very fragile superposition of basis states [62][75][76][77]. In these
conditions, the destructive effect of the decoherence [62][77] phenomenon can be considered
as ubiquitous.

The assumed fault occurrence model [75][76] is influenced by the need to assess the feasi-
bility of implementing quantum hardware [63]. Therefore we deal with the following assump-
tions:

• the faults are single and their occurrence is governed by probabilistic rules;

• the fault are not correlated, neither in time or space;

• in some evaluations, we are dividing faults in two categories: store faults and processing
or gate faults.

In quantum computation we have 3 types of qubit faults:

• bit-flip, where the effect is described by the basis state mappings |0〉 	→ |1〉, |1〉 	→ |0〉,
and the following equation |ψ〉 = a0|0〉 + a1|1〉 fault−→ a0|1〉 + a1|0〉;

• phase-shift, described by |0〉 	→ |0〉, |1〉 	→ −|1〉, and |ψ〉 = a0|0〉+a1|1〉 fault−→ a0|0〉−a1|1〉;

10 CHAPTER 1. INTRODUCTION

• small amplitude which are similar to analog errors, and affect the qubit amplitudes.

Here, the bottom line is that all these fault types can be reduced, by appropriate techniques
[76][75][77], to bit-flip faults.

The first drive, when trying to implement fault tolerant techniques in quantum compu-
tation, is to map the already known techniques from classical hardware. This job is not
straightforward even when the reference comes from reversible classical circuits [88][73], as
the quantum computation generates some constraints and additional problems to be solved.

Quantum computation constraints:

• the observation destroys the state;

• information copying is impossible.

The inner principle of using error-correcting codes (ECCs) is to use observation. Moreover,
all the structures build upon the ECC principles are applying structural redundancy, which
requires information copying.

Quantum computation additional problems:

• we need to be able to get state information without destroying it, therefore we are forced
to use ancilla qubits;

• we need a fault tolerant recovery process, otherwise the coding fault tolerant techniques
become useless

• the phase-shift fault propagates backward, so we have to apply special techniques de-
signed for thwarting the massive spread of these errors.

In order to deal with the encountered problems, some very important quantum fault-
tolerance strategies have been developed [62][75][76][77].

Strategies for attaining fault tolerance:

• digitizing small errors [76];

• using ancilla qubits in order to measure the information without destroying it;

• assuring ancilla and syndrome accuracy for a fault tolerant recovery process;

• appropriate quantum ECCs for detection and correction.

With the ECCs, a syndrome is computed, thus revealing the nature of each qubit, which
corresponds to one of the following situations (assuming that the correct qubit value is a0|0〉+
a1|1〉):

• no fault, the actual qubit expression is a0|0〉 + a1|1〉;
• bit-flip, the actual qubit a0|1〉 + a1|0〉;
• phase-shift, the actual qubit a0|0〉 − a1|1〉;

1.2. THESIS GOALS 11

• both bit-flip and phase-shift, the actual qubit having the following expression a0|1〉 −
a1|0〉.

Correcting a qubit fault, means applying one of the following 1-qubit unitary transfor-

mations:

[
0 1
1 0

]
for the bit-flip,

[
1 0
0 −1

]
for the phase-shift, and

[
0 −i
i 0

]
for both

faults.
The state-of-the-art in quantum ECCs is represented by Steane encoding [97][98] with

its generalization provided by stabilizer codes [16][35][36]; and the assessment of quantum
fault tolerance algorithms and methodologies (qFTAMs) is made by using a measure called
accuracy threshold [76][124]. The accuracy threshold is the component fault rate that still
allows the overall correct computation when employing qFTAMs.

The accuracy threshold estimates indicate that arbitrary long fault tolerant computation
is possible only if another techniques are applied (i.e. concatenated coding [76][77]).

Our approach of qFTAMs starts with a critical view of the error model and the concate-
nated coding technique, and prescribes the replacement by defining a technique based on the
so-called reconfigurable quantum gate arrays (rQGA). The accuracy threshold assessment
proves that this technique brings a significant improvement [109].

1.2.3 Genetic algorithms and quantum computation

Although this thesis direction emerged from an engineering effort – implementing evolvable
quantum hardware (EQHW) – its contributions may have significant impact in the computer
science area.

By clearly identifying its most major problems and limitations, computer science has
become aware of the so-called computing frontiers [62][70]. The research community has put
a lot of effort in the attempt to solve these problems and further pushing the computing
frontiers; however, by using the means of what is now called classical computation, it seems
that one can hardly expect more than marginal improvements, even for the most sophisticated
approaches.

In this context, inspiration was mainly found in biology and physics: bio-inspired com-
puting [57] and quantum computing [62] are considered as possible solutions. The optimism
is fed by theoretical and practical achievements. Genetic algorithms and evolvable hardware
are already successfully used in a wide range of applications, spanning from image compres-
sion, robotics and other artificial intelligence related issues, to engineering problems as fault
tolerance and reliability in critical environments [79][80][81][82]. Moreover, quantum comput-
ing seems to draw even more power from its exponential parallelism: Peter Shor has proven
that a classical exponential problem (integer factorization) can be solved in polynomial time
[89][91].

The above considerations indicate that the merge between the two novel computing
promises, namely genetic algorithms (GAs) and quantum computing (QC) would be nat-
ural and benefic [96]. Researchers already follow the path of so-called Quantum Evolutionary
Programming (QEP) [33] with outstanding results [94]. For instance, the best approach for
automated synthesis of quantum circuits [121] uses genetic programming [55][56][74][50][51].
Also, quantum algorithm design can be approached by evolutionary means [95]. In fact, the
majority of such applications address quantum computation design issues regarding quantum

12 CHAPTER 1. INTRODUCTION

algorithms and implementations [94]; they are all part of QEP’s sub-area called Quantum
Inspired Genetic Algorithms (QIGAs) [33][60]. The other sub-area, called Quantum Genetic
Algorithms (QGAs), tries to implement genetic algorithms in a quantum computation en-
vironment [33][86] [87][93] in order to capitalize on the quantum computation exponential
parallelism.

This thesis proposes a new perspective on QGAs, by showing that the genetic algorithm
strategy is essentially different in quantum computation: crossover and mutation are not re-
quired, because finding the best fitness can be reduced to Grover’s algorithm [37][38]. The
search space is entirely covered by the QGA because all individuals are encoded in a superpo-
sition state (at the same time), also fitness values generated for all individuals are encoded as
a superposition of basis states (at the same time) in a quantum register. As opposed to clas-
sical GAs where the best individual-fitness pair may not be available because the population
is limited, in Quantum Computation the best individual is available.

1.3 Objectives summary

From our proposed engineering view, there are 5 main objectives when approaching the sim-
ulation and design of reliable quantum circuits, which are presented here with the means to
achieve them:

Ω1) Efficient simulation of quantum algorithms, at gate-level, by employing:

– a Hardware Description Language (HDL) framework;

– the bubble-bit encoding technique for capitalizing on the ”simulation shortcuts”
[96];

Ω2) Defining a simulated fault injection framework in quantum circuits (the QUERIST
project) by using:

– our HDL-based quantum circuit simulator;

– the adapted version of the fault injection (and assessment) techniques from classical
hardware design [84][85][45];

Ω3) Exploring the allowed design techniques, for building reconfigurable Quantum Gate
Arrays (rQGAs) by:

– studying the quantum limitations of this concept;

– adapting the solutions from classical reconfigurable computing;

Ω4) Employing rQGAs, in order to improve the dependability of quantum circuits, by

– identifying the drawbacks of the state-of-the-art in reliable quantum computation
theory;

– using the quantum configurations for rQGAs, as source of exponential structural
redundancy;

1.4. THESIS OUTLINE 13

Ω5) Designing adaptive, evolvable quantum circuits, by means of:

– already designed rQGAs;

– building the circuits for Quantum Genetic Algorithms (QGAs) implementation.

1.4 Thesis outline

The thesis structure is related to the objective list from Section 1.3: Chapters 2 and 3 corre-
spond to objective Ω1, a part of Chapter 3 corresponds to Ω2, Chapter 4 deals with Ω3 and
Ω4, while Chapter 5 has to do entirely with objective Ω5. Finally, the conclusions are pre-
sented in Chapter 6: a summary of the Ph.D. work, the main contributions, and prospective
thoughts.

14 CHAPTER 1. INTRODUCTION

Chapter 2

The HDL-Based Simulation
Framework

This chapter tries to find common ground between classical circuit design techniques and
quantum computation, by identifying quantum circuit specification and simulation tools under
the form of Hardware Description Languages (HDLs). The HDL-based simulation approach
could reduce the complexity of quantum circuit simulation, by considering entanglement as the
main source of gate-level simulation complexity and isolating it in an automated manner. This
is possible by taking advantage of the HDL feature of describing a circuit with both structural
and functional architectures. We also performed an analysis of our methodology effectiveness,
for the arithmetic circuits involved in Shor’s algorithm and the circuits implementing Grover’s
algorithm.

2.1 Preliminaries

Today, the circuit model of quantum computation [25] is considered as the most feasible,
and we use it in order to describe the coprocessor. It is seen as a succession of consecutive
quantum networks of gates (QNet1 . . . QNetn in Figure 2.1) and quantum registers (QReg)
storing quantum states (S1 . . . Sn) in Figure 2.1), which takes a classical state as input. Also,
the final (rightmost, storing state Sn in Figure 2.1) register will be measured in order to
obtain the outcome of the quantum computational process. The quantum circuit (or gate
network) design techniques are inspired by the classical approaches [22] including classical
reversible circuit design [103], always taking into account the quantum mechanical features
[10]. On the other hand, automated design techniques and Computer Aided Design (CAD)
[6][22] enhance classical hardware design; in this context, our main effort is the attempt to
adapt these techniques to quantum circuits.

2.2 Quantum computational background

This section deals with the formal representations of quantum computation. Although there
are various such formalisms [13], we will present the most used (Dirac’s bra-ket) and matrix
[62] – the notation that is taken into consideration by our approach [104][105][106][107][108].

15

16 CHAPTER 2. THE HDL-BASED SIMULATION FRAMEWORK

At the same time, in this section, we present the quantum algorithms that are simulated
in the thesis: Deutsch-Jozsa [26], Grover [37][38] and Shor [89][91].

Quantum
network
(QNet 1)

Quantum
register

(S1)

Quantum
network
(QNet)n

Quantum
register

(S)n

Classical
state

Classical
state

m m m m m m

bit bitqubit qubit qubit qubit

Measurement

Figure 2.1: The circuit model of quantum computation.

2.2.1 Basic operations and notation

In quantum computation the information storage unit is the quantum bit, or the qubit. Ac-
cording to the nature of quantum mechanics theory, the qubit could be seen as a classical
bit extension. In bra-ket notation [13], we have: |ψ〉 = a0|0〉 + a1|1〉. Using mathematical
terms, the qubit is a normalised vector in some Hilbert space H2, having {|0〉, |1〉} as the
orthonormal basis, with a0, a1 ∈ C being quantum amplitudes. Therefore, the qubit is a
superposition of the classical bit states, the eigen-vectors |0〉 and |1〉. A measurement of a
qubit |ψ〉 will yield either |0〉 or |1〉, (i.e. a classical orthogonal state) with probabilities |a0|2
or |a1|2 respectively. Of course, we have |a0|2 + |a1|2 = 1 [62]. Qubits are organized in linear
structures: the so-called quantum registers. In its quantum version, a register state could be
a superposition of all its possible classical states. For a n qubit quantum register, its state is
a normalised vector in a 2n-dimensional Hilbert space:

|ψr〉 =
2n−1∑
i=0

ai|i〉,with
2n−1∑
i=0

|ai|2 = 1 (2.1)

In Equation 2.1, ai ∈ C and i could be written in a binary system: i = c0 · 20 + c1 · 21 + . . .+
cn−1 · 2n−1 where cj ∈ B = {0, 1}. Hence, the register state can be rewritten as:

|ψr〉 =
∑

c0c1...cn−1∈Bn

|c0c1 . . . cn−1〉 (2.2)

with ∑
c0c1...cn−1∈Bn

|c0c1 . . . cn−1|2 = 1. (2.3)

When we know the individual state of each qubit from the register, the tensor product is used
for obtaining register’s overall state:

⊗2n−1
i=0 |ψi〉 =

∑
c0c1...cn−1∈Bn

ai0ai1 . . . ain−1|c0c1 . . . cn−1〉 (2.4)

where

|ψi〉 = ai0|0〉 + ai1|1〉 (2.5)

2.2. QUANTUM COMPUTATIONAL BACKGROUND 17

is the state of qubit i. The power of quantum computation is due to the register exponential
parallelism: any transformation on that register willl be applied on each superposed eigenstate
[62][77].

Matrix representation

The bra-ket notation that we used in the previous section for representing quantum states
may not always be the most convenient. A better handling of quantum states having binary–
labeled eigenvectors, and their transformations could therefore result by using the matrix
representation [62]. Thus, Equation 2.4 becomes:

⊗2n−1
i=0 |ψi〉 =

[
a00

a01

]
⊗

[
a10

a11

]
. . .⊗

[
a2n−1,0

a2n−1,1

]
. (2.6)

where aij ∈ C and the state of the individual qubit i is

|ψi〉 =

[
ai0

ai1

]
. (2.7)

Measurement

Measurement is the only way to extract information out of a quantum state. It is a truly
random quantum operation, and unfortunately destroys the useful exponential parallelism of
quantum computation. The measurement outcome is one of the eigenvectors, with an asso-
ciated probability. For instance, if we consider the quantum register described by Equation
2.1 , then a measurement result can be any of the |i〉 eigenvectors with a probability of |ai|2.

Entanglement

For a quantum register state, entanglement occurs iff it cannot be represented as a tensor
product of its parts (individual qubits). In a 2-qubit example we could say that state |ψ1〉 is
not entangled while |ψ2〉 is entangled, because:

|ψ1〉 =
1√
2

⎡
⎢⎢⎣

1
0
1
0

⎤
⎥⎥⎦ =

1√
2

[
1
1

]
⊗

[
1
0

]
(2.8)

but there are no qubits |φ1〉 and |φ2〉 to satisfy

|ψ2〉 =
1√
2

⎡
⎢⎢⎣

1
0
0
1

⎤
⎥⎥⎦ = |φ1〉 ⊗ |φ2〉. (2.9)

18 CHAPTER 2. THE HDL-BASED SIMULATION FRAMEWORK

Quantum circuits

In order to perform the steps required by a quantum computational process (i.e. quantum
algorithm), networks of gates (circuits) are placed between succesive registers which encode
succesive quantum states (see Figure 2.1). Thus, the gate network (QNeti in Figure 2.1
terms) is processing the information from the register on the left QRegi−1), in order to obtain
the state encoded in its right neighboring register (QRegi). The devices involved in these
circuits are the quantum gates. A quantum gate implements a unitary operator over a 2n-
dimensional Hilbert space (n being the number of qubits processed by the quantum gate)
which performs a unitary transformation over a quantum state [62][65]. The description of
the unitary transform in both bra-ket and matrix forms is given in Equations 2.10 and 2.11.

U =

2n−1∑
x=0

2n−1∑
y=0

|x〉 · uxy · 〈y|,where

2n−1∑
i=0

u∗ixuiy = δxy (2.10)

U =

⎡
⎢⎣ u0,0 . . . u0,2n−1

...
. . .

...
u2n−1,0 . . . u2n−1,2n−1

⎤
⎥⎦ (2.11)

In Equation 2.11, matrix U is unitary, and therefore characterizes a reversible transform.
The quantum circuits are networks of gates, built with the following restrictions: no cloning
is possible and no feedback is allowed. An example of a 1-qubit gate (Hadamard), with its
VHDL description, is shown in Figure 2.2.

Figure 2.2: The Hadamard gate: symbol used in diagrams and VHDL description.

Barenco et al. [10] proved that {XOR,∧0 (U)} is a universal set of gates in quantum
computation. The n + 1 qubit transform ∧n (U) is a conditional operator, applying 1-qubit

unitary operator U on the target qubit iff the other n input qubits are ’1’. If U =

[
0 1
1 0

]
=

σx, then the conditional transform is a CNOT operator, which negates the target qubit only
for the other input bits being ’1’. Thus, the XOR gate is ∧1 (σx). In Figure 2.3 we have
represented the general CNOT gate on n + 1 qubits along with its functional description
in VHDL (one of the most used HDLs for design and test of classical circuits [6]). Qubits
x0 . . . xn−1 are input qubits, y is the target qubit with its value replaced by z after applying
the gate.

2.2. QUANTUM COMPUTATIONAL BACKGROUND 19

Figure 2.3: General form of the CNOT gate: corresponding logic diagram and VHDL de-
scription.

20 CHAPTER 2. THE HDL-BASED SIMULATION FRAMEWORK

2.2.2 Quantum algorithms

From a computational complexity point of view [11][101], assuming that P
= NP, then there is
a class, NPI (NP Intermediate) of problems that are not solvable by employing polynomial
resources, but are not NP-complete. It seems that this intermediate class contains the prob-
lems with efficient solutions in quantum computation, but has no known efficient classical
computation solving. Up to date, we know just a few such quantum algorithms.

As presented by Nielsen and Chuang [62], there are 3 kinds of quantum algorithms that
are fundamentally more efficient than their classical counterparts:

• simulation algorithms;

• search algorithms;

• algorithms based on quantum discrete Fourier transforms.

The first kind of algorithms is used for simulating quantum systems on quantum comput-
ers. Although this is an extremely important aspect, it is not of our concern in this thesis.
The second is represented by Grover [37][38] and Deutsch-Jozsa algorithms [25], while the
third kind is best represented by Shor’s algorithm [89][91].

Deutsch-Jozsa algorithm

The Deutsch-Jozsa algorithm is an example of quantum computing power. It is solving the
so-called Deutsch problem, which is about determining the nature of a unknown decision
function g (operating on n bits) in one computational step [25]. The nature of g could be
either constant (all g (x) are equal) or balanced (g (x) =’0’ for exactly one half of the inputs,
and =’1’ for the other half). The circuit implementing this algorithm is presented in Figure
2.4, where 2 registers are used (n-qubit query register, and 1-qubit answer register) and the
relevant states are given by the following equations:

|ψA〉 =

2n−1∑
x=0

|x〉√
2n

[|0〉 − |1〉√
2

]
, (2.12)

|ψB〉 =

2n−1∑
x=0

(−1)g(x)|x〉√
2n

[|0〉 − |1〉√
2

]
, (2.13)

|ψAA〉 =
2n−1∑
k=0

2n−1∑
x=0

(−1)x·k+g(x)|k〉√
2n

[|0〉 − |1〉√
2

]
. (2.14)

After obtaining |ψAA〉 the query register is measured and , if g is constant then superposed
classical state |00 . . . 0〉 from |ψAA〉 will have an amplitude of ±1 with all the other superposed
classical states having zero amplitudes; on the other hand if g is balanced then the state
|00 . . . 0〉 will have a zero amplitude with at least one other eigenstates having a non-zero
amplitude.

2.2. QUANTUM COMPUTATIONAL BACKGROUND 21

Figure 2.4: Circuit implementing the Deutsch-Jozsa algorithm [62].

Grover’s algorithm

The quantum search algorithm, also known as Grover’s algorithm [38], is a solution designed
to substantially reduce the complexity of search algorithms [14], from O (n) to O (

√
n). It

could be considered as a generalization of Deutsch-Jozsa algorithm.

Suppose we have an n-element search space, with each element being labeled by an index
x ∈ {0, 1, . . . n− 1}, n ∈ N. If the label is represented on m qubits, because of the super-
position of all indexes we have n = 2m. Then, we consider that our search problem has k
solutions, with 1 ≤ k ≤ n. We could reduce this computational task to a decision problem
[62] (i.e. defining a function fd (x), which is ’1’ only when x is the solution, otherwise is ’0’).

The circuit implementing Grover’s algorithm is presented in Figure 2.5 [37][62]. It has 3
quantum registers: a n-qubit index register, a m-qubit scratch register, and a 1-qubit oracle
register. The circuits from point (1) to the measured register are forming the so–called ”Grover
iteration circuit” which is rippled O (

√
n) times in order to get the result [12] . The UO circuit

is described by the following mapping:

UO : |x〉 1√
2

(|0〉 − |1〉) 	→ (−1)fd(x)|x〉 1√
2

(|0〉 − |1〉) (2.15)

x is one superposed state in the index register in point (1) of Figure 2.5. Because of the
Hadamard gate level, the index register contains at this point a superposition of all the
possible indexes. Thus, we can say that the Oracle UO is marking the solution. The Grover
iteration circuit as a whole performs the action described in the following equation:

UGro : |ψi〉 	→ (2|ψi〉〈ψi| − I) · UO (2.16)

In order to get the desired state in the measured register, we have to apply the Grover
iteration circuit q times, where q ≤ ⌈

π
4

√
n
k

⌉
[12][62].

22 CHAPTER 2. THE HDL-BASED SIMULATION FRAMEWORK

Figure 2.5: Circuit implementing Grover’s algorithm.

Shor’s algorithm

This algorithm [89] solves the factoring problem in polynomial time, while the best-known
classical solution is exponential [54][49]. Here, we have 2 quantum registers: the input register
is the left register in the following equations, and the output register is on the right. The
goal is to find the factors of a large integer (N) represented on L qubits, by using function
fa,N (x) = axmodN where a and N are co-prime integers. The size of the registers is 2L,
due to algorithm requirements [89][91]. Essentially, Shor’s algorithm consists of 4 main steps,
dictating 5 corresponding main states:

• State 1: |ψ1〉 = |ψi〉|ψo〉 = |0〉⊗2L|0〉⊗2L

• State 2: |ψ2〉 =
(

1
2L

∑22L−1
i=0 |i〉

)
|0〉⊗2L

• State 3: |ψ3〉 = 1
2L

∑22L−1
i=0 |i〉|f (i)〉

• State 4: |ψ4〉 =
√⌈

r
22L

⌉∑�
22L

r

�

i=0 |r · i+ b〉|m〉

• State 5: |ψ5〉 = UDFT : |ψ4〉

State |ψ2〉 is obtained by applying a layer of Hadamard gates on the input register. |ψ3〉 is
yielded by putting in the output register the result of special function f (periodic with period
r) over the input register. |ψ4〉 is obtained by measuring the output register (the result is m,
b is the bias [89]), and |ψ5〉 by applying the Quantum Discrete Fourier Transform (QDFT)
over the input register [17][39].

2.3. A HDL-BASED PERSPECTIVE 23

2.3 A HDL-based perspective

Building quantum CAD techniques for the design and test of quantum circuits is possible
only if their simulation is efficient. Our simulation methodology consists of describing each
quantum gate network from Figure 2.1 by functional and structural architectures. When
entanglement is detected in a neighboring register, then a functional (behavioral) architecture
is selected for the circuit as the only possibility.

The entanglement detecting procedure is automated, by designing specialized non-entangled
qubit extraction algorithms. If the extraction algorithm is successful, then in that register
there is non-entangled information (groups of qubits), and a structural architecture is possible.
As presented in this thesis chapter and references [105][106], the functional architecture will
employ exponential resources at simulation, whereas the qubit-level structural architecture
means only a polynomial overhead.

This methodology is an enhancement only if there are non-”totally entangled” states (see
section 2.4 for definitions). We have performed case studies for our HDL-based framework,
involving states appearing in Shor’s and Grover’s algorithms. The conclusion is that the
probability of total entanglement is rising exponentially with the number of qubits. However,
when running algorithms for practical purposes, the information encoded in registers tends
not to be totally entangled [114].

Nevertheless, total entanglement omnipresence when taking into account ”blind” proba-
bilities is a downside of this approach. But at least in some cases this framework offers the
solution: state’s entangled representation is avoided by bubble bit insertion (Chapter 3). This
technique is favorable for the polynomial structural architectures with the expense of building
some records of size O (n2).

2.3.1 Circuit model interpretation

When approaching the design of quantum circuits, this thesis will relate to our quantum
hardware interpretation of Gajsky and Kuhn’s Y-diagram [23] (see Figure 2.6). We have
modified the classical diagram [105] in quantum terms, therefore having three abstracting
levels: architectural, unitary and particle. The architectural level corresponds to the algorithm
data flow encoded in the overall quantum states. The unitary level is concerned with quantum
gate networks (quantum circuits at the gate level), basic quantum unitary transforms, and
unitary operators. Finally, the particle level is a technological interpretation related to the
physical implementations of the quantum gates, networks and circuits [62].

These abstracting levels could be seen from three different perspectives, or views. The
views in the Y-diagram are behavioral, structural and physical. From a behavioral (or func-
tional) view, the quantum circuit is a functional description, without taking into account the
implementation issues. In the structural view, the circuit is just the sum of interconnections
between basic components, while the physical view is concerned with the physical aspects of
circuit implementation.

At the architectural and unitary (logical for classical computation) levels, HDLs (Hard-
ware Description Languages) are able to describe classical and quantum circuits from both
behavioral and structural views. Moreover, existing software tools could assist both archi-
tectural and unitary synthesis. The physical design and the transformation from unitary to

24 CHAPTER 2. THE HDL-BASED SIMULATION FRAMEWORK

Figure 2.6: Quantum interpretation of the Y-diagram.

2.3. A HDL-BASED PERSPECTIVE 25

particle level, while both important, are not targeted here. Also, the physical implementation
(from the particle level in physical view) is not of this thesis’ concern.

Barenco et al. [10] addressed unitary level issues; other aspects, such as coding and
circuit complexity were also consistently addressed [59][58], along with some classicaly-inspired
implementations like Programmable Gate Arrays [61]. At the architectural level, advanced
classical arithmetic designs [71] could be adapted to quantum circuit architectural needs.

Figure 2.7: The quantum hardware interpretation of HDLs involvement in circuit synthesis.

2.3.2 HDL involvement

Our simulation methodology is based on the circuit model of quantum computation (see Figure
2.1) which was taken into account for other simulation approaches [46][100]. The circuits (gate
networks) and the registers are simulated by HDLs (VHDL in particular), which are synthesis
tools for classical circuits. In Figure 2.7, we present the possible involvement of HDLs in a
quantum interpretation [105][106] of classical circuits’ synthesis [22][23].

26 CHAPTER 2. THE HDL-BASED SIMULATION FRAMEWORK

But, if simulating quantum processes is already an exponential job, is any HDL neces-
sarily a better tool for quantum circuit simulation, as opposed to an ordinary programming
language? The best enhancement that could be achieved by employing another simulation
tool – for a functional description – is linear, with time and space overhead being exponen-
tial. However, the positive motivation is presented in Figure 2.8, based on the HDLs feature
of being able to describe the same circuit with both behavioral (functional) and structural
architectures [6][23]. This allows for avoiding unnecessary exponential state representations
[105][114].

S1

m
circuit

1 S2

m m
circuit

2 S3

mm
circuit

3 S4

m

Entanglement
detected

))

Cp1 Cpi Cpn

Entity 1 Entity i Entity n

A1 Ai An

Entity

Functional
architecture

Structural
architecture

Entity

Functional
architecture

Figure 2.8: Example of approaching the HDL simulation of a quantum circuit.

Whenever entanglement appears, the quantum system cannot be correctly represented
as a tensor product [13] of its components’ individual states. A correct representation of
the overall quantum state, employing linear algebra, means an exponential overhead with
respect to the number of qubits. Therefore, when entanglement occurs between two quantum
subsystems, their overall state cannot be represented correctly as a reunion (assuming an
implicit state composition with the tensor product) of the two individual subsystem states.

Even though researchers are investigating better representations in order to replace linear
algebra [114][115][117], handling overall states is a computationally hard (exponential) job.
Moreover, when dealing with overall states, there is no truly gate-level simulation of quantum
networks (circuits).

We will use the HDLs for describing a circuit in structural fashion, so that a non-entangled
state will not be represented as an overall state (with exponential overhead), but as a reunion
of individual qubit states. If the previous or the next quantum state is an entangled state,
then the quantum circuit must be represented in a functional (or behavioral) manner.

In Figure 2.8 a HDL simulation approach is presented. Two quantum circuits, functionally
described, guard the entangled quantum state (S3). The first quantum circuit (network) is
having a structural description because is guarded by 2 non-entangled states (S1 and S2).
Cp1 . . . Cpn are the smallest components of the quantum circuit, and A1 . . . An are their
corresponding architectures. A quantum register corresponding to a non-entangled state is
using a ’/’ notation, while for the entangled case the used sign is ’)’. Of course, if we are to

2.3. A HDL-BASED PERSPECTIVE 27

perform a gate-level simulation [96][114] of the quantum algorithm implementation, then the
circuit becomes a single quantum gate.

For a practical implementation of this methodology, each circuit must be described both
by structural and functional (behavioral) architectures. The structural description is at the
unitary level (quantum gate) in modified Y-diagram terms (see Figure 2.6) [105]. For a gate
network, if entanglement is detected in the previous or next quantum state, then the functional
architecture has to be selected to describe it; otherwise the structural architecture is chosen.
The structural case is the desired one because the simulation will require only polynomial
resources.

This simulation methodology could be automated by being able to extract the non-
entangled qubits from the register, if such is the case. This is also an exponential job if
we deal with arbitrary quantum multi-qubit states; however, when dealing with specific algo-
rithm states, it becomes much simpler [105][106].

2.3.3 Methodology implementation

For a gate network, if entanglement is detected in the previous or next quantum state, then the
functional architecture has to be selected to describe it; otherwise the structural architecture
is chosen. Figure 2.9 presents a circuit that can be simulated with a structural architecture
(case B), but for some input states it produces entanglement, and therefore can only be
simulated by functional (behavioral) architectures (case A).

The matrix representation of quantum states and unitary operators is adopted; therefore
the quantum states are type array (of complex) signals [6]. The data structure for HDL-
simulation is designed so that the circuit is capable of processing both array of qubit states
(the structural case) and overall states (the behavioral case), depending on entanglement
detection (see Figure 2.10 for the appropriate data structure example - described in VHDL.)

0

0

H

()
1

0 1
2

+

()
1

00 10
2

+
Entanglement

detected

()
1

00 11
2

+

A)

()
1

0 1
2

-

0

H

1

11

Entanglement
not detected

B)

Figure 2.9: Entanglement example.

With the data structure from Figure 2.10 and the above considerations, we are able to
describe the circuit from Figure 2.9 with both structural and behavioral architectures. The be-
havioral architecture (see Figure 2.11, for architecture ”functional”) has a group of 4 variable

28 CHAPTER 2. THE HDL-BASED SIMULATION FRAMEWORK

library

use all

ieee;
ieee.math_real. ;

use all

package is

--

type is array to of

type is array range of

type is array range<> of

type is record

to

to

end record

end

ieee.math_complex. ;
qupack

the qubit state representation
qubit (0 1) complex;

-- array of qubits representation
qubit_vector (natural <>) qubit;

-- quantum register overall state representation
quregister (natural) complex;

-- data type for simulation of 2-qubit circuits
-- when ent=true we have entanglement and 'qr' field
-- will be taken into consideration

qudata
qr:quregister(0 3);
qa:qubit_vector(0 1);
ent:boolean;

;
qupack;

Figure 2.10: VHDL data set example.

assignments, motivated by the fact that the overall transformation produced by the circuit is
characterized with the resulted matrix from Equation 2.18. The effect of the Hadamard gate
over the overall input state is given by:

H ⊗ I =
1√
2

⎡
⎢⎢⎣

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎤
⎥⎥⎦ . (2.17)

Applying the XOR gate over the 2 qubits will have the following effect:⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ (H ⊗ I) =

1√
2

⎡
⎢⎢⎣

1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

⎤
⎥⎥⎦ . (2.18)

When structural description is possible, the circuit can be reduced to the form given
by Figure 2.12(A), with U0, . . . Un−1 being 1-qubit unitary transformations, and q0, . . . qn−1

individual qubits. For the Figure 2.9(B) case, the structural description is possible, because
the circuit can be reduced as shown by Figure 2.12(B) (with qi = 1√

2
(|0〉 − |1〉), the target

input qTi
= |0〉, the target output and source qubits qTo = qS = |1〉). This is, in fact, the

motivation for the architecture ”structural” of entity ”circ-ex” (see Figure 2.11).
Summarizing, the simulation methodology (as developed until this point) is presented in

Figure 2.13. After each quantum register i, an entanglement analysis is produced, generating
ki non-entangled qubit groups. This information is passed to QRegi and the quantum network
that has outputted this state (Qneti) in order to select the appropriate structural architecture
(if such would be the case).

2.3. A HDL-BASED PERSPECTIVE 29

entity is
port in inout

end
architecture of is
begin
process
variable to
variable
begin
if then

for in to loop
end loop

else
end if

circ_ex
(q1: qudata;q2: qudata);

circ_ex;
functional circ_ex

(q1)
t:quregister(0 3);
r:qudata;

(q1.ent)
l1: i 0 3 t(i):=q1.qr(i);

l1;
t:=tensor_product_1(q1.qa(0),q1.qa(1));
;

r.qr(0):=(1.00/sqrt(2.00))*(t(0)+t(2));
r.qr(1):=(1.00/sqrt(2.00))*(t(1)+t(3));
r.qr(2):=(1.00/sqrt(2.00))*(t(1)-t(3));
r.qr(3):=(1.00/sqrt(2.00))*(t(0)-t(2));
r.ent:=true;
q2<=r 20 ns;

; functional;
structural circ_ex

Hadamard_gate
(qi: qubit;qo: qubit);

;
qxor

(qs: qubit;qti: qubit;qto: qubit);
;

c1:Hadamard_gate (q1.qa(0),q2.qa(0));
c2:qxor (q2.qa(0),q1.qa(1),q2.qa(1));

structural;__________________________

Hadamard_gate
(q1: qubit;qo: qubit);

Hadamard_gate;
hga Hadamard_gate

qo(0)<=(1.00/sqrt(2.00))*(qi(0)+qi(1)) 10ns;
qo(1)<=(1.00/sqrt(2.00))*(qi(0)-qi(1)) 10ns;

hga;_________________________________

qxor
(qs: ;qti: qubit;qto: qubit);

qxor;
qxa qxor

(qs,qti)

(qs(0).im=0.00 qs(0).re=0.00)
(qs(1).re=0.00 qs(1).im=0.00)
"XOR's output will be entangled"

failure;
qs(0).im=0.00 qs(0).re=0.00

qto(0)<=qti(1) 10 ns;
qto(1)<=qti(0) 10 ns;

qs(1).im=0.00 qs(1).re=0.00 qto<=qti;
; ; qxa;

after
end process end
architecture of is
component
port in out

end component
component
port inout in out

end component
begin

port map
port map

end

entity is
port in out

end
architecture of is
begin

after
after

end

entity is
port inout in out

end
architecture of is
begin
process
begin
assert and or

and
report
severity
if and then

after
after

elsif and then
end if end process end

Figure 2.11: Relevant pieces of VHDL code.

U0

U1

Un-1

A)

q0

q1

qn-1

U0

U1

qi

qTi

qS

qTo

B)

Figure 2.12: Non-entanglement circuit reduction.

30 CHAPTER 2. THE HDL-BASED SIMULATION FRAMEWORK

QNet
1

QReg 1
(S1)

C
la

ss
ic

al
st

at
e

C
la

ss
ic

al
st

at
e

Measurement

m m m
Entanglement

analysis

m

k1 k1 k1

m
Entanglement

analysis

m

kn
kn kn

QReg
(S)

n
n

qubit groups
transformations

Figure 2.13: HDL-based, entanglement-aware, quantum circuit simulation model.

2.4 Methodology effectiveness

Our simulation methodology’s effectiveness is affected by entanglement situations. This kind
of study was already performed numerically for Shor’s algorithm [72], but we are considering
it for our HDL framework. For assessing the entanglement role in our HDL-based simulation
method, we consider two definitions.

Definition 1 (Complete entanglement): A n-qubit quantum state is completely entangled
(i.e. an entanglement that includes all the qubits) iff it cannot be expressed as a tensor product
of a 1-qubit state and a (n− 1)-qubit state.

Definition 2 (Total entanglement): A n-qubit state is totally entangled iff there is no
tensor product of two k and l-qubit states (with arbitrary 2 ≤ (k + l) = n) to express it.

Definition 2 is particularly useful, because there are cases of complete entanglement where
qubits are totally entangled inside well defined groups, but the groups as wholes are not
completely entangled between themselves. Figure 2.14 presents such an example, where the
overall state is not completely entangled, and the overall state of all qubits except q3 is
not totally entangled. A situation where the entanglement is complete but not total is still
advantageous for our simulation approach and a structural description is possible (though not
at qubit level).

2.4.1 Automated extraction of non-entangled information

Grover algorithm case study

In order to draw any conclusion on the opportunity of applying our simulation methodology
to Grover’s algorithm, we must analyze the entanglement in Figure 2.5, at the indicated
points: (1), (2), (3), and (4). It is obvious that 1-qubit gates will not produce entanglement.
Therefore, we have 4 possible distinct situations while simulating Grover’s algorithm:

A) No entanglement is encountered;

B) Entanglement appears at point (2) and it is cancelled at point (4);

C) Entanglement appears at point (4);

2.4. METHODOLOGY EFFECTIVENESS 31

Figure 2.14: Example of groups of entangled qubits. Qubits q0, q4, q5, q6, q7 are in the first
group, q1, q2 in the second, while q3 is single.

D) Entanglement appears at point (2) and it would not be cancelled.

From our simulation methodology perspective, these situations are ordered from A) - the
best - to D) - the worst. Due to the fact that the state first entering UO is of the form

ψ(1) =
1

2
n
2

⎡
⎢⎢⎢⎣

1
1
...
1

⎤
⎥⎥⎥⎦ , (2.19)

and the state exiting UO is

ψ(2) =
1

2
n
2

⎡
⎢⎢⎢⎣

a0

a1
...

an−1

⎤
⎥⎥⎥⎦ (2.20)

with ai = ±1 and i = 0..2n−1, we could establish if ψ(2) is entangled or not by trying to write[
a0 a1 . . . a2n−1

]†
as a tensor product of individual qubit states (i.e. [2 × 1] individual

qubit matrixes.)

Lemma 1 (U0 non-complete entanglement): The oracle is not dictating complete entan-
glement iff in the set {a0, a1, . . . a2n−1} of Equation 2.20 elements, all the couples (a2k, a2k+1)
(with k = 0..2n−1 − 1) are either constant or balanced.

Proof: First we are considering all the possible 2 × 1 matrices containing ±1 elements:[
1
1

]
,

[−1
−1

]
,

[
1
−1

]
, and

[−1
1

]
. The first two are constant and the following ones are

balanced. The matrix from Equation 2.20 represents an n-qubit state. Therefore, if we have
an (n− 1)-qubit state, adding one qubit is described by the following tensor product:

32 CHAPTER 2. THE HDL-BASED SIMULATION FRAMEWORK

1

2
n−1

2

⎡
⎢⎢⎢⎢⎢⎣

a0

a1

a2
...

a2n−1−1

⎤
⎥⎥⎥⎥⎥⎦⊗

[
b0
b1

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0b0
a0b1
a1b0
a1b1

...
a2n−1−1b0
a2n−1−1b1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0
c1
c2
c3
...

c2n−2

c2n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.21)

In Equation 2.21, the rightmost form of the product matrix will give the following set of
couples:

Sc = { (c0, c1) , (c2, c3) . . . (c2n−2, c2n−1)} = { a0 (b0, b1) , a1 (b0, b1) . . . a2n−1−1 (b0, b1)} (2.22)

Figure 2.15: Algorithm 1 described with a flowchart, where n is the number of qubits. Set
and Seti are two variables indicating the set of allowed 1-qubit matrixes: ’=0’ for constant,
and ’=1’ for balanced.

Thus, the tensor product from Equation 2.21 is possible iff the resulted elements could be
coupled the way Equation 2.22 shows. Of course bj , cl = ±1 for j = 0..1 and l = 0..2n−1.This

means that all the couples will have the form of 1-qubit state

[
b0
b1

]
: balanced or constant.

2.4. METHODOLOGY EFFECTIVENESS 33

Due to Lemma 1, we have elaborated a simple algorithm that extracts one non-entangled
qubit state, from a n-qubit overall state (given in the matrix form) dictated by Grover’s
algorithm oracle. From now on, we will call this algorithm ”Algorithm 1” (see Figure 2.15).
Using Algorithm 1, we are able to extract all the individual non-entangled qubits from the
state dictated by the oracle. This new algorithm (Algorithm 2 from Figure 2.16) also returns
the overall state of the qubits that cannot be extracted (Q).

Figure 2.16: Algorithm 2 described with a flowchart, where n is the number of qubits. Here,
q is the individual qubit - matrix form - state, and Q,Qo the entangled overall states of the
qubits that cannot be extracted.

For finding entangled qubit groups of arbitrary depth d, we need to modify Algorithm 1,
which finds only 1-depth groups. This is obtained by redefining the sets of Algorithm 1 S10 ={[

1
1

]
,

[−1
−1

]}
and S11 =

{[−1
1

]
,

[
1
−1

]}
as all the possible couples of complementary

matrixes. As an example for the new Algorithm 3, Equation 2.23 shows the possible couples
that represent entangled 2-qubit states.

34 CHAPTER 2. THE HDL-BASED SIMULATION FRAMEWORK

S20 =

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎢⎣

−1
1
1
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
−1
−1
−1

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭

S21 =

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎢⎣

1
−1
1
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−1
1
−1
−1

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭

S22 =

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎢⎣

1
1
−1
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−1
−1
1
−1

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭

S23 =

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎢⎣

1
1
1
−1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

−1
−1
−1
1

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭

(2.23)

Lemma 2 (UO non-total entanglement): The oracle is not dictating total entanglement
iff in the set {a0, a1, . . . a2n−1} of Equation 2.20 elements there is a 2 ≤ d < n, d ∈ N so that
all the 2d-uples

(
ak·2d, ak·2d+1, . . . a(k+1)·2d−1

)
are in the same set of complementary matrixes

Sdx (x = 0..22d − 1).

Proof: The demonstration of this lemma becomes obvious if we reconsider the demonstration
of Lemma 1, by replacing the ”couple” with the 2d-uple, and using the above-described notion
of complementary matrixes set.

The flowchart explaining Algorithm 3, for extracting d-depth entangled qubit groups, is
presented in Figure 2.17.

Shor algorithm case study

In our entanglement-related case study, states |ψ1〉 and |ψ2〉 are not entangled: the first is a
basis state (eigenvector), the later is obtained from the first by using only 1-qubit gates. Also,
the registers involved in |ψ3〉 and |ψ4〉 (dictated by arithmetic circuits) is given in Equation
2.24, where n is the number of qubits, ξ ∈ C, and bi ∈ B = {0, 1}.

|ψb〉 = ξ

⎡
⎢⎢⎢⎣

b0
b1
...

b2n−1

⎤
⎥⎥⎥⎦ (2.24)

Due to Equation 2.24, we have developed Lemma 3.

Lemma 3 (Entanglement in Shor’s arithmetic circuits): The registers involved in
states |ψ3〉 and |ψ4〉 are not totally entangled iff, in the set {b0, b1, . . . b2n−1} of Equation 2.24
elements, there is a d ∈ N so that all the 2d-dimensional subsets

(
bk·2d, bk·2d+1, . . . , b(k+1)·2d−1

)

2.4. METHODOLOGY EFFECTIVENESS 35

Figure 2.17: Flowchart describing Algorithm 3 for extracting a d-depth entangled qubit group
from the given state.

36 CHAPTER 2. THE HDL-BASED SIMULATION FRAMEWORK

(with k = 0..
(
2n−d − 1

)
) are in the same set of two 2d×1 matrixes with binary elements: one

matrix with all elements being zeros, and the other with at least one non-zero element.

Proof: Non-total entanglement occurs when there is a subset of d qubits, which is not
entangled with the rest. This is possible iff there are 2 corresponding matrixes so that:

|ψb〉 = |ψe〉 ⊗ |ψe〉 = ξ

⎡
⎢⎢⎢⎣

be0
be1
...

be2n−d−1

⎤
⎥⎥⎥⎦⊗

⎡
⎢⎢⎢⎣

bn0

bn1
...

bn2d−1

⎤
⎥⎥⎥⎦ (2.25)

Given the fact that bei, bnj ∈ B, bei is either copying |ψn〉 elements or making all of them
’0’ in the tensor product, thus confirming this lemma’s assertion. We developed an algorithm
(Algorithm 4) for extracting d-qubit (1 ≤ d < n) groups that are not entangled with the rest in
the register (see Figure 2.18). Here, function Compute set returns the decimal correspondent
of the binary information encoded by the 2d-dimensional subset. The algorithm will return
q (the state of the d-depth qubit group) and Q (overall state of the remained n − d qubits).
When the extraction algorithm is successful for d = 1, then the entanglement is not complete,
and if there is a d < n so that the algorithm avoids EXIT in Figure 2.18 then we have a
non-total entanglement situation.

2.4.2 Non-entanglement probabilities

Finding and extracting forms of non-entangled information is an advantage for our HDL-
based simulation method. But its effectiveness is given by the frequency of non-entanglement
situations. Our simulation approach gives no advantage if the circuit could be described only
by an entirely functional architecture (i.e. no structure could be specified). This means that
we cannot draw any advantage if total entanglement is encountered.

We could also say that total entanglement appears only if Algorithm 3 and Algorithm 4
will give no expected answer (EXCEPTION in Figure 2.17, or EXIT in Figure 2.18).

Grover’s algorithm probabilities

Unfortunately, the improvement obtained by our simulation methodology [105][106] is not
always present. Furthermore, the probability of encountering an advantageous situation de-
creases exponentially with the number m of qubits in the register (see Figure 2.19). This is
first expressed in Equation 2.26:

p1 (m) = 2−2m+1 (2.26)

where the probability of being able to extract at least one entangled qubit (p1 (m)) is defined
by the number of matrix sets (2, balanced and constant), the number of matrixes/set (2), the
number of couples (2m−1), and the number of the initial matrix elements (2m).

The probability of decomposing all the given quantum state in individual (non-entangled)
qubits is even lower for a big m. This probability is expressed in Equation 2.27:

2.4. METHODOLOGY EFFECTIVENESS 37

Figure 2.18: Qubit group extraction Algorithm 4.

38 CHAPTER 2. THE HDL-BASED SIMULATION FRAMEWORK

Figure 2.19: Probability p1 of extracting one non-entangled qubit; evolution with the number
of qubits (m).

p2 (m) =
m∏

i=1

(
2−2m−1+1

)
(2.27)

Figure 2.20: Probability p2 of extracting all the qubits as non-entangled; evolution with the
number of qubits (m).

Figures 2.19 and 2.20 show little room for simulation improvement with our approach.
But extracting individual non-entangled qubits is not the only possibility of separating non-
entangled information from the given quantum state.

If searching for a d-depth non-entangled group in the given state, then the total number of
such possibilities is 22d+2m−d−1. Thus, when searching d-depth groups for all d (1 ≤ d < m),

2.4. METHODOLOGY EFFECTIVENESS 39

the probability of finding one is:

p3 (m) =

∑m−1
d=1 22d+2m−d−1

22m (2.28)

The graphic representation of p3 (m) is shown in Figure 2.21; the interpretation is that
our simulation methodology will present some improvement, although it will decrease expo-
nentially with m. Nevertheless, these probabilities are ”blind” measures for effectiveness.
Researchers have shown that, when running algorithms in practical cases, quantum informa-
tion is organizing itself so that total entanglement is not always present. Moreover, special
coding could be employed so that we avoid entangled representations [114].

Figure 2.21: Probability p3 of extracting one of the possible d-depth entangled qubit groups,
for 2 ≤ d < m.

Shor’s algorithm probabilities

Algorithm 4 is extracting non-entangled information from register states involved in Shor’s
algorithm arithmetic operations. Related with the results from the previous section, we are
interested in finding the probabilities of non-complete (Pnc) and non-total entangled (Pnt)
states. Pnc is the probability of finding at least one non-entangled qubit, whereas Pnt is the
probability of finding at least one non-entangled qubit group (depth d, 2 ≤ d < m). The
result is given in Equations 2.29, 2.30, and Figure 2.22:

Pnc (m) =
3 · 22m−1 − 2

22m (2.29)

pnt (m) =

∑m−1
i=1

[(
22i − 1

)
· 22m−i −

(
22i − 2

)]
22m (2.30)

with m ∈ N, m > 2. Unfortunately, these exponentially decreasing probabilities do measure
the effectiveness of our approach in this particular case study.

40 CHAPTER 2. THE HDL-BASED SIMULATION FRAMEWORK

Figure 2.22: Probabilities of non-complete (Pnc) and non-total entangled (Pnt) states, with
the number of qubits (m).

Arbitrary state qubit extraction

Using the results from Section 2.4.1 we will develop an algorithm for non-entangled qubit
groups, applicable not just for a specific algorithm state, but for an arbitrary one. This
algorithm is still exponential when extracting the non-entangled qubits, but is efficient when
discarding a state as totally entangled.

The straightforward algorithm for non-entangled qubit group extraction is contained in
Figure 2.23 from point marked as (*) downwards. Our approach is to extract relevant infor-
mation so that some totally entangled states could be easily detected (from START to point
(*)).

When attempting to extract a d-depth qubit group from an n-qubit state, we split the 2n

state matrix into 2n−d matrixes of the form
[
ak2d , ak2d+1, . . . a(k+1)2d−1

]†
with k = 0..2n−d − 1.

We denote
[
s (ak2d) s (ak2d+1) . . . s

(
a(k+1)2d−1

)]†
as Mk,d, where

s (w) =

⎧⎨
⎩

0 if w = 0
−1 if sign (w) = −1
1 if sign (w) = +1

∀w ∈ C (2.31)

In Figure 2.23, the function Compute set is associating the integer index value of the set
matrix Mk,d is belonging to. The set, for matrix Mk,d is {Mk,d, (−1) ×Mk,d, 0d} with 0d being

a
(
2d × 1

)
-size matrix with only 0 elements. Sets are labelled with indexes from 0 to 32d−1

2
−1.

For example, when d = 1 we have the sets from Equation 2.32:

Set0 =

{[
1
0

]
,

[−1
0

]
,

[
0
0

]}
Set1 =

{[
0
1

]
,

[
0
−1

]
,

[
0
0

]}
Set2 =

{[
1
−1

]
,

[−1
1

]
,

[
0
0

]}
Set3 =

{[
1
1

]
,

[−1
−1

]
,

[
0
0

]} (2.32)

2.4. METHODOLOGY EFFECTIVENESS 41

Figure 2.23: Algorithm 5: non-entangled qubit group extraction from an arbitrary state.

42 CHAPTER 2. THE HDL-BASED SIMULATION FRAMEWORK

2.5 Experimental results

All simulations from this thesis were pursued on a Windows XPTM, PENTIUMTM IV CPU
1.6GHz, 192MB RAM machine. For experimenting our HDL-based simulation approach, we
have performed an experiment concerning the Deutsch-Jozsa algorithm [25]. Entanglement
problems here are similar to Grovers algorithm case study, due to similar circuit structures.
We have simulated the algorithm with 2 distinct circuits implementing a balanced function
g: the odd-even (Figure 2.24) and the parity circuits (Figure 2.25). Simulation has taken
into account several instances of the circuits: with a 4, 6, 8, 10, 12, 14, and 16-qubit query
register. It was performed for all instances with both behavioral and structural architectures.
That was possible because entanglement was not detected here.

Figure 2.24: Deutsch-Jozsa with the Odd-Even circuit.

Figure 2.25: Deutsch-Jozsa implementation with the Parity circuit.

The time diagram for such a simulation is presented in Figure 2.26. The circuits for
function g are presented in Figures 2.24 and 2.25. In Figure 2.26 signal xin encodes the
input state of the left level of Hadamard gates (operating on the query register) and ah the
corresponding output state (see Figure 2.25); signal aht encodes the state exiting the level

2.5. EXPERIMENTAL RESULTS 43

of XOR gates; xout is the signal exiting the right level of Hadamard gates. Signal result is
created by applying an OR gate on the outputs of the measuring devices from the rightmost
part of Figure 2.25.

Simulation times are presented in Table 2.1 (n is the number of qubits, Struct. and Behav.
stand for structural and behavioral), with the discrepancy between the structural and behav-
ioral simulations being obvious because behavioral simulation times are rising exponentially
with the number of qubits [105][106]. The discrepancy between behavioral and structural
runtimes for the Deutsch-Jozsa algorithm is also presented in Figure 2.27.

Figure 2.26: Time diagram with relevant signals of the Deutsch-Jozsa circuit simulation the
Parity circuit, with an 8-qubit query register. Each gate is considered as operating with a 10
ns delay.

44 CHAPTER 2. THE HDL-BASED SIMULATION FRAMEWORK

odd-even parity
n str. beh. str. beh.

4 < 0.5 sec 0.5 sec < 0.5 sec 0.5 sec
6 <0.5 sec 1 sec < 0.5 sec 1.5 sec
8 < 0.5 sec 3 sec < 0.5 sec 5.5 sec
10 < 0.5 sec 21.5 sec 0.5 sec 51.5 sec
12 < 0.5 sec 45min,8 sec 0.5 sec 1h,3min,7sec
14 < 0.5 sec timed out 0.5 sec timed out
16 0.5 sec timed out 1 sec timed out

Table 2.1: Deutsch-Jozsa algorithm simulation results.

0

10

20

30

40

50

4 6 8 10 12 14 16
Number of qubits [n]

S
im

u
la

ti
o

n
ti

m
e

[s
e
c
.]

DJ-

Behavioral

DJ-

Structural

Figure 2.27: Deutsch-Jozsa simulation runtimes: structural Vs. behavioral.

Chapter 3

The Bubble Bit Technique

Although the conclusion of the previous chapter may not seem promising for our approach, we
could still improve it; as shown in this thesis and in [106][107][108], at least for states appearing
in Shor’s arithmetical circuits and Grover’s algorithm we have an encoding technique that
creates the possibility of structural (i.e. polynomial) simulation.

Considering the arithmetic circuits involved in Shor’s algorithm (with Grover’s algorithm
experiencing a similar situation [106][107]), the difference between a non-entangled and a
totally entangled state could be a simple binary couple flip. Therefore we developed an algo-
rithm that creates a new entanglement-free-represented state, in order to alter the entangled
state representation by inserting appropriate values called ”bubble bits” and storing their
positions in the state vector.

Our technique is similar to the stabilizer codes, which offer the opportunity for efficient
simulation (as proven in Gottesman-Knill theorem [62]), but instead finding transformations
that leave the n-qubit state unchanged or stabilized, we produce a corresponding (n+1)-qubit
state which is not entangled (it is used for simulation), and a set of memorized inserted matrix
elements (the bubble records).

The purpose is to avoid the 2n × 2n matrix expression of the n-qubit register unitary
operator. After performing the bubble bit insertion procedure, the equivalent quantum net-
work will have only 1-qubit gates, and after applying the unitary operator in this manner,
the original state can be restored. Because the unitary transform is obtained with at most n
[2 × 1]-size matrixes, incentive for structural (i.e. polynomial) simulation is provided.

3.1 Preliminaries

The bubble bit insertion technique is a quantum state and circuit encoding, which generates
a new simulation model, under the form shown in Figure 3.1. First, the FArh architectures
are used for the quantum networks. These architectures are used by the quantum networks
(QNet1 . . . QNetn) from Figure 2.13 simulation model, with a high probability of being func-
tional. The state outputted by QNeti, having FArh as architecture, will be processed with
the bubble bit procedure, and the result stored in QRegi (bubble). At this point, QNeti
will have non-entangled input and output states, hence it will be described by an entirely
structural architecture (computation flowing along the darker arrow in Figure 3.1).

45

46 CHAPTER 3. THE BUBBLE BIT TECHNIQUE

QNet 1

QReg 1
(S1)

Classical
state

Measurement

m

m

m

FArh

SArh

QReg 1
bubble

bubble
insertion

m

m+1

Record
1

m+1
QNet n

QReg
(S)

n
n

m

m+1

FArh

SArh

QReg
bubble

n

bubble
insertion

m

m+1

Record
n

m+1

Classical
state

m

Figure 3.1: Quantum circuit simulation model, when the bubble bit technique is employed.

3.2 Shor’s algorithm simulation

3.2.1 Bubble insertion algorithm

The procedure for bubble bit insertion works as follows: every couple (b2k, b2k+1) from the
state vector (as considered in Equation 2.24) is scanned. From this equation, ξ will be ignored

because all non-zero amplitudes are equal. We denote couple matrixes as:

[
0
0

]
= 0̂,

[
0
1

]
=

1̂,

[
1
0

]
= 2̂,

[
1
1

]
= 3̂. When a non-0̂ value is encountered all the other couples to be

processed will have to be of either this particular value or 0̂.

The bubble insertion described in Figure 3.2 must be performed until all the elements
from the state vector are scanned; here the oval is the first relevant couple detected and the
rectangle represents the current processed couple. The bubble bit is inserted between the bits
shown in rectangles in Figure 3.2. After the bubble insertion, a current processed couple (c)
results along with a next couple (n) that could be already processed when no ’?’ sign appears.

There are 2 cases where a bubble bit could also be inserted in the next couple; that
happens when becomes obvious that it would be the only choice (see Figure 3.2 for details).
When the entire state vector is scanned and processed in this way, the extraction of one qubit
(characterized by the first encountered non-0̂) becomes straightforward, and it can be said
that one bubble step is completed. Several bubble steps must be performed until all qubits
are extracted.

Any bubble-bit insertion will also increase the number of state matrix elements (bi). The
solution for maintaining a coherent matrix-form quantum state is to add an extra-qubit to
the state representation. Thus, the number of bi elements will be increased from 2n to 2n+1 –
at the first bubble step – by inserting extra 0s. The next bubble steps will require erasure of
0s, so that the matrix-form representation further complies with the quantum state coherence
requirement (a k-qubit state implies 2k vector elements in the state matrix representation).

3.2. SHOR’S ALGORITHM SIMULATION 47

0
1

0
0

1
0

1
1

c

n

0
1

0
?

0
0

?
?

0
1
0
1

0
?

0
1
0
1

0
1

1
0

0
0

0
1

1
1

1
0

1
0

0
0

?
?

1
0

1
?

1
0

1
?

1
1

0
0

0
1

1
0

0
0

?
?

0
0

1
?

1
1

0
?

Figure 3.2: Bubble bit insertion technique.

For every bubble-bit insertion, its position inside the vector is recorded. Each bubble
{b, pos} is described by its nature (b = 0/1) and its position in the resulted state (pos).
Performing all the necessary bubble steps requires a total of O (n2) records be produced.

Efficient quantum gate-level simulation may be achieved by using the HDL simulation
framework, at least for some particular circuit cases (Grover iteration, arithmetic circuits)
[96][106]. The ability of HDLs to describe a circuit with both structural and behavioral archi-
tectures allows isolating entangled qubit cases, which are the sources of simulation complex-
ity. Besides special algorithms for non-entangled qubit group extraction [106], the simulation
methodology we developed relies on the bubble bit technique, introduced as a method of
avoiding entangled representations. This method substantially (i.e. exponentially) improves
simulation times with the expense of buiding some records of size O (n2), as experimented for
Shor’s algorithm arithmetic circuits and Grover algorithm circuit.

3.2.2 Example and experimental results

In order to illustrate how the bubble bit technique works, we take as example the backbone of
quantum arithmetic circuits: the 1-qubit full adder from Figure 3.3(A). The way this add-cell
could be rippled in order to build n-qubit adders is suggested in Figure 3.3(B). The simulation
of the 1-qubit full adder will have to take into consideration the successive states from part
(A) of Figure 3.3. The input state (|ψ1〉) is not entangled, as shown in the following equation:

|ψ1〉 =
1√
2

(|0〉 + |1〉) ⊗ 1√
2

(|0〉 + |1〉) ⊗ 1√
2

(|0〉 + |1〉) ⊗ |0〉. (3.1)

The other states are entangled, with the last one (|ψ5〉) being totally entangled and there-
fore the bubble bit technique has to be applied. As presented by Equations 3.2 to 3.5, the
resulted state representations are identical, with only the corresponding records being differ-
ent.

|ψ2〉 =
1

2
√

2

(|0000〉 + |0010〉+ |0100〉 + |0111〉
|1000〉 + |1010〉+ |1100〉 + |1111〉

)
bubble−→ 1

4
3̂⊗4 ⊗ 1̂ + rec2 (3.2)

|ψ3〉 =
1

2
√

2

(|0000〉 + |0010〉+ |0110〉 + |0101〉
|1000〉 + |1010〉+ |1110〉 + |1101〉

)
bubble−→ 1

4
3̂⊗4 ⊗ 1̂ + rec3 (3.3)

48 CHAPTER 3. THE BUBBLE BIT TECHNIQUE

x

y

cin

0A=

x

y

cout

S

1� 2 3 4 5
� � � �

�

x

y

cin

0

x

y

cout

S
A)

�� ��

x0

y0

c =c0 in

0 c1

S0

x0

y0

x1

y1

0 c c2= out

S1

x1

y1
B)

Figure 3.3: A) The 1-qubit full adder; B) obtaining a 2-qubit adder from 1-qubit Σ cells.

|ψ4〉 =
1

2
√

2

(|0000〉 + |0010〉 + |0110〉+ |0101〉
|1000〉 + |1011〉 + |1111〉+ |1101〉

)
bubble−→ 1

4
3̂⊗4 ⊗ 1̂ + rec4 (3.4)

|ψ5〉 =
1

2
√

2

(|0000〉 + |0010〉 + |0110〉+ |0101〉
|1010〉 + |1001〉 + |1101〉+ |1111〉

)
bubble−→ 1

4
3̂⊗4 ⊗ 1̂ + rec5 (3.5)

Figure 3.4 presents the step-by-step results of the procedure applied on the 1-qubit full
adder, while Figure 3.5 contains the details regarding all the bubble steps performed for |ψ2〉.
Figure 3.4 has 6 columns and 5 rows; the columns correspond to the following: 1 record (rec),
4 qubits for the circuit’s inputs (x, y, cin, A also labeled as 0, 1, 2, 3), and the extra qubit
required by bubble bit insertions (e). All the involved successive states |ψ1..5〉 have a distinct
allocated row in this procedure illustration.

The results from Figure 3.4, as well as Equations from 3.2 to 3.5, indicate a structural
network (’SArh’ from Figure 3.1) of only identity qubit gates (characterized by I matrix).
The new equivalent network was obtained the way section 2.3.3 and Figure 2.12 explain.
This is important, because the structural (i.e. polynomial) simulation is now possible, with
the original quantum states that can be restored, because of the information stored in the
appropriate records.

The presented results are due to VHDL simulations, carried on a Windows XPTM,

PENTIUMTM IV CPU 1,6GHz, 192MB RAM machine. We have performed the gate-level
simulation of quantum arithmetic [113] of the full adder (see Figure 3.3). The experiment
was pursued in the presence of total entanglement (therefore not a trivial simulation, as it is
defined by [111]), thus requiring the bubble bit technique.

The results are presented in Table 3.1, where size is the size of the adder in qubits, n is the
size of the corresponding overall state (in qubits), ent is the type of the entanglement after
the rightmost gate of the circuit, gates is the number of gates involved, bub is the maximum
number of bubbles inserted for one record, and tWB, tB are the simulation times obtained
without and with the bubble technique respectively.

Table 3.2 presents simulation times for the modulo-k (we considered k = 2size−1) quan-

3.2. SHOR’S ALGORITHM SIMULATION 49

e x(0) y(1) cin(2) A(3) rec

1
1

1
1

1
1

1
0

CNOT1,2,3

1
1

1
1

1
1

1
0

1
1

XOR1,2

step bubble zeros

1

2
3

{1,6}

{1,5}
{1,3}

+7
-1

-1

1
1

1
1

1
1

1
0

1
1

CNOT0,2,3

step bubble zeros

1

2
3

{1,4}
{0,7}

{1,5}
{1,3}

+6

-1

-1

1
1

1
1

1
1

1
0

1
1

XOR0,2

step bubble zeros

1

2
3

{1,4},{0,7}
{1,12}

-

{1,5}

+6

-

-1

4 {1,3} -1

1
1

1
1

1
1

1
0

1
1

step bubble zeros

1

2

{1,4},{0,7}
{1,10}
{0,13}
{1,16}

{1,11}

+11

-1

3 - -

4

2 -1

{1,3} -1

1�

2

3

4

5

�

�

�

�

Figure 3.4: Bubble bit procedure results.

size n ent gates bub tWB tB

1 4 total 4 4 <0.5 sec <0.5 sec
4 13 total 16 12 13.5 sec 2 sec
8 25 total 32 24 4 hr, 12 sec 13 sec
16 49 total 64 48 timed out 41 sec
32 97 total 128 94 timed out 3 min, 48 sec
64 193 total 256 192 timed out 16 min, 7 sec

Table 3.1: Quantum full adder simulation results.

50 CHAPTER 3. THE BUBBLE BIT TECHNIQUE

1
0
1
0
1
0
0
1

2� =
bubble

1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0

=

1
1
1
1
1
0
0
0

1
0

bubble

1
1
1
1
1
1
0
0
0

1
0 =

1
0

1
1

1
1
1
0

bubble 1
0

1
1

1
1
1
0

=

== 1
0

1
1

1
1

1
1

erased

erased

Figure 3.5: Bubble bit procedure example.

size Modulo adder Modulo multiplier
tWB tB tWB tB

4 33 min, 4 sec 3.5 sec 6 hr, 12 min 9 sec
8 8hr, 53 min 17 sec timed out 44.5 sec
16 timed out 58.5 sec timed out 2 min, 16 sec
32 timed out 5 min, 42 sec timed out 16 min, 23 sec
64 timed out 21 min, 4 sec timed out 53 min, 18 sec

Table 3.2: Experimental results for modulo adder and multiplier (simulation time).

tum adders and multipliers, as essential circuits used for Shor’s algorithm implementations
[89][91][113]. Because additional memory is required in order to store the records dictated by
the bubble bit technique, Figure 3.6 presents the polynomial memory overhead for the simple
quantum ripple adder, modulo adder, and modulo multiplier.

3.3 Simulation of Grover’s algorithm

When considering the states involved in Grover’s algorithm, we will have a more general
approach to avoiding entangled representations in the quantum states. The general form of
the states dictated by circuits from Grover’s algorithm implementations is:

3.3. SIMULATION OF GROVER’S ALGORITHM 51

Figure 3.6: Extra memory requirements.

|ψGrover〉 = ξ

⎡
⎢⎢⎢⎣

a0

a1
...

a2n−1

⎤
⎥⎥⎥⎦ (3.6)

where ai ∈ {−1, 0, 1} for i = 0..2n − 1.

For explaining how our experiment works, we take as example the Grover algorithm circuit
from [62] (see Figure 3.7), which performs quantum search on a 2-qubit register.

UO

H

H

H

H

H

H

N

N H H

N

N

H

H

�UO

UO

a) b) c) d)

non-entangled entangled non-entangled

Figure 3.7: Grover algorithm circuit for a 2-qubit search register. The oracle UO can be any
of the a)-d) gates; also an entanglement analysis is provided by showing where it appears and
where it is absent.

52 CHAPTER 3. THE BUBBLE BIT TECHNIQUE

3.3.1 Bubble-bit insertion

The algorithm that transformes the state representation into a non-entangled one consists of
repeating the bubble insertion algorithm until (n+ 1) [2 × 1]-size matrices are extracted. The
insertion algorithm is described by the following pseudocode:

Bubble insertion algorithm

1. scan all the couples (ak, ak+1) from Equation 3.6;

(a) memorize the first non-0̂ couple;

(b) insert bubbles according to rules in Figure 3.8 and memorize their

nature and position;

2. if the number of ai elements is a power of 2 (= 2m) then go to step 4;

3. if the previous adjustement consisted of a 0’s padding then erase

zeros so that the number of ai (matrix) elements will be the closest

power of 2;

4. extract the first detected non-0̂ couple as a non-entangled qubit

representation;

The rules for bubble insertion are presented in Figure 3.8, where ’x’ stands for either ’-1’
or ’1’.

x
-x

-x
x

0
x

0
0

x
0

-x
0

0
0

?
?

0
x

0
?

0
-x

0
?

0
-x

x
x

-x
-x

0
-x

?
?

0
x

x
?

0
-x

-x
?

c

n

0
x

-x
?

0
-x

x
?

x
-x

-x
x

x
0

0
0

-x
0

0
x

0
0

?
?

-x
0

?
?

x
0

x
?

0
-x

x
x

-x
-x

x
0

-x
?

x
0

x
?

-x
0

-x
?

c

n

x
0

-x
?

-x
0

x
?

-x
-x

-x
x

x
-x

0
0

x
0

-x
0

0
0

?
?

x
-x

0
?

-x
x

0
?

0
x

0
-x

x
x

0
0

x
?

0
0

-x
?

x
-x

x
?

c

n

-x
x

-x
?

-x
x

?
?

x
-x

-x
x

x
x

0
0

x
0

-x
0

0
0

?
?

x
x

0
?

-x
-x

0
?

0
x

0
-x

-x
-x

0
0

x
?

0
0

x
?

-x
-x

?
?

c

n

x
x

-x
?

-x
-x

x
?

Figure 3.8: Bubble bit insertion rules for Grover algorithm states.

In order to keep track of the operations involved by the bubble bit technique, we will
watch the highlighted states (|ψ1〉 . . . |ψ5〉) from Figure 3.9. In this figure, the lower qubit

3.3. SIMULATION OF GROVER’S ALGORITHM 53

value is known throughout the computation (it is shown in Figure 3.9) and it is not entangled
with the rest. The search register is made out of qubits A and B, while qubit e is the extra
qubit which is used only because it is required by the bubble bit non-entangled representation.
Initially, e = |0〉.

oracle

H

H

H

H

H

phase
shift

H

H

()
1

0 1
2

- ()
1

0 1
2

-

1� 2 3 4 5
� � � �

A=

B=

e=

0

0

0

1

Figure 3.9: Relevant states for Grover algorithm simulation.

The result of applying the bubble bit technique on the |ψ1〉 . . . |ψ5〉 states is presented in
Figure 3.10. In fact, as forecasted in the entanglement analysis from Figure 3.7, the bubble
bit technique is only necessary for states |ψ2〉 and |ψ3〉.

e B A rec

1
1

1
-1

1
1

1
1

1
1

step bubble zeros

1

2

{-1,3}
{1,5}

{-1,3}

+2

-1

1
1

1
1

step bubble zeros

1

2

{-1,3}
{-1,5}

{1,3}

+2

-1

1
1

1
0

1
0

0
1

1
0

1�

2

3

4

5

�

�

�

�

1
0

1
-1

1
-1

Figure 3.10: Bubble bit insertion results for 2-qubit Grover search simulation.

These results can also be expressed as equations, where

[−1
1

]
= 4̂ and

[
1
−1

]
= 5̂:

|ψ1〉 =
1

2
(|00〉 + |01〉 + |10〉 + |11〉) = 0̂ ⊗ 3̂⊗2 (3.7)

54 CHAPTER 3. THE BUBBLE BIT TECHNIQUE

|ψ2〉 =
1

2
(|00〉 + |01〉 − |10〉 + |11〉) = 3̂ ⊗ 5̂ ⊗ 3̂ + rec1 (3.8)

|ψ3〉 =
1

2
(|00〉 − |01〉 + |10〉 + |11〉) = 3̂⊗2 ⊗ 5̂ + rec2 (3.9)

|ψ4〉 =
1

2
(|00〉 + |01〉 − |10〉 − |11〉) = 1̂ ⊗ 5̂ ⊗ 3̂ (3.10)

|ψ5〉 = |10〉 = 1̂ ⊗ 2̂ ⊗ 1̂ (3.11)

The way that the bubble insertion procedure works is presented in Figure 3.11.

1
-1
1
1

3
� =

bubble

1
-1
1

-1
1

-1
0
0

= 1
-1

bubble

1
1
1
1
0

=
1
1=

erased

1
1
1
0

1
-1

1
1

1
-1

Figure 3.11: Bubble bit insertion procedure for |ψ3〉.

The result is the possibility of performing HDL structural simulation of the circuit, and
therefore obtaining polynomial simulation times. The equivalent gate network, that can be
simulated structurally, is presented in Figure 3.12.

oracle

H

H

phase
shift

H

H

1� 2 3 4 5� � � �

A=

B=

e=

0

0

0

I

H

HNH

HNH

HNH

I H I

H 2 H 2

+ 1rec + 2rec

I

I

Figure 3.12: 2-qubit search Grover equivalent circuit, obtained with the bubble-bit technique
in order to allow structural (i.e. polynomial) simulation.

In Figure 3.12 we use a HNH gate. It is a gate that performs negation in a changed

basis space. Its equivalent network is H ·N ·H = 1√
2

[
1 1
1 −1

]
·
[

0 1
1 0

]
· 1√

2

[
1 1
1 −1

]
=[

1 0
0 −1

]
.

In order to represent the bubble records, we will add the data structure from Figure 3.13
to the VHDL package from Figure 2.10. In Figure 3.14 we present the methodology that

3.4. SIMULATED FAULT INJECTION 55

was used when building corresponding VHDL entity-architecture pairs, for the 1-qubit gate
levels that were dictated by the bubble quantum state representation (as, for instance, ”phase
shift” in Figure 3.12). These entity-architecture pairs have a fixed form, with only the marked
components and signals being dictated by bubble bit technique’s outcome (see Figure 3.14).

-- the type describing bubble structure
bubb

nature:integer;
position:integer;

;
-- the bubble type

bubble_type (natural <>) bubb;
-- structure of bubble records

rec_rec
bubble:bubble_type(0 to 1);
zeros:integer;

;
-- data type for bubble records

bubble_record (natural <>) rec_rec;

type is record

end record

type is array range of

type is record

end record

type is array range of

Figure 3.13: Data types required by bubble record representation.

Grover’s algorithm was simulated for an Oracle that marks just one basis state, like [115].
Figures 3.15 and 3.16 present the time diagrams resulted from simulation of Grover’s algo-
rithm with a 2-qubit data register and |10〉 the ”marked” basis state. In these figures the
relevant datapath is highlighted by arrows, which point the fields that are actually used by the
corresponding structural or behavioral architectures. Of course, for the bubble bit simulation
only structural architectures are required.

The runtime evolution with the number of qubits in the data register is presented in Figure
3.17. Also, the measured simulation times are compared here with the runtime complexity re-
ported in [115], which is 0.22×1.44n. The graphical representation shows substantial runtime
improvement. Also, Figure 3.18 presents the memory overhead of bubble bit simulation, dic-
tated by the bubble records. The added trendline indicates that the supplementary memory
overhead grows polynomially with the number of qubits in the data register.

3.4 Simulated fault injection

3.4.1 Preliminaries

In classical hardware, fault injection techniques are used for validation of Fault Tolerance
Algorithms and Mechanisms (FTAMs) [92]. This dependability verification ability is used for
the ultimate goal of incorporating the assessment of used fault tolerance techniques within
the design process, which may use an integrated environment [3][4] [84][85].

As it is the case of classical circuits, the Hardware Description Languages (HDLs) are able
to support dual behavioral – structural descriptions on different abstraction levels, and are
suitable for implementing various experimental and formal testing techniques. These features
make the HDLs the most appropriate tools for integrating description, simulation, synthesis
[83], testing, and FTAM testing in the same environment [21][45][84] [85].

56 CHAPTER 3. THE BUBBLE BIT TECHNIQUE

entity is

port in out

end

architecture

component

port in out

end component

component

port in out

end component

begin

port map

port map

port map

after

after

end

level_bubble
(si: qudata;so: qudata);

level_bubble;
bubble_arh of level_bubble is

qubit_1_gate
(qi: qubit;qo: qubit);

;

identity_1_gate
(qi: qubit;qo: qubit);

;

c0: ???_1_gate (si.qa(0),so.qa(0));
c1: ???_1_gate (si.qa(1),so.qa(1));

cn-1: ???_1_gate (si.qa(n-1),so.qa(n-1));
so.ent <= true time_delay;
so.qr <= si.qr after time_delay;
so.bub <= bubble_record time_delay;

bubble_arh;

resulted after
applying the
bubble bit
technique

Figure 3.14: VHDL gate level implementation (entity-architecture pair) for bubble bit state
transformation.

This section will focus on extending our already defined HDL-based quantum circuit sim-
ulation framework [96] [106], so that it can support fault injection that helps evaluating the
dependability attributes [7] with relevance for quantum circuits. The basic classical fault
injection techniques are the starting point of our quantum methodology; therefore, we will
emphasize only the differences dictated by the quantum nature of the processed information.

Quantum entanglement is the most important quantum feature that influences fault in-
jection. The reason is clear, it is impossible to have a real structural description for the
circuit in the presence of entanglement. Because of the fact that entanglement influences the
way that fault injection is performed (by structural or behavioral architectures), a natural
question is how can we involve the bubble bit technique, so that structural fault injection is
still possible in the presence of entanglement. One robust answer comes from the stabilizer
formalism [62][35], but the recently developed bubble bit technique [107] can also be adapted
to error injection, so that the consequences of such this methodology are extended in order
to approach fault tolerance assessment [108].

This section presents the achievements in classical hardware FTAM assessment, identifies
the features that can be adapted to our quantum computational needs, and then sketches the
basic guidlines for the QUantum ERror Injection Simulation Tool (or QUERIST) which is an
extension of our Bubble Bit HDL-based Quantum Circuit Simulation Tool (i.e. features error
injection). The implications of QUERIST development – for the bubble bit approach – are
indicated in the last part of this chapter.

3.4. SIMULATED FAULT INJECTION 57

{{
{1

0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}}

{{
{1

0
}

{0
0
}}

{{
1

0
}

{0
0
}}

{{
1

0
}

{0
0
}}

}
{{

{{
0

0
}

{0
0
}}

0
}

{{
{0

0
}

{0
0
}}

0
}}

fa
ls

e
}

{{
0

0
}

{1
0

}}

0
0

0
0

1
0

0
0

{{
{1

0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}}

{{
{0

.7
0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

{{
0
.7

0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

{{
1

0
}

{0
0
}}

}
{{

{{
0

0
}

{0
0
}}

0
}

{{
{0

0
}

{0
0
}}

0
}}

fa
ls

e
}

{{
1

0
}

{0
0

}
{0

0
}

{0
0

}
{0

0
}

{0
0

}
{0

0
}

{0
0

}}

{{
{0

.7
0

7
1

0
7

0
}

{0
.7

0
7

1
0

7
0

}}
{{

0
.7

0
7

1
0

7
0

}
{0

.7
0

7
1

0
7

0
}}

{{
1

0
}

{0
0

}}
}

{{
{{

0
0

}
{0

0
}}

0
}

{{
{0

0
}

{0
0

}}
0

}}

{{
{0

.5
0
}

{0
0
}

{0
.5

0
}

{0
0
}

{-
0
.5

0
}

{0
0
}

{0
.5

0
}

{0
0
}}

{{
{0

.7
0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

{{
0
.7

0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

{{
1

0
}

{0
0
}}

}
{{

{{
0

0
}

{0
0
}}

0
}

{{
{0

0
}

{0
0

}}
0
}}

tr
u
e
}

{{
0

.5
0

}
{0

0
}

{0
.5

0
}

{0
0

}
{-

0
.5

0
}

{0
0

}
{0

.5
0

}
{0

0
}}

{{
{-

1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

}

{{
{0

.7
0

7
1

0
7

0
}

{0
.7

0
7

1
0

7
0

}}
{{

0
.7

0
7

1
0

7
0

}
{0

.7
0

7
1

0
7

0
}}

{{
1

0
}

{0
0

}}
}

{{
{{

-2
1
4
7
4
8
3
6
4
8

0
}

{-
2
1
4
7
4
8
3
6
4
8

0
}}

-2
1
4
7
4
8
3
6
4
8
}

{{
{-

2
1
4
7
4
8
3
6
4
8

0
}

{-
2
1
4
7
4
8
3
6
4
8

0
}}

-2
1
4
7
4
8
3
6
4
8
}}

{{
{{

0
0

}
{0

0
}}

0
}

{{
{0

0
}

{0
0

}}
0

}}

{{
{0

.5
0
}

{0
0
}

{-
0
.5

0
}

{0
0
}

{0
.5

0
}

{0
0
}

{0
.5

0
}

{0
0
}}

{{
{0

.7
0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

{{
0
.7

0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

{{
1

0
}

{0
0
}}

}
{{

{{
0

0
}

{0
0
}}

0
}

{{
{0

0
}

{0
0

}}
0
}}

tr
u
e
}

{{
0

.5
0

}
{0

0
}

{-
0

.5
0

}
{0

0
}

{0
.5

0
}

{0
0

}
{0

.5
0

}
{0

0
}}

{{
{-

1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

}

{{
{0

.7
0

7
1

0
7

0
}

{0
.7

0
7

1
0

7
0

}}
{{

0
.7

0
7

1
0

7
0

}
{0

.7
0

7
1

0
7

0
}}

{{
1

0
}

{0
0

}}
}

{{
{{

-2
1

4
7

4
8

3
6

4
8

0
}

{-
2

1
4

7
4

8
3

6
4

8
0

}}
-2

1
4

7
4

8
3

6
4

8
}

{{
{-

2
1

4
7

4
8

3
6

4
8

0
}

{-
2

1
4

7
4

8
3

6
4

8
0

}}
-2

1
4

7
4

8
3

6
4

8
}}

{{
{{

0
0

}
{0

0
}}

0
}

{{
{0

0
}

{0
0

}}
0

}}

{{
{0

.5
0
}

{0
0
}

{0
.5

0
}

{0
0
}

{-
0
.5

0
}

{0
0
}

{-
0
.5

0
}

{0
0
}}

{{
{0

.7
0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

{{
0
.7

0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

{{
1

0
}

{0
0
}}

}
{{

{{
0

0
}

{0
0
}}

0
}

{{
{0

0
}

{0
0
}}

0
}}

tr
u
e
}

{{
0

.5
0

}
{0

0
}

{0
.5

0
}

{0
0

}
{-

0
.5

0
}

{0
0

}
{-

0
.5

0
}

{0
0

}}

{{
{-

1
e

+
3

0
8

-1
e

+
3

0
8

}
{-

1
e

+
3

0
8

-1
e

+
3

0
8

}}
{{

-1
e

+
3

0
8

-1
e

+
3

0
8

}
{-

1
e

+
3

0
8

-1
e

+
3

0
8

}}
{{

-1
e

+
3

0
8

-1
e

+
3

0
8

}
{-

1
e

+
3

0
8

-1
e

+
3

0
8

}}
}

{{
{0

.7
0

7
1

0
7

0
}

{0
.7

0
7

1
0

7
0

}}
{{

0
.7

0
7

1
0

7
0

}
{0

.7
0

7
1

0
7

0
}}

{{
1

0
}

{0
0

}}
}

{{
{{

-2
1

4
7

4
8

3
6

4
8

0
}

{-
2

1
4

7
4

8
3

6
4

8
0

}}
-2

1
4

7
4

8
3

6
4

8
}

{{
{-

2
1

4
7

4
8

3
6

4
8

0
}

{-
2

1
4

7
4

8
3

6
4

8
0

}}
-2

1
4

7
4

8
3

6
4

8
}}

{{
{{

0
0

}
{0

0
}}

0
}

{{
{0

0
}

{0
0

}}
0

}}

{{
{-

1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

{{
{0

0
}

{1
0
}}

{{
1

0
}

{0
0
}}

{{
1

0
}

{0
0
}}

}
{{

{{
-2

1
4
7
4
8
3
6
4
8

0
}

{-
2
1
4
7
4
8
3
6
4
8

0
}}

-2
1
4
7
4
8
3
6
4
8
}

{{
{-

2
1
4
7
4
8
3
6
4
8

0
}

{-
2
1
4
7
4
8
3
6
4
8

0
}}

-2
1
4
7
4
8
3
6
4
8
}}

fa
ls

e
}

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0

8
}}

{{
{-

1
.#

IN
F

-1
.#

IN
F

}
{0

0
}}

{{
-1

.#
IN

F
-1

.#
IN

F
}

{0
0
}}

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

}
{{

{0
0

}
{1

0
}}

{{
1

0
}

{0
0

}}
{{

1
0

}
{0

0
}}

}

{{
{{

-2
1

4
7

4
8

3
6

4
8

0
}

{-
2

1
4

7
4

8
3

6
4

8
0

}}
-2

1
4

7
4

8
3

6
4

8
}

{{
{-

2
1

4
7

4
8

3
6

4
8

0
}

{-
2

1
4

7
4

8
3

6
4

8
0

}}
-2

1
4

7
4

8
3

6
4

8
}}

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

{{
0

.7
0

7
1

0
7

0
}

{-
0

.7
0

7
1

0
7

0
}}

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

{{
0

.7
0

7
1

0
7

0
}

{-
0

.7
0

7
1

0
7

0
}}

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

{{
0

.7
0

7
1

0
7

0
}

{-
0

.7
0

7
1

0
7

0
}}

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

{{
0

.7
0

7
1

0
7

0
}

{-
0

.7
0

7
1

0
7

0
}}

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

{{
0

.7
0

7
1

0
7

0
}

{-
0

.7
0

7
1

0
7

0
}}

{{
-1

e
+

3
0

8
-1

e
+

3
0

8
}

{-
1

e
+

3
0

8
-1

e
+

3
0

8
}}

{{
0

.7
0

7
1

0
7

0
}

{-
0

.7
0

7
1

0
7

0
}}

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

/s
ta

rt
in

g
_

s
ta

te
{{

{1
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}}

{{
{1

0
}

{0
0
}}

{{
1

0
}

{0
0
}}

{{
1

0
}

{0
0
}}

}
{{

{{
0

0
}

{0
0
}}

0
}

{{
{0

0
}

{0
0
}}

0
}}

fa
ls

e
}

/a
n

s
w

e
r

{{
0

0
}

{1
0

}}

/r
e

s
u

lt
0

0
0

0
1

0
0

0

/e
x
tr

a
c
t

/p
s
i1

{{
{1

0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}}

{{
{0

.7
0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

{{
0
.7

0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

{{
1

0
}

{0
0
}}

}
{{

{{
0

0
}

{0
0
}}

0
}

{{
{0

0
}

{0
0
}}

0
}}

fa
ls

e
}

.q
r

{{
1

0
}

{0
0

}
{0

0
}

{0
0

}
{0

0
}

{0
0

}
{0

0
}

{0
0

}}

.q
a

{{
{0

.7
0

7
1

0
7

0
}

{0
.7

0
7

1
0

7
0

}}
{{

0
.7

0
7

1
0

7
0

}
{0

.7
0

7
1

0
7

0
}}

{{
1

0
}

{0
0

}}
}

.b
u

b
{{

{{
0

0
}

{0
0

}}
0

}
{{

{0
0

}
{0

0
}}

0
}}

.e
n

t

/p
s
i2

{{
{0

.5
0
}

{0
0
}

{0
.5

0
}

{0
0
}

{-
0
.5

0
}

{0
0
}

{0
.5

0
}

{0
0
}}

{{
{0

.7
0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

{{
0
.7

0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

{{
1

0
}

{0
0
}}

}
{{

{{
0

0
}

{0
0
}}

0
}

{{
{0

0
}

{0
0

}}
0
}}

tr
u
e
}

.q
r

{{
0

.5
0

}
{0

0
}

{0
.5

0
}

{0
0

}
{-

0
.5

0
}

{0
0

}
{0

.5
0

}
{0

0
}}

.q
a

{{
{-

1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

}

{{
{0

.7
0

7
1

0
7

0
}

{0
.7

0
7

1
0

7
0

}}
{{

0
.7

0
7

1
0

7
0

}
{0

.7
0

7
1

0
7

0
}}

{{
1

0
}

{0
0

}}
}

.b
u

b
{{

{{
-2

1
4
7
4
8
3
6
4
8

0
}

{-
2
1
4
7
4
8
3
6
4
8

0
}}

-2
1
4
7
4
8
3
6
4
8
}

{{
{-

2
1
4
7
4
8
3
6
4
8

0
}

{-
2
1
4
7
4
8
3
6
4
8

0
}}

-2
1
4
7
4
8
3
6
4
8
}}

{{
{{

0
0

}
{0

0
}}

0
}

{{
{0

0
}

{0
0

}}
0

}}

.e
n

t

/p
s
i3

{{
{0

.5
0
}

{0
0
}

{-
0
.5

0
}

{0
0
}

{0
.5

0
}

{0
0
}

{0
.5

0
}

{0
0
}}

{{
{0

.7
0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

{{
0
.7

0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

{{
1

0
}

{0
0
}}

}
{{

{{
0

0
}

{0
0
}}

0
}

{{
{0

0
}

{0
0

}}
0
}}

tr
u
e
}

.q
r

{{
0

.5
0

}
{0

0
}

{-
0

.5
0

}
{0

0
}

{0
.5

0
}

{0
0

}
{0

.5
0

}
{0

0
}}

.q
a

{{
{-

1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

}

{{
{0

.7
0

7
1

0
7

0
}

{0
.7

0
7

1
0

7
0

}}
{{

0
.7

0
7

1
0

7
0

}
{0

.7
0

7
1

0
7

0
}}

{{
1

0
}

{0
0

}}
}

.b
u

b
{{

{{
-2

1
4

7
4

8
3

6
4

8
0

}
{-

2
1

4
7

4
8

3
6

4
8

0
}}

-2
1

4
7

4
8

3
6

4
8

}
{{

{-
2

1
4

7
4

8
3

6
4

8
0

}
{-

2
1

4
7

4
8

3
6

4
8

0
}}

-2
1

4
7

4
8

3
6

4
8

}}
{{

{{
0

0
}

{0
0

}}
0

}
{{

{0
0

}
{0

0
}}

0
}}

.e
n

t

/p
s
i4

{{
{0

.5
0
}

{0
0
}

{0
.5

0
}

{0
0
}

{-
0
.5

0
}

{0
0
}

{-
0
.5

0
}

{0
0
}}

{{
{0

.7
0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

{{
0
.7

0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

{{
1

0
}

{0
0
}}

}
{{

{{
0

0
}

{0
0
}}

0
}

{{
{0

0
}

{0
0
}}

0
}}

tr
u
e
}

.q
r

{{
0

.5
0

}
{0

0
}

{0
.5

0
}

{0
0

}
{-

0
.5

0
}

{0
0

}
{-

0
.5

0
}

{0
0

}}

.q
a

{{
{-

1
e

+
3

0
8

-1
e

+
3

0
8

}
{-

1
e

+
3

0
8

-1
e

+
3

0
8

}}
{{

-1
e

+
3

0
8

-1
e

+
3

0
8

}
{-

1
e

+
3

0
8

-1
e

+
3

0
8

}}
{{

-1
e

+
3

0
8

-1
e

+
3

0
8

}
{-

1
e

+
3

0
8

-1
e

+
3

0
8

}}
}

{{
{0

.7
0

7
1

0
7

0
}

{0
.7

0
7

1
0

7
0

}}
{{

0
.7

0
7

1
0

7
0

}
{0

.7
0

7
1

0
7

0
}}

{{
1

0
}

{0
0

}}
}

.b
u

b
{{

{{
-2

1
4

7
4

8
3

6
4

8
0

}
{-

2
1

4
7

4
8

3
6

4
8

0
}}

-2
1

4
7

4
8

3
6

4
8

}
{{

{-
2

1
4

7
4

8
3

6
4

8
0

}
{-

2
1

4
7

4
8

3
6

4
8

0
}}

-2
1

4
7

4
8

3
6

4
8

}}
{{

{{
0

0
}

{0
0

}}
0

}
{{

{0
0

}
{0

0
}}

0
}}

.e
n

t

/p
s
i5

{{
{-

1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

{{
{0

0
}

{1
0
}}

{{
1

0
}

{0
0
}}

{{
1

0
}

{0
0
}}

}
{{

{{
-2

1
4
7
4
8
3
6
4
8

0
}

{-
2
1
4
7
4
8
3
6
4
8

0
}}

-2
1
4
7
4
8
3
6
4
8
}

{{
{-

2
1
4
7
4
8
3
6
4
8

0
}

{-
2
1
4
7
4
8
3
6
4
8

0
}}

-2
1
4
7
4
8
3
6
4
8
}}

fa
ls

e
}

.q
r

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0

8
}}

.q
a

{{
{-

1
.#

IN
F

-1
.#

IN
F

}
{0

0
}}

{{
-1

.#
IN

F
-1

.#
IN

F
}

{0
0
}}

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

}
{{

{0
0

}
{1

0
}}

{{
1

0
}

{0
0

}}
{{

1
0

}
{0

0
}}

}

.b
u

b
{{

{{
-2

1
4

7
4

8
3

6
4

8
0

}
{-

2
1

4
7

4
8

3
6

4
8

0
}}

-2
1

4
7

4
8

3
6

4
8

}
{{

{-
2

1
4

7
4

8
3

6
4

8
0

}
{-

2
1

4
7

4
8

3
6

4
8

0
}}

-2
1

4
7

4
8

3
6

4
8

}}

.e
n

t

/a
n

s
_

e
x
t

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

{{
0

.7
0

7
1

0
7

0
}

{-
0

.7
0

7
1

0
7

0
}}

/a
n

s
1

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

{{
0

.7
0

7
1

0
7

0
}

{-
0

.7
0

7
1

0
7

0
}}

/a
n

s
2

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

{{
0

.7
0

7
1

0
7

0
}

{-
0

.7
0

7
1

0
7

0
}}

/a
n

s
3

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

{{
0

.7
0

7
1

0
7

0
}

{-
0

.7
0

7
1

0
7

0
}}

/a
n

s
4

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

{{
0

.7
0

7
1

0
7

0
}

{-
0

.7
0

7
1

0
7

0
}}

/a
n

s
5

{{
-1

e
+

3
0

8
-1

e
+

3
0

8
}

{-
1

e
+

3
0

8
-1

e
+

3
0

8
}}

{{
0

.7
0

7
1

0
7

0
}

{-
0

.7
0

7
1

0
7

0
}}

{{
{0

.7
0
7
1
0
7

0
}

{-
0
.7

0
7
1
0
7

0
}}

{{
}{

}}
{{

1
0
}{

0
0
}}

}
0
.7

0
7
1
0
7

0
0
.7

0
7
1
0
7

0

fi
rs

t
H

ad
am

ar
d

le
v

el

o
ra

cl
e se

co
n

d
H

ad
am

ar
d

le
v

el p
h

as
e

sh
if

t

n
o

n
-e

n
ta

n
g

le
d

in
fo

rm
at

io
n

ex
tr

ac
ti

o
n

+
th

ir
d

H
ad

am
ar

d
le

v
el

measurement
Figure 3.15: Time diagram resulted from VHDL simulation of Grover’s algorithm, without
the bubble bit technique.

58 CHAPTER 3. THE BUBBLE BIT TECHNIQUE

{{
{1

0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}}

{{
{1

0
}

{0
0
}}

{{
1

0
}

{0
0
}}

{{
1

0
}

{0
0
}}

}
{{

{{
0

-1
}

{0
-1

}}
0
}

{{
{0

-1
}

{0
-1

}}
0
}}

fa
ls

e
}

{{
1

0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}}

{{
{1

0
}

{0
0
}}

{{
1

0
}

{0
0
}}

{{
1

0
}

{0
0
}}

}

{{
{{

0
-1

}
{0

-1
}}

0
}

{{
{0

-1
}

{0
-1

}}
0
}}

{{
0

0
}

{1
0
}}

0
0
0
0

1
1
0
0

1
0
0
0

{{
{1

0
}

{0
0

}
{0

0
}

{0
0

}
{0

0
}

{0
0

}
{0

0
}

{0
0

}}
{{

{0
.7

0
7

1
0

7
0

}
{0

.7
0

7
1

0
7

0
}}

{{
0

.7
0

7
1

0
7

0
}

{0
.7

0
7

1
0

7
0

}}
{{

1
0

}
{0

0
}}

}
{{

{{
0

-1
}

{0
-1

}}
0

}
{{

{0
-1

}
{0

-1
}}

0
}}

fa
ls

e
}

{{
1

0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}}

{{
{0

.7
0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

{{
0
.7

0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

{{
1

0
}

{0
0
}}

}

{{
{{

0
-1

}
{0

-1
}}

0
}

{{
{0

-1
}

{0
-1

}}
0
}}

{{
{1

0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}}

{{
{0

.7
0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

{{
0
.7

0
7
1
0
7

0
}

{-
0
.7

0
7
1
0
7

0
}}

{{
0
.7

0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

}
{{

{{
-1

3
}

{1
5
}}

2
}

{{
{-

1
3
}

{0
-1

}}
-1

}}
tr

u
e
}

{{
1

0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}}

{{
{0

.7
0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

{{
0
.7

0
7
1
0
7

0
}

{-
0
.7

0
7
1
0
7

0
}}

{{
0
.7

0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

}

{{
{{

-1
3
}

{1
5
}}

2
}

{{
{-

1
3
}

{0
-1

}}
-1

}}

{{
{1

0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}}

{{
{0

.7
0
7
1
0
7

0
}

{-
0
.7

0
7
1
0
7

0
}}

{{
0
.7

0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

{{
0
.7

0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

}
{{

{{
-1

3
}

{-
1

5
}}

2
}

{{
{1

3
}

{0
-1

}}
-1

}}
tr

u
e
}

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

{{
1

0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}}

{{
{0

.7
0
7
1
0
7

0
}

{-
0
.7

0
7
1
0
7

0
}}

{{
0
.7

0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

{{
0
.7

0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

}

{{
{{

-1
3
}

{-
1

5
}}

2
}

{{
{1

3
}

{0
-1

}}
-1

}}

{{
{1

0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}}

{{
{0

.7
0
7
1
0
7

0
}

{-
0
.7

0
7
1
0
7

0
}}

{{
0
.7

0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

{{
1

0
}

{0
0
}}

}
{{

{{
0

-1
}

{0
-1

}}
0
}

{{
{0

-1
}

{0
-1

}}
0
}}

fa
ls

e
}

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

{{
1

0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}}

{{
{0

.7
0
7
1
0
7

0
}

{-
0
.7

0
7
1
0
7

0
}}

{{
0
.7

0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

{{
1

0
}

{0
0
}}

}

{{
{{

0
-1

}
{0

-1
}}

0
}

{{
{0

-1
}

{0
-1

}}
0
}}

{{
{1

0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}}

{{
{0

0
}

{1
0
}}

{{
1

0
}

{0
0
}}

{{
1

0
}

{0
0
}}

}
{{

{{
0

-1
}

{0
-1

}}
0
}

{{
{0

-1
}

{0
-1

}}
0
}}

fa
ls

e
}

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0

8
}}

{{
1

0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}}

{{
{0

0
}

{1
0
}}

{{
1

0
}

{0
0
}}

{{
1

0
}

{0
0
}}

}

{{
{{

0
-1

}
{0

-1
}}

0
}

{{
{0

-1
}

{0
-1

}}
0
}}

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

{{
0
.7

0
7
1
0
7

0
}

{-
0
.7

0
7
1
0
7

0
}}

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

{{
0
.7

0
7
1
0
7

0
}

{-
0
.7

0
7
1
0
7

0
}}

{{
-1

e
+

3
0

8
-1

e
+

3
0

8
}

{-
1

e
+

3
0

8
-1

e
+

3
0

8
}}

{{
0
.7

0
7
1
0
7

0
}

{-
0
.7

0
7
1
0
7

0
}}

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

{{
0
.7

0
7
1
0
7

0
}

{-
0
.7

0
7
1
0
7

0
}}

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

{{
0
.7

0
7
1
0
7

0
}

{-
0
.7

0
7
1
0
7

0
}}

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

{{
{1

0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}}

{{
{1

0
}

{0
0
}}

{{
1

0
}

{0
0
}}

{{
1

0
}

{0
0
}}

}
{{

{{
0

-1
}

{0
-1

}}
0
}

{{
{0

-1
}

{0
-1

}}
0
}}

fa
ls

e
}

.q
r

{{
1

0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}}

.q
a

{{
{1

0
}

{0
0
}}

{{
1

0
}

{0
0
}}

{{
1

0
}

{0
0
}}

}

.b
u
b

{{
{{

0
-1

}
{0

-1
}}

0
}

{{
{0

-1
}

{0
-1

}}
0
}}

.e
n
t

{{
0

0
}

{1
0
}}

0
0
0
0

1
1
0
0

1
0
0
0

{{
{1

0
}

{0
0

}
{0

0
}

{0
0

}
{0

0
}

{0
0

}
{0

0
}

{0
0

}}
{{

{0
.7

0
7

1
0

7
0

}
{0

.7
0

7
1

0
7

0
}}

{{
0

.7
0

7
1

0
7

0
}

{0
.7

0
7

1
0

7
0

}}
{{

1
0

}
{0

0
}}

}
{{

{{
0

-1
}

{0
-1

}}
0

}
{{

{0
-1

}
{0

-1
}}

0
}}

fa
ls

e
}

.q
r

{{
1

0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}}

.q
a

{{
{0

.7
0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

{{
0
.7

0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

{{
1

0
}

{0
0
}}

}

.b
u
b

{{
{{

0
-1

}
{0

-1
}}

0
}

{{
{0

-1
}

{0
-1

}}
0
}}

.e
n
t

{{
{1

0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}}

{{
{0

.7
0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

{{
0
.7

0
7
1
0
7

0
}

{-
0
.7

0
7
1
0
7

0
}}

{{
0
.7

0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

}
{{

{{
-1

3
}

{1
5
}}

2
}

{{
{-

1
3
}

{0
-1

}}
-1

}}
tr

u
e
}

.q
r

{{
1

0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}}

.q
a

{{
{0

.7
0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

{{
0
.7

0
7
1
0
7

0
}

{-
0
.7

0
7
1
0
7

0
}}

{{
0
.7

0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

}

.b
u
b

{{
{{

-1
3
}

{1
5
}}

2
}

{{
{-

1
3
}

{0
-1

}}
-1

}}

.e
n
t

{{
{1

0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}}

{{
{0

.7
0
7
1
0
7

0
}

{-
0
.7

0
7
1
0
7

0
}}

{{
0
.7

0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

{{
0
.7

0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

}
{{

{{
-1

3
}

{-
1

5
}}

2
}

{{
{1

3
}

{0
-1

}}
-1

}}
tr

u
e
}

.q
r

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

{{
1

0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}}

.q
a

{{
{0

.7
0
7
1
0
7

0
}

{-
0
.7

0
7
1
0
7

0
}}

{{
0
.7

0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

{{
0
.7

0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

}

.b
u
b

{{
{{

-1
3
}

{-
1

5
}}

2
}

{{
{1

3
}

{0
-1

}}
-1

}}

.e
n
t

{{
{1

0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}}

{{
{0

.7
0
7
1
0
7

0
}

{-
0
.7

0
7
1
0
7

0
}}

{{
0
.7

0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

{{
1

0
}

{0
0
}}

}
{{

{{
0

-1
}

{0
-1

}}
0
}

{{
{0

-1
}

{0
-1

}}
0
}}

fa
ls

e
}

.q
r

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

{{
1

0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}}

.q
a

{{
{0

.7
0
7
1
0
7

0
}

{-
0
.7

0
7
1
0
7

0
}}

{{
0
.7

0
7
1
0
7

0
}

{0
.7

0
7
1
0
7

0
}}

{{
1

0
}

{0
0
}}

}

.b
u
b

{{
{{

0
-1

}
{0

-1
}}

0
}

{{
{0

-1
}

{0
-1

}}
0
}}

.e
n
t

{{
{1

0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}}

{{
{0

0
}

{1
0
}}

{{
1

0
}

{0
0
}}

{{
1

0
}

{0
0
}}

}
{{

{{
0

-1
}

{0
-1

}}
0
}

{{
{0

-1
}

{0
-1

}}
0
}}

fa
ls

e
}

.q
r

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0

8
}}

{{
1

0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}

{0
0
}}

.q
a

{{
{0

0
}

{1
0
}}

{{
1

0
}

{0
0
}}

{{
1

0
}

{0
0
}}

}

.b
u
b

{{
{{

0
-1

}
{0

-1
}}

0
}

{{
{0

-1
}

{0
-1

}}
0
}}

.e
n
t

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

{{
0
.7

0
7
1
0
7

0
}

{-
0
.7

0
7
1
0
7

0
}}

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

{{
0
.7

0
7
1
0
7

0
}

{-
0
.7

0
7
1
0
7

0
}}

{{
-1

e
+

3
0

8
-1

e
+

3
0

8
}

{-
1

e
+

3
0

8
-1

e
+

3
0

8
}}

{{
0
.7

0
7
1
0
7

0
}

{-
0
.7

0
7
1
0
7

0
}}

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

{{
0
.7

0
7
1
0
7

0
}

{-
0
.7

0
7
1
0
7

0
}}

{{
-1

e
+

3
0
8

-1
e
+

3
0
8
}

{-
1
e
+

3
0
8

-1
e
+

3
0
8
}}

{{
0
.7

0
7
1
0
7

0
}

{-
0
.7

0
7
1
0
7

0
}}

/s
ta

rt
in

g
_
s
ta

te

/a
n
s
w

e
r

/r
e
s
u
lt

/p
s
i1

/p
s
i2

/p
s
i3

/p
s
i4

/p
s
i5

/a
n
s
1

/a
n
s
2

/a
n
s
3

/a
n
s
4

/a
n
s
5

fi
rs

t
H

ad
am

ar
d

le
v

el

o
ra

cl
e se

co
n

d
H

ad
am

ar
d

le
v

el

p
h

as
e

sh
if

t

th
ir

d
H

ad
am

ar
d

le
v

el

measurement
Figure 3.16: Time diagram resulted from VHDL simulation of Grover’s algorithm, with the
bubble bit technique.

3.4. SIMULATED FAULT INJECTION 59

0

20

40

60

80

100

120

140

160

2 4 8 16 24 32 64

Data register size [qubits]

S
im

u
la

ti
o

n
ru

n
ti

m
e

[s
e
c
.]

Reference

complexity

Bubble-bit

Figure 3.17: HDL bubble bit runtime results for Grover algorithm simulation, compared with
the reference complexity.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2 4 8 16 24 32 64

Register size [qubits]

R
e
c
o

rd
s
iz

e
[b

y
te

s
]

Figure 3.18: Memory overhead dictated by bubble records for Grover algorithm simulation.
A trendline is added to the sample data, showing polynomial growth.

60 CHAPTER 3. THE BUBBLE BIT TECHNIQUE

3.4.2 Sketching the guidlines for the QUERIST project

With the inspiration drawn from the classical hardware HDL-based fault injection techniques,
we extend our quantum circuit simulation framework.

The classical fault injection methodologies can be mapped without intervention, so that
the HDL framework supports fault injection into quantum circuit simulations. Of course,
we cannot expect any efficiency from such an approach. Therefore, the right solution would
be to adapt those methodologies to one of the available efficient simulation frameworks [106]
[107][114][115].

This report will describe the guidelines of a bigger software project that fosters simulated
fault injection techniques in quantum circuits; the project is called QUERIST. In this de-
scription, only the adaptation issues will be stressed, so we present the decisions that were
made so that quantum computational constraints and specific problems are solved.

The overview of the QUERIST project is presented in Figure 3.19. In the classical ap-
proach there are 3 cycles; likewise the quantum version has the initialization, simulation, and
data computation cycles. The first cycle takes the quantum circuit HDL description as an
input. Also, there are 2 abstract (i.e. theoretical assumption) inputs: the HDL model and the
assumed error model. The first one influences how the HDL description is presented, while
the second one dictates the test scenario.

In the theory of fault tolerant quantum computation [76], along with the most commonly
assumed error model: random faults, no time or space-correlated errors. QERIST endorses
this error occurrence model, which means that the test scenario has to deal with defining the
start and the stop simulation states because all the signals must be observed (all qubits are
equally prone to errors). References [105][106][107] are documenting the HDL modeling of
quantum circuits in order to attain efficient simulation.

The outputs of the first cycle, which are also inputs for the simulation cycle consist of
a test scenario (basically a description of when simulation starts and when it ends), and an
executable HDL model with the corresponding entanglement analysis. The output for the
second cycle is the time diagrams of all qubits, from the start to the stop state.

Special designed rules will extract the useful information from the raw, bubble-bit-represented,
qubit traces. The entanglement analysis and the quantum computation reliability theory are
used in order to compare the correct qubit values with the extracted values. The result of
that comparison results in computing the probabilistic accuracy threshold value, in the third
cycle.

3.5 Specific problems in the quantum environment

This section explains how to perform simulated quantum fault injection, within the HDL
bubble bit [106] [107] framework, by following the rules given by quantum error model theory
[76].

Implementing fault injection according to the constraints means that the bubble bit sim-
ulation model from Figure 3.1, has to be modified as Figure 3.20 shows.

Figure 3.20 shows that fault injection is performed just before the bubble bit technique
is applied. Also, fault injection is performed only if the ”random number generator” dictates
so. The way fault injection is triggered, its nature, and the way it is implemented is part of

3.5. SPECIFIC PROBLEMS IN THE QUANTUM ENVIRONMENT 61

H
D

L
m

o
d
el

Q
u
an

tu
m

C
ir

cu
it

H
D

L
d
es

cr
ip

ti
o
n

Q
u
an

tu
m

E
rr

o
r

M
o
d
el

Q
u
an

tu
m

C
ir

cu
it

H
D

L
si

m
u
la

ti
o
n

m
et

h
o
d

T
es

t
sc

en
ar

io
(s

ch
ed

u
le

)

E
x
ec

u
ta

b
le

M
o
d
el

E
n
ta

n
g
le

m
en

t
as

se
ss

m
en

t

T
es

ti
n
g

E
x
p
er

im
en

t

S
ta

te
tr

ac
e

ex
p
er

im
en

ta
l

d
at

a

D
at

a
E

x
tr

ac
ti

o
n

R
u
le

s

In
it

ia
li

za
ti

o
n

cy
cl

e
S

im
u
la

ti
o
n

cy
cl

e

C
o
m

p
u
ti

n
g

E
x
p
er

im
en

ta
l

D
at

a
R

es
u
lt

s

Q
u
an

tu
m

co
m

p
u
te

r
re

li
ab

il
it

y

E
n
ta

n
g
le

m
en

t
as

se
ss

m
en

t

D
at

a
co

m
p
u
ta

ti
o
n

cy
cl

e

Figure 3.19: An overview of the QUERIST project.

62 CHAPTER 3. THE BUBBLE BIT TECHNIQUE

QNet 1

QReg 1
(S1)

Classical
state

Measurement

m

m

m

FArh

SArh

QReg 1
bubble

bubble
insertion

m

m+1

Record
1

m+1
QNet n

QReg
(S)

n
n

m

m+1

FArh

SArh

QReg
bubble

n

Record
n

m+1

Classical
state

m

fault
injection

m

mm

random number
generator

bubble
insertion

m

m+1

fault
injection

m

mm

random number
generator

Figure 3.20: The bubble bit HDL simulation model, when fault injection is applied according
to the error and fault occurence models presented in [76].

the so-called ”Setup phase”. This phase is similar to the setup phase from classical hardware
fault injection. We also have a simulation phase which corresponds to running the experiment
according to the scenario that was set in the setup phase. In the end, the data processing
phase uses the simulation signal trace results, in order to compute the appropriate reliability
measure.

3.5.1 Setup phase

Injecting a fault, in our simulation framework [105][106][107][108], consists of accordingly
modifying the quantum state matrix:

|ψS〉 =

⎡
⎢⎢⎢⎣

a0

a1
...

a2n−1

⎤
⎥⎥⎥⎦ . (3.12)

When the fault is a bit-flip, then the fault injection means that we rearrange the matrix
elements, whereas for the phase shift some matrix elements will be multiplied with -1. In
the bit flip case the elementary operation is exchanging values between two matrix positions:
ai ↔ aj for i
= j. This allows the building of an exchange function that operates on blocks
of matrix elements:

Exchange [(u0, . . . uw−1) , (v0, . . . vw−1)] ⇔ ui ↔ vi for every i = 0, w − 1. (3.13)

Suppose we have a quantum state on n qubits, |qn−1 . . . q2q1〉, then if a fault occurs on
qubit k, and that fault is a bit-flip, then we will execute the following algorithm:

Bit-flip fault injection

3.5. SPECIFIC PROBLEMS IN THE QUANTUM ENVIRONMENT 63

For i := 0 to 2n−k

Exchange
[(
ai·2k , . . . a(i+1)·2k−1

)
,
(
a(i+1)·2k , . . . a(i+2)·2k−1

)]
End For

When the nature of the error is phase shift, the corresponding algorithm is

Phase-shift fault injection
For i := 0 to 2n − 1

If i mod 2k ≥ 2k − 1 Then ai := (−1) × ai

End For

We have settled the way the error injection is performed, but how is it going to be trig-
gered? According to the fault occurrence model [75][76] it has to be a random triggering.
Therefore, we have to use a random number generator.

For a quantum state, we use the generator for the first time in order to find out if an error
occurs. Then, we use the random number generator for selecting one of the following fault
types: bit-flip, phase-shift, both faults [76].

When first used, the generator returns the number r1. If r1 < nξ (for a nξ given by a fixed
error rate), then we have a fault. We start the number generator again – yielding r2 – and
the selected fault nature is set by the following equation:

r2 =

⎧⎨
⎩

0 ≤ r2 ≤ 1
3

we have a bit-flip
1
3
< r2 ≤ 2

3
we have a phase-shift

2
3
< r2 ≤ 1 we have both bit-flip and phase-shift

(3.14)

For each simulated gate, when the fault is triggered the actual injection is performed on
the processed state. The gate fault is triggered the same way the state fault is triggered: the
random numbers are deciding if we have a fault, and the nature of the fault. The bit-flip fault
for a gate will have the effect of inducing a bit-flip fault on the target qubit. Instead, the gate
phase-shift not only induces the phase-shift fault on the target qubit, but also spreads the
error on all the source qubits. Figure 3.21 presents these cases (a) and b) respectively), which
are considered by taking into consideration the quantum fault tolerance problems described
by Preskill [75][76].

U

a) bit-flip

bit-flip

U

b) phase-shift

phase-shift

phase-shift

phase-shift

Figure 3.21: The effect of faulty gate operation on the processed qubits: a) gate bit-flip fault,
b) gate phase-shift fault.

64 CHAPTER 3. THE BUBBLE BIT TECHNIQUE

3.5.2 Simulation phase

This subsection will take an example of an error correcting quantum device, and show how
fault injection simulation actually works on this circuit. We use a coding technique that
replaces 1 qubit with a cluster of 3 qubits. The qubit basis state |0〉 is encoded as |000〉, and
|1〉 as |111〉. For example, state |ψ〉 = 1√

2
(|0〉 + |1〉) will become |xyz〉 = 1√

2
(|000〉 + |111〉).

If a bit-flip error occurs, then the error is indicated by the syndrome |s1s2〉, where s1 = x⊕z
and s2 = y ⊕ z. The syndrome value indicates the fault: |10〉 means bit-flip on x, |01〉 on
y, |11〉 on z, and |00〉 indicates that there is no error. The entire circuit is presented in
Figure 3.22, and we start with state |p0〉correct = 1√

2
(|000〉 + |111〉) which is affected by a

fault on qubit y: |p0〉 = 1√
2
(|010〉 + |101〉). The evolution of the bubble-bit quantum state

representation throughout the circuit simulation is described in the following equations:

|p0〉 =

(
1√
2

[
1
0

]
⊗

[
1
1

]
⊗

[
0
1

]
⊗

[
1
0

])
⊗ |0〉s1

⊗ |0〉s2
+ rec0 (3.15)

|p1〉 =

(
1√
2

[
1
0

]
⊗

[
1
1

]
⊗

[
0
1

]
⊗

[
1
0

])
⊗ |0〉s1

⊗ |0〉s2
+ rec1 (3.16)

|p2〉 ≡ |p1〉 (3.17)

|p3〉 ≡ |p0〉 (3.18)

|p4〉 =

(
1√
2

[
1
0

]
⊗

[
1
1

]
⊗

[
0
1

]
⊗

[
0
1

])
⊗ |0〉s1

⊗ |0〉s2
+ rec2 (3.19)

|p5〉 =

(
1√
2

[
1
0

]
⊗

[
1
1

]
⊗

[
0
1

]
⊗

[
0
1

])
⊗ |0〉s1

⊗ |1〉s2
+ rec2 (3.20)

|p6〉 =

(
1√
2

[
1
0

]
⊗

[
1
1

]
⊗

[
0
1

]
⊗

[
1
0

])
⊗ |0〉s1

⊗ |1〉s2
+ rec0 (3.21)

|p7〉 =

(
1√
2

[
1
1

]
⊗

[
1
0

]
⊗

[
1
0

]
⊗

[
1
0

])
⊗ |0〉s1

⊗ |1〉s2
+ rec3 (3.22)

The corresponding records are presented in Figure 3.23.
This indicates that state |p7〉 = 1√

2
(|000〉 + |111〉), therefore the inflicted error has been

corrected.

3.5.3 Data processing phase

Suppose that, at simulation time t we observe signals {s0, s1, . . . sn−1}. Each such state has
a bubble bit description. If si is on ki qubits, the bubble-bit representation is given by the
following equation:

si = |qb0〉 ⊗ |qb1〉 ⊗ . . . |qbki
〉 + reci . (3.23)

3.5. SPECIFIC PROBLEMS IN THE QUANTUM ENVIRONMENT 65

x

y

z

1 0s =

2 0s =

p0 p1 p2 p3 p4 p5 p6 p7

Figure 3.22: Circuit for singular bit-flip error correction.

step bubble zeros

1

2 -

{0,5}

0
rec0

step bubble zeros

1

2

-

{0,2}
0

+3
rec1

step bubble zeros

1

2 -

{0,5}

0

+7 rec0

step bubble zeros

1

2

-

{0,2}
0

+3
rec1

step bubble zeros

1

2

-

{0,2}
0

+3
rec1

step bubble zeros

1

2

-

{0,2}
0

+3
rec2

step bubble zeros

1

2 - 0

step bubble zeros

1

2 -

{0,7}

0

+7 rec3

Figure 3.23: Bubble records produced by simulating error correction with the circuit from
Figure 3.22.

66 CHAPTER 3. THE BUBBLE BIT TECHNIQUE

In our analysis, si is the state observed during non-faulty simulation, so for the same state
in a faulty environment we will have the bubble expression given by:

s∗i = |qb∗0〉 ⊗ |qb∗1〉 ⊗ . . . |qb∗ki
〉 + rec∗i . (3.24)

For validation of the quantum FTAMs, we need to compare si with s∗i . This can be done
with the operator presented in the following equation:

dif (si, s
∗
i) =

{
1 if |qbi〉
= |qb∗i 〉; ∀i = 0, ki or reci
= rec∗i
0 otherwise

(3.25)

This means that the total number of overall state errors at simulation time t is

et =

n−1∑
i=0

dif (si, s
∗
i) . (3.26)

The error rate on the overall observed states at moments t0, t1, . . . tm−1 will be given by:

ξsim =
1

m

m−1∑
j=0

etj (3.27)

As pointed out in references [75][76][78], the used FTAMs are valid if the relationship
between the experimental ξsim and the assumed singular error rate ξ is of the order:

ξsim ∼ ξ2. (3.28)

Chapter 4

Reliability with Reconfigurable
Quantum Hardware

The need for error detection and correction techniques is vital in quantum computation, due
to the omnipresent nature of quantum errors. No realistic prospect of an operational quantum
computational device may be warranted without such mechanisms. Therefore, the fact that
error detecting and correcting techniques have been developed has enhanced the feasibility of
a potential quantum computer [76] [97]. The ITRS [126] is also listing the need for effective
quantum fault-tolerant algorithms as an imperative for the quest of tomorrow’s technology.

This chapter presents a methodology for improving the fault tolerance of quantum circuits
by using the so-called reconfigurable Quantum Gate Arrays (rQGAs). Our solution reduces the
problem of stabilizer coding safe recovery to preserving a given quantum configuration state.
As shown in this chapter’s practical example, the configuration register to be protected has a
reduced number of qubits, and the overall dependability attribute [7] – reliability measured
by the accuracy threshold [76] – is drastically improved.

4.1 Preliminaries

The theory of fault tolerant quantum computation employs special coding in order to protect
useful data from the destructive effect of the environment. There are two main error sources:
the first is due to the faulty behavior of the quantum gate that produces the so-called process-
ing errors, while the second is generated by the macroscopic environment interacting with the
quantum state (storing errors).

Within the quantum computational framework, the developed techniques for error detec-
tion and correction have the potential of a sound error recovery process, and error propagation
is thwarted. However, quantum computation could be ruined if the error probability in the
basic components (qubits, quantum gates) exceeds a certain accuracy threshold. Usually the
microscopic quantum states are prone to frequent errors, thus safe recovery becomes extremely
important [76].

The main error source is the decoherence effect [62]. The environment is constantly trying
to measure the sensitive, microscopic quantum superposition state, while technologically it
is not possible to perform a perfect isolation between the two of them. But the most in-
sidious error appears when decoherence affects the quantum amplitudes without destroying

67

68 CHAPTER 4. RELIABILITY WITH RECONFIGURABLE QUANTUM HARDWARE

them; these are very similar to small analogical errors. The solution to these problems is
represented, on one hand, by intrinsic fault tolerance due to technological implementation
(topological interactions Aharanov-Bohm [1]) and, on the other hand, by error correcting
techniques [35][16][36][98].

The error detecting and correcting techniques are not easy to approach due to the quantum
computational constraints: the useful state could not be observed (otherwise it will decohere),
nor could it be cloned. However, the necessary theoretical background is available for designing
error detection and correction quantum circuits [69][76], which are effective if the error rate
does not exceed the accuracy threshold.

4.1.1 Contributions

This chapter presents a fault tolerance improvement technique, based on reconfigurable quan-
tum gate arrays (rQGA), inspired by the classical reconfigurable solutions to dependability
problems. A relevant example is given by the Embryonics project [57], which improves the
dependability attributes [68] of classical digital circuits by reconfigurable means. Moreover,
recent developments have proven the effectiveness of Embryonics in attaining feasible compu-
tation in critical environments [79][80][81][82], very similar to quantum computation due to
the similarities of fault models and error rates.

When using a quantum state (i.e. a superposition of classical configuration states) in order
to configure the rQGA, the resulting circuit is equivalent to a superposition of distinctive
circuits, each of which corresponding to a classical superposed configuration. Our method
uses this feature in order to configure a superposition of error correcting circuits, based on
distinctive encodings. Eventually, by applying measurement on the configuration register, just
one classical configuration will remain. If the probability of one of the superposed circuits
developing faulty behavior is ξ, then the probability of getting a faulty circuit by measuring the
quantum configuration register (having m superposed classical configuration states) becomes
ξm. For a sufficiently small ξ, the overall error probability becomes even smaller. As a result,
the circuit reliability [7], (as a dependability attribute) measured by the accuracy threshold,
is drasticaly improved [109].

The reconfigurable quantum hardware (rQHW) concept – under the form of rQGAs –
can also be used in order to fight against correlated errors. Usually, it is considered that the
quantum error has a single, random nature, but this theoretically convenient error model may
prove as not completely accurate when dealing with future quantum hardware engineering
problems.

4.2 Quantum fault tolerance

The available quantum error detection and correction techniques use stabilizer coding and
special methods for ancilla qubit preparation [76]. Recent developments in this field [47][48]
are also based on this approach.

Quantum computation not only introduces new types of errors, it also puts some compu-
tational constraints while generating some new problems. All these were already addressed
[76][98], and the circuits presented in this chapter are built according to the available solutions.

4.2. QUANTUM FAULT TOLERANCE 69

H

H

H

c0

c1
c2
u0
u1
u2
u3

Figure 4.1: The circuit that returns the Steane encoding of an arbitrary state.

4.2.1 Quantum faults

The qubit can be affected by 3 types of errors: bit-flip, phase, both bit-flip and phase (see
Equation 4.1). Besides these errors, small errors could affect the quantum amplitudes. How-
ever, there are methods of reducing any error to a bit-flip error [76].

a0|0〉 + a1|1〉 error−→

⎧⎪⎪⎨
⎪⎪⎩

a0|0〉 + a1|1〉 no fault
a0|1〉 + a1|0〉 bit-flip
a0|0〉 − a1|1〉 phase-shift
a0|1〉 − a1|0〉 both faults

(4.1)

4.2.2 Quantum error detection and correction

Correcting a flip error means negating the affected qubit, thus applying the transformation
characterized by:

N = σx =

[
0 1
1 0

]
(4.2)

As presented in Equation 4.3, in order to correct the phase error we apply the Z operator.

Z = H · σx ·H =

[
1 0
0 −1

]
(4.3)

The correction of the third error type (i.e. the situation when both bit-flip and phase shift
are activated, see Equation 4.1) is achieved by applying a composed transformation upon the
affected qubit:

Y = U · Z =

[
0 −i
i 0

]
(4.4)

Quantum error detection and correction is performed with special coding techniques, which
are inspired from the classic Hamming codes. The syndrome obtained by measuring the proper
ancilla qubits reveals the nature of the error.

70 CHAPTER 4. RELIABILITY WITH RECONFIGURABLE QUANTUM HARDWARE

Steane encoding

Steane’s 7-qubit code [97][98][99] is derived from a classical single error correcting error, so it
can detect and correct only single qubit faults in the code block [52].

LetHA be a Hamming matrix describing a code with 4 useful bits (n = 4), and 3 redundant
bits (k = 3).

HA =

c0 c1 c2 u0 u1 u2 u3⎛
⎝ 1 0 0 1 0 1 1

0 1 0 1 1 1 0
0 0 1 0 1 1 1

⎞
⎠ (4.5)

The Steane 7-qubit coding of |0〉 consists of an equally weighted superposition of all the
valid Hamming 7-bit words with an even number of 1s:

|0〉S = 1

2
3
2

∑
even(u0u1,u2u3c0c1c2)

|u0u1u2u3c0c1c2〉 =

= 1

2
3
2

⎛
⎝ |0000000〉+ |0010111〉+ |0101110〉+

|0111001〉+ |1001011〉+ |1011100〉+
|1100101〉+ |1110010〉

⎞
⎠ (4.6)

The similar superposition of the odd number of 1s Hamming code words is used for |1〉
coding:

|1〉S = 1

2
3
2

∑
odd(u0u1,u2u3c0c1c2)

|u0u1u2u3c0c1c2〉 =

= 1

2
3
2

⎛
⎝ |1111111〉+ |1101000〉+ |1010001〉+

|1000110〉+ |0110100〉+ |0100011〉+
|0011010〉+ |0001101〉

⎞
⎠ (4.7)

With this code, any singular qubit flip error is detected and can be corrected by computing
the following syndrome: ⎧⎨

⎩
m0 = c0 ⊕ u0 ⊕ u2 ⊕ u3

m1 = c1 ⊕ u0 ⊕ u1 ⊕ u2

m2 = c2 ⊕ u1 ⊕ u2 ⊕ u3

(4.8)

The interpretation given to the syndrome from Equation 4.8 is presented in Table 4.1.

Applying Steane coding over an arbitrary given quantum state |ψ〉 = a0|0〉 + a1|1〉 (see
Figure 4.1), generates the state from Equation 4.9 in order to use it for potential recoveries.

|ψ〉S = a0|0〉S + a1|1〉S (4.9)

Steane’s ancilla coding

In order to compute the syndrome, ancillary qubits are necessary because we cannot mea-
sure encoded qubits. The design of circuits for encoding the ancilla must take into account
two aspects: a preventing strategy against backward error propagation and ancilla accuracy
verification [76].

4.2. QUANTUM FAULT TOLERANCE 71

H

H

H

H0

0

0

0

0

H

Measure

{ 0 - no error

1 - error in ancilla

A)

H

H

HH

H

B)

Steane ancilla
coding

7 7

Steane ancilla
coding

7 7

7

7

Measure

7

{ 0 - no error

1 - error in ancilla

C)

H

H

H

H

H

H

H

Figure 4.2: Ancilla coding: A) Shor’s tecnique; B) Steane’s technique; C) Verfication for
Steane’s ancilla, where the ”State ancilla coding” blocks contain the circuit from B) except
the rightmost level of Hadamard gates.

72 CHAPTER 4. RELIABILITY WITH RECONFIGURABLE QUANTUM HARDWARE

c2

c1

c0

u2

u1

u0

u3

0

0

0

0

0

0

0

0

0

0

0

H

H

H

H

H

H

H

H

H

H

0

0

0

0

0

0

0

0

0

0

0

H

H

H

Syndrome
generation

m0

m1

m2

Syndrome
generation

m0

m1

m2

m0

m1

m2

Syndrome
generation m0

m1

m2{
{

Measurement

Measurement

Cell 0

Cell 1

Figure 4.3: Single quantum bit-flip error correcting circuit with Steane ancilla coding.

Measure

Steane
ancilla
coding

parity
computeSteane

ancilla
coding

0

0

7

7

Steane
coded
data

7

H
~

H H

7

7

3

3

Bit-flip
syndrome

Phase-flip
syndrome

7
Correction

Figure 4.4: Error-correction with stabilizer generator measurement, Steane ancilla, and syn-
drome computation according to the check matix.

4.2. QUANTUM FAULT TOLERANCE 73

m0 m1 m2 erroneous qubit

0 0 0 no error
0 0 1 c2
0 1 0 c1
0 1 1 u1

1 0 0 c0
1 0 1 u3

1 1 0 u0

1 1 1 u2

Table 4.1: Steane code’s syndrome interpretation, with the rightmost row indicating the
position of the bit-flip error.

There are two coding techniques for the ancilla: the Shor and Steane coding (see Figure
4.2). We will focus on the most effective one, Steane ancilla preparation [76] (Figure 4.2 B)
which generates:

|Anc〉Steane =
1√
2

(|0〉S + |1〉S) (4.10)

The bit-flip syndrome is obtained by first applying 7 XOR gates, having the data qubit as
source, and the same position verified ancilla qubit (see Figure 4.2 C) as target. The ancilla is
measured, and then the Hadamard matrix check HA is applied in order to get the syndrome.

4.2.3 Putting it all together

With the results from the previous two subsections, we are able to present (in Figure 4.3) the
complete circuits for bit-flip error correction (for Steane code, Steane ancilla preparation).

Considering the model of non-correlated errors, it was shown that the redundant syndrome
computation with the circuits from Figure 4.3 will assure a data fidelity of order 1 − O (ξ2)
when the single qubit error probability is ξ [76].

Stabilizer codes

Steane’s code is a particular case of a stabilizer code [35]. In the stabilizer formalism, the
code given in Equation 4.9 is characterized by the check matrix [62]:

H̃A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 1 1 0 0 0 0 0 0 0
0 1 0 1 1 1 0 0 0 0 0 0 0 0
0 0 1 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 1 1
0 0 0 0 0 0 0 0 1 0 1 1 1 0
0 0 0 0 0 0 0 0 0 1 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠ (4.11)

Having the check matrix generalization theory, more general generator measuring devices
can be developed, as Figure 4.4 shows.

74 CHAPTER 4. RELIABILITY WITH RECONFIGURABLE QUANTUM HARDWARE

4.2.4 Accuracy threshold

Technological requirements

For a quantum code that corrects r errors (r ∈ N, r ≥ 1), Preskill [76] has shown that the
accuracy threshold is:

ξ ∼ (logN)−p (4.12)

where N is the number of error correction cycles, and rp is the number of computational steps
required for syndrome computation.

Still, there will be an Nmax so that, if N > Nmax, then the non-correctable error situation
(> r simultaneous errors) becomes likely. Under these conditions, there is a limit on how long
the fault-tolerant computation can be.

Figure 4.5: Graphical representation of accuracy degree required for the corresponding N ,
for different p’s: 3 for xi1, 4 for xi2, 5 for xi3. xi4 corresponds to the no-coding situation,
while ref is the reference accuracy (i.e. the accuracy allowed by today’s state of the art
technology).

Figure 4.5 presents the required accuracy degree getting closer to the present day’s tech-
nological limit (tipically 10−3 for p = 4) after N = 105 ≈ Nmax. For a fault tolerant
Shor algorithm [89] encoding solution, this should have happened after N = 109 steps [76].
Therefore, Nmax may not be large enough.

Concatenated coding

A solution for fault tolerant quantum computation with arbitrary length is concatenated
coding, where each qubit is encoded by a block of n sub-qubits, each sub-qubit being encoded

4.3. A BIRD’S EYE CRITICAL VIEW 75

by other n blocks of qubits, and so on (Figure 4.6). For a m-depth (concatenation levels), a
number of nm qubits is required.

Preskill [76] provided an analysis that proves the effectiveness of 3-level concatenated
coding, stabilizer coding, Steane ancilla circuit, by estimating its accuracy threshold:

ξstore,0 ∼ 6 · 10−4 (4.13)

ξgate,0 ∼ 6 · 10−4 (4.14)

The analysis assumes two types of errors: gate errors and store errors. If the error rate
is lower than values given by Equations 4.13 and 4.14, arbitrary long fault tolerant quantum
computation is preserved.

4.3 A bird’s eye critical view

This analysis provides the necessary critique of the actual quantum fault tolerance techniques,
by identifying their weaknesses, and at the same time pointing a potential solution.

4.3.1 The big picture

In quantum computation the circuits are prone to fail, and safe recovery is difficult. Therefore,
a straightforward classically-inspired solution is not feasible because the overall fail rate will
be given by ancillary qubits preparation. Figure 4.7 shows that data and ancilla qubits having
a error rate of the order ξ will always give an overall ξ fail rate when a classical approach is
used, regardless of the number of ancillary levels.

The only conceivable solution to the safe recovery problem is to use structural redundancy.
Our objective, for the random single error model, is to assure an ξ2 error probability for the
corrected data. The method that is actually applied uses a limited structural redundancy.
The Steane safe recovery procedure is based on Steane ancilla preparation, which provides
for effective syndrome testing. If one syndrome is not good, then another is available. The
probability of both failing is ξ2 and therefore this procedure (Figure 4.8), is sufficient for
achieving the stated goal.

n

n

n

n

n

n

n

n

n� �

Figure 4.6: Concatenated coding: each qubit can be encoded by a block of sub-qubits.

76 CHAPTER 4. RELIABILITY WITH RECONFIGURABLE QUANTUM HARDWARE

correction

detection

Data Data

error Ancilla1

error Ancilla2

error

detection

correction

correction

Ancillan

error

detection

?

S
1

S2

Sn

()�

()�

()�

()�

()�

Figure 4.7: Classical fault tolerance approach for safe recovery.

correction

detection

Data Data

error Ancilla0

Ancilla1

detection

error

2

error 0

1

test

test

selection

()�

()�

()�

()�

Figure 4.8: Steane safe recovery procedure.

4.3. A BIRD’S EYE CRITICAL VIEW 77

4.3.2 Issues to be settled

There are some potential problems – of theoretical nature – that could affect the future
quantum hardware engineering. We will debate over two of these problems:

(α the fact that the error occurrence model, that was taken into consideration, is of uncor-
related errors;

(β the inflexibility of quantum circuits for ancilla preparation, which requires at least two
ancilla sets to be used even if the syndrome computed on the first set is correct.

�

�

x

x

x

x � xx x

x

x
x

Figure 4.9: Concatenated coding affected by correlated errors.

When discussing problem (α from an engineering standpoint, one cannot exclude corre-
lated errors (in time or space). Nevertheless, the biggest problem that comes from correlated
errors is that concatenated code blocks are jeopardized. For example, if we use a concate-
nated code of size 7 on 3 levels, we have a total of 73 = 343 qubits. Let us consider that
only one error/block is tolerable. Thus, when 5 low-level qubits (from 343) are erroneous, the
probability of not being able to correct the entire code is very low. But when these errors are
correlated in space, it is very likely that the original code cannot be recovered (Figure 4.9).

As for the problem (β, when concatenated coding is employed, a lot of qubits are used in
order to assure the reliability of just one qubit, and one still has to use structural redundancy
for the safe recovery. Structural redundancy means at least doubling the ancillary qubit
consumption (ancillary syndrome qubits also use concatenated coding!), even if the first ancilla
set was correctly prepared.

Another theoretical aspect worth being mentioned, is that the described Quantum FTAMs
(Fault Tolerance Algorithms and Methodologies) employ mostly classical algorithms, thus not
making use of the full quantum computational power. One can assume that, by capitalizing
on the exponential parallelism of quantum computation, better FTAMs can be developed.

78 CHAPTER 4. RELIABILITY WITH RECONFIGURABLE QUANTUM HARDWARE

4.4 The rQHW-based solution

4.4.1 Motivation

Assuming only uncorrelated probabilistic errors is not realistic from an engineering point of
view [76]. Reconfigurable quantum hardware (rQHW) could be a solution for problems (α
and (β, which are related to fault tolerance issues, induced by correlated errors. Also, it
is possible to choose dynamically the depth of concatenated coding, because the quantum
hardware can be reconfigurated accordingly.

When fighting the transient, correlated errors, the rQHW solution brings flexibility that
allows for dynamic ancilla qubit preparation:

• choosing the ancilla qubits so that they will not be neighbors to each other;

• just one set of ancillary qubits is used for one data block; if testing [73] [42] reveals that
it is faulty, then another ancilla set is configured in a different area of the reconfigurable
quantum circuit.

In principle, a reconfigurable quantum circuit is a quantum gate array (QGA), acting on
an input register in a way that it is prescribed by a configuration register. The processed
input is stored in an output register (see Figure 4.10). In a formalized expression, we have:

UQGA : |input〉 ⊗ |config〉 	−→ |output〉 ⊗ |don′t care〉 (4.15)

Reconfigurable
Quantum Gate Array

input output
n

m

n

m
config 'don t care

Figure 4.10: Reconfigurable quantum gate array: the involved registers.

Limitations for rQHW

There are two main limitations that do not allow us to deal with the quantum programmable
gate arrays the way it is done in classical hardware.

1. As shown by Nielsen and Chuang we cannot have a programmable gate array that can
be configured so that it performs any unitary operations, unless the gate array ”operates
in a probabilistic fashion” [61].

2. It is impossible to build a switch-based quantum gate array, as shown in the following
proposition.

4.4. THE RQHW-BASED SOLUTION 79

Proposition (No switches) Due to the qubit cloning impossibility, we cannot have a switch-
based programmable quantum gate array.

Proof: In order to have a switch-based QGA we must be able to implement a basic switch
in quantum terms.

Building the switch requires:

Uswitch : |qi〉i1 ⊗ |qc〉i2 ⊗ |0〉o1 ⊗ |0〉o2 	→{ |qi〉i1 ⊗ |qc〉i2 ⊗ |qi〉o1 ⊗ |0〉o2 for some |qc〉;
|qi〉i1 ⊗ |qc〉i2 ⊗ |0〉o1 ⊗ |qi〉o2 otherwise.

(4.16)

Suppose that we are in the first instance of Equation 4.16 (for some |qc〉). Then, the switch
is reduced (because |qc〉 is fixed) to

Usw1 : |qi〉i1 ⊗ |0〉o1 	−→ |qi〉i1 ⊗ |qi〉o1 (4.17)

But Equation 4.17 is impossible because the no-cloning law of quantum mechanics says
that there is no Uclone so that for any |ψ〉:

Uclone : (|ψ〉 ⊗ |0〉) 	−→ (|ψ〉 ⊗ |ψ〉) . (4.18)

4.4.2 rQGA structure

Due to the second limitation of the rQHW, any programmable quantum gate array – consisting
of a set of basic reconfigurable cells – will have to ripple the cells in a linear fashion. Figure
4.11 presents the consequence of Limitation 2.

rQGA
cell0

rQGA
cell1

rQGA
cellw-1

n0 n
1

k0

n2

k1

n

w-1

nw

l1
l

m
m

0
m

1
mw-1

w-1

Figure 4.11: Linear connection of basic reconfigurable quantum gate arrays, allowed by the
second limitation.

There are w linear connected cells, with two kinds of inputs – outputted by a previous
cell (nj with j = 0, w − 1, n0 from whole circuit’s input) and coming from the input (lj
with j = 1, w − 1). There are two kinds of outputs: going to be inputs for the next cell
(nj+1, j = 1, w in number, with nw being part of whole circuit’s output), and going to the
general output (kj, j = 0, w − 2 qubits for each cell).Also, we have a m = m0 + m1 + mw−1

qubit control register; cell j having mj corresponding control qubits.
The only limitation is that, for each j = 0, w − 1, the following equation has to hold

(l0 = 0 and kw−1 = 0):

80 CHAPTER 4. RELIABILITY WITH RECONFIGURABLE QUANTUM HARDWARE

lj + nj = kj + nj+1 (4.19)

As for the entire circuit, a total of n0 +
∑w−1

i=1 li input qubits, is equal to the number
nw−1 +

∑w−2
i=0 ki of output qubits.

Apropriate gates

For the rQGA, the usage of each gate has to be conditioned by dedicated qubits that form the
configuration register. Therefore, the most convenient set of gates to be used in a basic cell of
rQGA is inspired by gate family ∧n (U) [10]. With this formalism ∧n (U) is a (n + 1)-qubit
unitary operator, described by:

∧n (U) (|a0, . . . an−1, b〉) 	→{
ub0|a0, . . . an−1, 0〉 + ub1|a0, . . . an−1, b〉 if ∧n−1

i=0 ai = 1
|a0, a1, . . . an−1, b〉 if ∧n−1

i=0 ai = 0,
(4.20)

where U is any unitary transformation U =

(
u00 u01

u10 u11

)
with u00, u01, u10, u11 ∈ C, n ∈ N,

and a0, a1, . . . an−1, b ∈ B = {0, 1} [62][10].
For our rQGA purposes, we need a particular case of this formalism, where n = 1 and U

is a m-qubit unitary transformation, representing the gate which is conditioned by one qubit
from the configuration register. This means that the general form of our 1-qubit conditioned

gate ∧1

(
U

m-qubit

)
is the 2m+1 × 2m+1 matrix:

∧n (U) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

. . .

1
u0,0 . . . u0,2m−1

. . .

u2m−1,0 . . . u2m−1,2m−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.21)

In the basic quantum reconfigurable cell architecture, we will use the following elementary
gates: ∧1 (UCNOT), ∧1 (H). UCNOT stands for any matrix describing a CNOT transform,
while H is the Hadamard matrix. While the relationship between UCNOT and ∧1 (UCNOT)
has been extensively described in [10], ∧1 (H) is a special 2-qubit gate described by the matrix
from Equation 4.22 and depicted in Figure 4.12.a:

∧1 (H) =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1√

2
1√
2

0 0 1√
2

− 1√
2

⎞
⎟⎟⎠ (4.22)

A conditioned measurement is also required in order to build a general reconfigurable cell
for the studied quantum circuits. The control for conditioned measurement gates (see Figure
4.12.b) can be only a basis state (i.e. line c represents a bit, not a qubit).

4.4. THE RQHW-BASED SOLUTION 81

H

c

t

c

m

a) b)

Figure 4.12: Special conditioned gates: a) Hadamard, and b) qubit measurement.

Basic reconfigurable cell

The basic cell of a reconfigurable quantum gate array (rQGA) is designed so that rippling
several such basic cells allows for configuration of any concatenated code based on stabilizer
coding and Steane-like ancilla qubit preparation.

Its general architecture, presented in Figure 4.13, has n input and output qubits and m
control qubits. The grey lines represent control qubits, while the black lines correspond to
the processed qubits. Also, a dashed line stands for a control that can only be classical; full
grey line means that the control can also be of quantum nature.

In Figure 4.13, the first level of gates from left to right are represented by two Hadamard
gate sub-levels: the first one is common for all circuits involved (code generation, ancilla prepa-
ration and syndrome computation), the second is used for space basis transformation.The
second level is formed of Toffoli gates. The controlled XORs are placed so that there are
gates with each qubit as source (and all the other qubits being targets). There are two sets
of such gates, with a total of n2 −n gates in this level (n is the input register size). The third
level of gates has two Hadamard gate sub-levels. The first sub-level is responsable with basis
transformation, while the second corresponds to the second Hadamard level from the ancilla
preparation circuit (Figure 4.1). The fourth gate level consists of conditional measurement
gates.

Figure 4.13 shows that we need to be able to process the classical outcome of the qubit
measurement with classical circuits. The ”basis state logic” takes k classical inputs and
produces n classical outputs. These control signals will configure the rest of the basic cell
architecture, in order to correct both bit flip and phase shift errors.

The remaining gate levels are controlled with basis states (i.e. clasically), implementing
the correction step.We have two sets of XOR gates, with each of the n qubits as targets, being
classically controlled. The XOR gate level is guarded by two Hadamard (base changing) gate
levels.

4.4.3 Quantum configuration

For the basic cell in Figure 4.13 we can present a structure of the configuration register. The
configuration information for the left half of the cell is of quantum nature, while the right
half is classical:

|config〉basic cell = |ψ〉conf ⊗ |bit string〉 (4.23)

The bit string classical configuration register has the following structure:

82 CHAPTER 4. RELIABILITY WITH RECONFIGURABLE QUANTUM HARDWARE

H H H H H H
n
-q

u
b
it

H H H H H H

H H H H H H

m
-q

u
b
it

B
as

is
st

at
e

lo
g
ic

(c
la

ss
ic

al
)

2
x

[n
g

at
es

]
2

x
[(

n
-n2

)/
2

g
at

es
]

2
x

[n
g

at
es

]
1

x
[n

g
at

es
]

1
x

[n
g

at
es

]
2

x
[n

g
at

es
]

H H H H H H

1
x

[n
g

at
es

]

k-
q
u
b
it

n
-q

u
b
it

|i
n
p
u

t>

|c
o
n
fi

g
>

Figure 4.13: The basic reconfigurable cell for stabilizer encoding solutions.

4.5. CODE GENARATION WITH RQHW 83

|bit string〉 = |mm. . .m︸ ︷︷ ︸
n bits

hh . . . h︸ ︷︷ ︸
n bits

xx . . . x︸ ︷︷ ︸
2n bits

hh . . . h︸ ︷︷ ︸
n bits

〉 (4.24)

In Equation 4.24, m denotes a bit that controls a measurement gate, h a Hadamard
gate, and x a XOR gate. As for the |ψ〉conf part of the configuration register, it can be a
superposition of basis state configurations with the structure given in Equation 4.26. The
quantum configuration

|ψ〉conf =

k∑
i=0

ai|Ni〉 (4.25)

with
∑k

i=0 ‖ai‖2 = 1, ai ∈ C, has Ni ∈ N as basis states, which is equivalent to the following
structured binary string.

Ni = | hh . . . h︸ ︷︷ ︸
2n bits

t00,1 . . . t
0
0,n−1t

0
1,2 . . . t

0
1,n−1 . . . t

0
n−2,n−1︸ ︷︷ ︸

n(n−1)
2

bits

〉

⊗| t10,1 . . . t
1
n−2,n−1︸ ︷︷ ︸

n(n−1)
2

bits

hh . . . h︸ ︷︷ ︸
2n bits

〉 (4.26)

All hs and ts are binary digits with the following meaning: h controlls a Hadamard gate,
and tls,g is a Toffoli gate from layer l (could be only 0 or 1) with the first control qubit in the
configuration register, the second being input qubit s, and g input qubit as target.

The described reconfiguration methods can be applied for any qubit or qubit group from
the input register, so that the qubit vicinity may fight correlated errors. When errors occur,
the qubits from the code block are selected in such a way that they are physically separated
from each other.

If the configuration register is a superposition of classical configurations (i.e. basis states),
then the reconfigurable quantum gate array rQGA will have all the configurations from the
superposition at the same time. Therefore, we will have a superposition of k distinct circuits
at the same time. Figure 4.14 presents this feature of quantum reconfigurable circuits.

For our previously discussed fault tolerant circuits, we can use a superposition of classical
configurations so that the circuit produces a superposition of all possible stabilizer codes.
Moreover, we will be able to configure the circuit from Figure 4.3 with all possible stabilizer
code versions, at the same time.

Of course, when measuring the configuration register, just one such fault tolerant configu-
ration will remain, corresponding to a particular stabilizer code. With such a procedure, the
probability of a gate error occurring in the fault tolerant circuit is substantially lowered; if
the probability of one gate failing its service is ξ, then the probability of one gate failing in
the measured circuit becomes ξk.

4.5 Code genaration with rQHW

This section provides examples of useful rQGA configurations, which implement the presented
fault tolerant circuits.

84 CHAPTER 4. RELIABILITY WITH RECONFIGURABLE QUANTUM HARDWARE

Circuit k

Circuit 2

Circuit 1

|c
on

fi
g>

| >input

|output>

Figure 4.14: When the configuration register has a quantum nature, the same reconfigurable
quantum gate array acts as a superposition of k simultaneous distinct circuits. These cir-
cuits share the same input state and the same output qubits. The output qubits encode a
superposition of the superposed circuits distinct outputs.

4.5.1 Encoder with classical configuration

The qubit Steane encoder circuit from Figure 4.1 is configured from one basic rQGA cell as
specified by Equations 4.23, 4.24, 4.25, and 4.26. The classical part of the configuration (see
section 4.4.3) is not necessary, and the input-output size is n = 7 qubits.

|config〉0basic cell = |ψ〉Steane
conf ⊗ |bit string〉Steane (4.27)

|bit string〉Steane = |0〉⊗35 (4.28)

|ψ〉Steane
conf = NSteane

0 = |1110000〉 ⊗ |0〉⊗7︸ ︷︷ ︸
Hadamard

⊗

|0〉⊗15 ⊗ |101000〉︸ ︷︷ ︸
t0i,j

⊗

|001011011100111〉 ⊗ |0〉⊗6︸ ︷︷ ︸
t1i,j

⊗

|1〉⊗7 ⊗ |0〉⊗7︸ ︷︷ ︸
Hadamard

(4.29)

4.5. CODE GENARATION WITH RQHW 85

4.5.2 Stabilizer code with steane ancilla

We provide a configuration for the circuit with Steane ancilla coding from Figure 4.3 (the
partition is highlighted). The configuration states for the two 14-qubit basic cells are given
in the following equations. For the first cell (”Cell 0”) we have:

|config〉0basic cell = |ψ〉0bft ⊗ |bit string〉0bft (4.30)

|bit string〉0bft = |0〉⊗7 ⊗ |1〉⊗7︸ ︷︷ ︸
measurement

⊗ |0〉⊗14︸ ︷︷ ︸
Hadamard

⊗

|
7 qubits︷ ︸︸ ︷

classical circuit outcome〉 ⊗ |0〉⊗7︸ ︷︷ ︸
XORs

⊗

|1〉⊗7 ⊗ |0〉⊗7︸ ︷︷ ︸
Hadamard

(4.31)

|ψ〉0bft = |1110000〉⊗2 ⊗ |0〉⊗14︸ ︷︷ ︸
Hadamard

⊗

|001011〉 ⊗ |0〉⊗7 ⊗ |01110〉 ⊗ |0〉⊗7

⊗|0111〉 ⊗ |0〉⊗7︸ ︷︷ ︸
t0i,j

⊗

|0〉⊗34 ⊗ |001011011100111〉︸ ︷︷ ︸
t0i,j

⊗

|0〉⊗6 ⊗ |1〉 ⊗ |0〉⊗12 ⊗ |1〉 ⊗ |0〉⊗11 ⊗ |1〉︸ ︷︷ ︸
t1i,j

⊗

|0〉⊗10 ⊗ |1〉 ⊗ |0〉⊗9 ⊗ |1〉 ⊗ |0〉⊗8 ⊗ |1〉
⊗|0〉⊗7 ⊗ |1〉︸ ︷︷ ︸

t1i,j

⊗

|0〉⊗21︸ ︷︷ ︸
t1i,j

⊗ |0〉⊗28︸ ︷︷ ︸
Hadamard

.

(4.32)

and for ”Cell 1”:

|config〉1basic cell = |ψ〉1bft ⊗ |bit string〉1bft (4.33)

|bit string〉1bft = |0〉⊗7 ⊗ |1〉⊗7︸ ︷︷ ︸
measurement

⊗ |0〉⊗14︸ ︷︷ ︸
Hadamard

⊗

|
7 qubits︷ ︸︸ ︷

classical circuit outcome〉 ⊗ |0〉⊗7︸ ︷︷ ︸
XORs

⊗

|0〉⊗14︸ ︷︷ ︸
Hadamard

(4.34)

86 CHAPTER 4. RELIABILITY WITH RECONFIGURABLE QUANTUM HARDWARE

|ψ〉1bft = |0〉⊗28︸ ︷︷ ︸
Hadamard

⊗

|0〉⊗6 ⊗ |1〉 ⊗ |0〉⊗12 ⊗ |1〉 ⊗ |0〉⊗11 ⊗ |1〉
⊗|0〉⊗10 ⊗ |1〉︸ ︷︷ ︸

t0i,j

⊗

|0〉⊗9 ⊗ |1〉 ⊗ |0〉⊗8 ⊗ |1〉 ⊗ |0〉⊗7 ⊗ |1〉
⊗|0〉⊗21︸ ︷︷ ︸

t0i,j

⊗

|0〉⊗91︸ ︷︷ ︸
t1i,j

.

(4.35)

Quantum configuration for the encoding circuit

In this subsection, we present practical means for implementing a quantum configuration
for the encoding circuit like the one from Figure 4.3, corresponding to a superposition of
stabilizer encodings. For practical reasons, we consider as basis states in the superposition
only the codes obtained by permuting the u0, u1, u2, u3 columns in the Hamming matrix HA

from Equation 4.5 (4! = 24 distinct codes).

For the best theoretical probability, we have to prepare a 12 qubit quantum state given
by:

|ψ〉12 =
1

2
√

6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|011110111101〉+ |011110111110〉+
|011111011011〉+ |011111011110〉+
|011111101011〉+ |011111101101〉+
|101101111101〉+ |101101111110〉+
|101111010111〉+ |101111011110〉+
|101111100111〉+ |101111101101〉+
|110101111011〉+ |110101111110〉+
|110110110111〉+ |110110111110〉+
|110111100111〉+ |110111101011〉+
|111001111011〉+ |111001111101〉+
|111010110111〉+ |111010111101〉+
|111011010111〉+ |111011011011〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.36)

This 12-qubit state must be fitted in the 12 positions, marked with filled dots, of the
configuration state, as shown below. The configuration state will be

|ψ〉stabil
conf =

(
1

2
√

6

23∑
i=0

|Ni〉
)

⊕ |bit string〉stabil (4.37)

with the ’bit string’ being only 0s (|bit string〉stabil = |0〉⊗35), and the structure of the super-
posed configure states:

4.5. CODE GENARATION WITH RQHW 87

|Ni〉 = |1110000〉 ⊗ |0〉⊗7︸ ︷︷ ︸
Hadamard

⊗ |0〉⊗15 ⊗ |101000〉︸ ︷︷ ︸
fixed t0i,j

⊗

|t1i,j〉 ⊗ |1〉⊗7 ⊗ |0〉⊗7︸ ︷︷ ︸
Hadamard

.
(4.38)

The |t1i,j〉 contains fixed qubits and the 12 qubits that participate to the superposition
state from Equation 4.36, with the following basis state structure:

|t1i,jbasis
〉 = |00 • • • •0 • • • • • • • •000000〉. (4.39)

The 0s correspond to the fixed values, whereas the filled dots mark the qubits that con-
tribute to the superposition.

If we are to prepare state |ψ〉12 from Equation 4.36 on the qubits highlited in Equation
4.39, we have to acknowledge the fact that the state itself is hard to obtain, because it is a
superposition of 24 (not a power of 2) basis states.

We arrange the basis state codes from Equation 4.36 so that the same gate will not be
used in all the superposed configurations. Four such configurations, in our heuristic approach,
are given in Table 4.2.

Column C1 Column C2 Column C3

q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11

0 1 1 1 1 0 1 1 1 1 0 1
1 0 1 1 1 1 1 0 0 1 1 1
1 1 0 1 0 1 1 1 1 1 1 0
1 1 1 0 1 1 0 1 1 0 1 1

Table 4.2: The rows present the basis configurations which can be superposed with minimum
gate usage (qubits q0, q1 . . . q11 are the ordered positions of the filled dots from Equation 4.39).

When these configurations are superposed, the same gate will be used in 3 out of 4 super-
positions, hence producing an overall ξ

4
3 error probability order.

One solution would be to add one more level of controlled Toffoli gates (t2i,j) in the basic
cell. This will change Equation 4.26:

Nnew
i = | hh . . . h︸ ︷︷ ︸

2n bits

t00,1 . . . t
0
n−2,n−1︸ ︷︷ ︸

n(n−1)
2

bits

t10,1 . . . t
1
n−2,n−1︸ ︷︷ ︸

n(n−1)
2

bits

〉⊗

| t20,1 . . . t
2
n−2,n−1︸ ︷︷ ︸

n(n−1)
2

bits

hh . . . h︸ ︷︷ ︸
2n bits

〉 (4.40)

Next, we will present |t1i,j〉 and |t2i,j〉 in detail, the way Equation 4.39 prescribes.

|t1i,jbasis
〉new

= |00 • • • •0 • • • • • • • •000000〉 (4.41)

|t2i,jbase
〉new

= |00����0��������000000〉. (4.42)

88 CHAPTER 4. RELIABILITY WITH RECONFIGURABLE QUANTUM HARDWARE

The orthonormal basis structure of the qubit groups marked with filled dots and boxes
are presented, respectively, in the following two equations:

|ρ〉•basis = |b0b1111b21b3b41b51〉 (4.43)

|ρ〉�basis = |11b6b7b81b911b101b11〉. (4.44)

The positions not marked with bis are fixed with the corresponding binary value; it is only
necessary to present the states corresponding to the bi qubit groups:

|b0b1b2b3b4b5〉 = |b6b7b8b9b10b11〉 =
1√
2

(|010110〉+
|101001〉

)
. (4.45)

The circuit for obtaining the state from Equation 4.45 is presented in Figure 4.15.

Hb0 = b6

b1 = b7

b2 = b8

b3 = b9

b4 = b10

b5 = b11

Figure 4.15: Circuit for setting the 6-qubit configuration state, from Equation 4.45.

4.5.3 Accuracy threshold analysis

If all the superposed classical configurations have the same quantum amplitude, then they will
have the same probability of being measured. For the circuit from Figure 4.3, we have 4! = 24
possible configurations, each corresponding to a distinct stabilizer code, and a 1

4
probability

of having the same gate in two distinct classical configurations. After the measurement of the
configuration register – with a ξgate gate error probability given by the available technology

– the reconfiguration solution will have an overall gate error probability of ξ
24
4

gate = ξ6.

In a general form, the gate error rate for the overal reconfigurable gate array (rQGA) is:

ξrQGA =
(
ξgate

)k×fr

(4.46)

where ξgate is the gate error rate, k the number of superposed circuits in rQGA (i.e. the

number of superposed basis states in the configuration register), and fr is the so-called freedom
rate or the frequency of a gate not being used in one particular configuration, but used in the
other superposed configurations. In our example from above, fr = 1

4
and k = 24.

4.6. SUMMARY 89

This is nevertheless a very good result, which capitalizes on the parallelism of quantum
computation, and was obtained under the assumption that the configuration register is reli-
able. Due to practical reasons, the theoretical ξ6 is hard to achieve. Basically, it is hard to set
a quantum superposition containing a number of basis states that is not equal to a power of 2,
and the physical limits of the basic cells may force us to a low fr. Our engineering approach
to these problems (Section 4.5.2) provides for a solution that guarantees an overall ξ

4
3
·2 = ξ

8
3

error rate (configuration is split in two groups).

In order to assess the consequences of reconfigurable quantum hardware approach, we will
get back at Equation 4.12. As we use the same type of circuits, which are superposed with a
quantum configuration, and the circuit for setting the quantum configuration will not increase
p, we can express the accuracy threshold:

ξrQHW
threshold ∼ (logN)−p·(1−fr)· 1

S . (4.47)

All the superposed configurations can be grouped, so that the members of one configuration
group will not use any gate which is used by the configurations from any other group. The
number of such distinct groups is S.

For a circuit using superposed stabilizer encodings, generated with rQHW in a quantum
configuration, and for the heuristic implementation provided in 4.5.2, suppose we have a high

p = 6. Then, our accuracy threshold ξrQHW
threshold is of the order given by xir (N) = logN− 18

8

because S = 2 and fr = 1
4
. The comparison between function xir (N) and the technologically

assured threshold (lim = 10−3) is given in Figure 4.16. This comprehensively shows that
the rQHW technique provides means for arbitrary long fault-tolerant quantum computation,
because the xir (N) function clearly dominates the technological limit, even for very high N .

4.6 Summary

The qubits and gates involved in quantum computation implementations are prone to frequent
errors, due to the delicate nature of quantum basis state superposition. While there is an
ongoing effort in developing a quantum technology with inherent fault tolerance [1], special
encoding techniques and quantum circuits have been created in order to attain fault tolerant
quantum computation.

The specially designed techniques rely on classically inspired codes (i.e. Hamming, sta-
bilizer codes [35] [97]). Due to the fact that there is a serious difficulty in achieving safe
recovery, we have to employ structural redundancy. With these techniques we would expect a
ξ2 error probability for the entire circuit, when the qubit and gate error probability are of the
order ξ. But if the error rates (ξ’s) exceed the estimated threshold values, the error-correcting
techniques become useless.

4.6.1 Achievements

We have introduced the so-called reconfigurable Quantum Hardware (rQHW) and the recon-
figurable Quantum Gate Array (rQGA) Cells, as incentive in avoiding the destructive effect
of the correlated errors, and for reducing the number of required ancilla qubits.

90 CHAPTER 4. RELIABILITY WITH RECONFIGURABLE QUANTUM HARDWARE

Figure 4.16: Evolution of accuracy threshold value for rQHW stabilizer codes (’xir’ function)
with the number of computational steps (N). The technological accuracy limit (’lim’) is also
provided for comparison.

As it turned out, if the rQGA uses a quantum configuration, then the overall reliability
(measured by the accuracy threshold) is improved by reducing the problem of controlling gate
errors to preserving a given (reduced) quantum configuration register.

The effectiveness of our proposed solution was proved by our particular case study, which
used the rQGA basic cell construction, in order to generate a superposition of 4 distinct
stabilizer code circuits. The considered error correction framework was stabilizer data 7-
qubit encoding with Steane ancilla preparation. Given the case study conditions, the accuracy
threshold estimation clearly dominates the technologically assured failure rate, thus creating
incentive for fault tolerant quantum computation in this context.

4.6.2 Issues to be settled

Although the qualitative evaluation of our approach is promissing, a quantitative assessment
[64] of this paper’s theoretical analysisis needed, by employing simulated fault injection. This
approach is intensively used in classical digital circuit design [122]. In quantum computation
it can be implemented by adding fault injection features to one of the available simulation
frameworks [106][107][115] (See Section 3.4).

Chapter 5

Evolvable Quantum Hardware

Building the core of this chapter has started as an attempt to design a quantum counterpart
for the classical evolvable hardware [102]. The benefits of implementing this concept were also
mentioned in the previous chapter: a very versatile and adaptive structure that has various
applications.

Starting from the definition of evolvable hardware (EHW): EHW = RHW (reconfigurable
hardware) + GAs (genetic algorithms), our quest in the quantum computation field is pre-
sented in Figure 5.1. In the figure, the configuration of the programmable quantum circuit
structure, which was discussed in the previous chapter, is generated by a quantum version of
the genetic algorithms (i.e. the so-called QGAs, or Quantum Genetic Algorithms [33]).

Reconfigurable
Quantum Hardware

(rQGA)

Input Output

Don’t care
(scratch-space qubits)

Quantum Genetic
Algorithms (QGAs)

Configuration

fitness function

chromosome encoding

Figure 5.1: Evolvable quantum hardware.

As a consequence, the problem of designing evolvable quantum hardware is reduced to
designing circuits for implementing Quantum Genetic Algorithms. Here, there are a lot of
open problems, as it is not clear yet how to design and build QGAs [33][86][87][93].

91

92 CHAPTER 5. EVOLVABLE QUANTUM HARDWARE

5.1 Preliminaries

5.1.1 Motivation

The QGAs rely on qubit representations for the chromosomes and the use of quantum opera-
tors in order to process them during the quest for the optimal solution of the search problem.
In principle, this approach redefines the GA operators in quantum terms; these new oper-
ators will perform better due to the exploit of the quantum parallelism [87]. Nevertheless,
approaching specific applications this way will result in a significant performance enhancement
[40][41].

Because the chromosome represented by qubits, just one quantum chromosome register
would be able to store the entire population as a superposition of all the possible classical
states. The function that evaluates the fitness of the initial population (which could also be
the entire population) would take the chromosome register as input and the output would
be stored in a fitness register. This would store a superposition of all the fitness values,
corresponding to the superposition of the individuals from the chromosome register.

The key observation that led us to this new perspective is the fact that if the best fitness
value can be marked (i.e. by changing the phase of the corresponding eigenstate) without
destroying the superposition of the registers, then Grover’s algorithm will find the solution
in O (

√
n). Therefore, all the quantum versions of GA operators, like crossover or mutation,

would become useless if we can figure out a way to mark the best fitness, inside the fitness
superposition state.

5.1.2 Objective

The reconfigurable quantum gate array from Figure 4.10 will translate to evolvable quantum
hardware (QEHW) if its configuration register, the m-qubit register |config〉, represents a
state outputted by means of a genetic algorithm. Therefore, if QEHW is to be synthesised, one
has to specify how to run genetic algorithms in quantum computing. This chapter proves that
there is a methodology of running any genetic algorithm on a quantum computer in O (

√
n)

time. Then, we also provide the guidlines for implementing the corresponding quantum
circuit.

5.2 Quantum genetic algorithms

As part of Quantum Evolutionary Programming, QGAs have the ingredients of a substantial
algorithmic speedup, due to the inherited properties from both QC and GA. However, there
are still questions as to how would it be possible to implement a genetic algorithm on a
quantum computer. The attempts made in this particular direction suggest there is room left
for taking advantage of the massive quantum computation parallelism [87]. Moreover, some
questions were left open, as pointed out in [33].

5.2. QUANTUM GENETIC ALGORITHMS 93

5.2.1 Running GAs in a quantum computational environment

For the first time, the possibility (and the advantages) of the QGAs were indicated in [87].
The approach described here contains hard evidence for QGA speedup, but there still are
some unanswered questions [33]. The proposed algorithm uses a number of m register pairs:

|ψ〉i = |φ〉individual
i ⊗ |ρ〉fitness

i (5.1)

where i = 0, m− 1. The first (left) register contains the individual, while the second contains
its corresponding fitness. Because we are dealing with quantum registers, both |φ〉 and |ρ〉 can
encode a superposition of exponentially many individuals and their corresponding superposed
fitness values. Each time a new population (set of individuals) is generated in the individual
register, the corresponding fitness is computed and stored in the fitness register. Of course, if
the fitness register is measured, then, due to entanglement [62], the result is only one of the
superposed values; in the individual register will remain as superposed the individuals that
give the measured fitness. Fitness register measurement is a crucial element in developing
QGAs [87]. For the general expression of the pair register (N -qubit for the individual register
and M-qubit for the fitness register) given in Equation 5.2, the measurement of the second
register (|y〉) will have r as result with the probability from Equation 5.3.

|ψ〉i =

2N−1∑
x=0

2M−1∑
y=0

cx,y|x, y〉, with

2N−1∑
x=0

2M−1∑
y=0

|cx,y|2 = 1 (5.2)

P (r) =

2N−1∑
x=0

|cx,r|2 = 1 (5.3)

The post-measurement state of the pair register will be:

|ψr〉i =
1√
P (r)

2N−1∑
x=0

cx,r|x, r〉 (5.4)

Due to the fact that an individual cannot have more than one fitness, it is obvious that,
if individual u has a fitness value v, then cu,y = 0 for all y
= v.

The QGA, as described in [87], is presented in the following pseudo code:

Genetic Algorithm Running on a Quantum Computer (QGA)

1. For i := 1 to m prepare |φ〉individual
i as superpositions of individuals and compute the cor-

responding fitness pair register |ρ〉fitness
i (the outcome will be a superposition of m fitness

values).

2. Measure all fitness registers.

3. Repeat

(a) Selection according to the m measured fitness values.

94 CHAPTER 5. EVOLVABLE QUANTUM HARDWARE

(b) Crossover and mutation are employed in order to prepare a new population (setting the
m individual registers).

(c) For the new population, the corresponding fitness values will be computed and then
stored in the fitness registers.

(d) Measure all fitness registers.

Until the condition for termination is satisfied.

Reference [33] provides analysis and critique for the above presented algorithm. The iden-
tified advantages of using QGAs over the classical GAs, which are drawn from the quantum
computational features, are:

• Due to the superposition of individuals (i.e. basis states) that is stored in the individual
register, the building block [33] could be crossed not by just one individual, but by a
superposition of exponentially many individuals. Thus, the selection of a new population
is made with the contribution of many attraction pools.

• In quantum computation true random numbers can be generated. It was proven that a
GA with a true random number generator will outperform a pseudo-random solution,
which is the only possibility in classical computation [86].

The questions that remain open are:

• How is it possible to build the crossover operator in quantum computation?

• How is it possible to implement the fitness function on a quantum computer?

• How can the correlation be maintained – by using the entanglement – between the
individual register (superposed) basis states and the (superposed) fitness values from
the fitness register?

Although the advantages appear to be substantial, one can easily argue that the power of
quantum computation is not sufficiently used by this approach. However, some of the opened
questions have been addressed in reference [33]. Giraldi et al. developed a mathematical for-
malism in order to avoid misinterpretations regarding the last question. The second question
is also addressed by defining quantum genetic operators. The proposed formalism establishes
the necessary correlation between the fitness and the individual registers, which cannot be
accomplished with the QGA construction provided in [87].

5.2.2 Mathematical formalism

The QGA formalism uses m quantum register pairs (N -qubit individual register and M-qubit
fitness register,) as presented in Section 5.2.1. Also, in order to achieve proper correlation
between the individual and its fitness value, the fitness function must be chosen so that
it is a ”quantum function” as defined by [65][66], hence a pseudo-classical operator with a
corresponding Boolean function: f : {0, 1}N → {0, 1}M , Uf : |x〉 ⊗ |0〉 → |x〉 ⊗ |f (x)〉 if |x〉 is
a basis state.

5.2. QUANTUM GENETIC ALGORITHMS 95

When acting on a superposition, the unitary operator corresponding to function f will
dictate the following mapping:

Uf :
2N−1∑
x=0

ax|x〉 ⊗ |0〉 →
2N−1∑
x=0

ax|x〉 ⊗ |f (x)〉 =
2N−1∑
x=0

ax|x, f (x)〉 (5.5)

An important aspect regarding the pseudo-classical Boolean functions is that they are
universal (i.e. any computational function can be represented in such a form), and easy to be
implemented as gate networks. In fact, due to their universality, Boolean functions form the
backbone of the classical computation’s circuit model.

The QGA algorithm, after adopting Giraldi’s formalism can be rewritten as in the below
pseudo-code.

Genetic Algorithm Running on a Quantum Computer (QGA) with proper for-
malism

1. For i := 1 to m set the individual-fitness pair registers as |ψ〉1i = 1√
n

∑n−1
u=0 |u〉ind

i ⊗ |0〉fit
i (a

superposition of n individuals with 0 ≤ n ≤ 2N).

2. Compute the fitness values corresponding to the individual superposition, by applying a uni-
tary transformation Uffit

(corresponding to pseudo-classical Boolean operator ffit : {0, 1}N →
{0, 1}M). For i := 1 to m do |ψ〉2i = Uffit

|ψ〉1i = 1√
n

∑n−1
u=0 |u〉ind

i ⊗ |ffit (u)〉fit
i .

3. For i := 1 to m measure the fitness registers, obtaining the post-measurement states (we
suppose that |y〉i is obtained by measurement): |ψ〉3i = 1√

ki

∑
v∈{0,1,...,n−1} |v〉ind

i ⊗ |y〉fit
i with

ki values in {0, . . . , n− 1} to satisfy ffit (v) = y.

4. Repeat

a. Selection according to the m measured fitness values |y〉i.
b. Crossover and mutation are employed in order to prepare a new population (setting the

m individual registers |u〉ind
i).

c. For the new population, the corresponding fitness values will be computed and then
stored in the fitness registers(|ffit (u)〉fit

i).

d. Measure all fitness registers

Until the condition for termination is satisfied.

Besides the necessary formalism, reference [33] also provides some insight regarding the
implementation of the genetic operators in the quantum computational environment. These
considerations lead towards two main implementation problems:

α) the number of all valid individuals is not always a power of 2, which is the total number
of basis states;

β) crossover implementation is difficult and requires a much thoroughly investigation, in-
cluding quantum computation architectural aspects [69].

96 CHAPTER 5. EVOLVABLE QUANTUM HARDWARE

5.3 A new approach

An observation concerning the individual-fitness quantum register pair is that all the possible
valid individuals (n) can be encoded in the same quantum state superposition, which has a
total of 2N possible basis states (n ≤ 2N). If we can figure out a method of measuring the
highest fitness value from the fitness register, then by measuring the individual register we
will get that corresponding individual (or one of them, if several have the same highest fitness
value).

Approaching the QGAs in this manner renders some genetic operators as no longer nec-
essary, as long as finding the maximum has an efficient solution. This effectively leads to
solving problem β.

Because the individual is encoded on N qubits, we have a total of 2N basis states which
can participate in the superposition. It is possible that not all of these basis states will
encode valid individuals (problem α); the proposed method relies on defining some constrains
regarding the fitness function and the fitness value format, without losing the generality of
the solution. We will consider the fitness function as a Boolean pseudo-classical unitary
operator Uf (characterized by f : {0, 1}N → {0, 1}M) which can be also applied to non-

valid individuals. The fitness value space {0, 1}M can be split, so that a distinct subspace is
allocated to the fitness values corresponding to valid individuals and another distinct subspace
corresponds only to non-valid individuals. This enables us to concentrate only on processing
states that correspond to valid individuals (Section 5.4 further elaborates on this particular
aspect).

The method of finding the highest fitness value is inspired from efficient quantum algo-
rithms for finding the maximum [2][28]. Finding the best fitness value is equivalent to marking
the highest classical state that is superposed in the fitness register state or, in other words,
the highest basis state with non-zero amplitude. Basically, the proposed methodology relies
on reducing the highest fitness value problem to Grover’s algorithm. In order to do so, special
oracle and fitness value format are defined. Section 5.3.1 presents the quantum algorithm for
finding the maximum [2], Section 5.4 presents details for oracle implementation and fitness
register structure, while Section 5.5 provides our adaptation of the algorithm in order to find
the best value in the fitness register.

5.3.1 Computing the maximum

This subsection analyzes the available quantum methodologies for finding the maximum,
and provides a modified version of the original algorithm [2][28], in order to meet our QGA
demands.

The initial algorithm

The quantum algorithms for minimum/maximum finding [2][28] are inspired from the classical
”bubble sort” algorithm, but their complexity in quantum version is O (

√
n).

Such an algorithm takes an unsorted table of m elements as input, in order to return the
index of the maximum value element. By adopting the formalism from [2], we have a pool

5.3. A NEW APPROACH 97

P [i] of m elements (i = 0, m− 1) which will be processed in order to obtain the index k of
the maximum element (P [k]).

In order to meet our demands, Grover’s algorithm uses a specially designed oracle that
”marks” all the basis states greater than some given value j (within the pool):

Oj (i) =

{
1 if P [i] > P [j]
0 otherwise

(5.6)

We notice that the oracle works with the pool indexes as parameters. Also, there is no
indication as to how is the pool represented. The oracle just ”knows” the answer to the
following question: ”is P [i] bigger than P [j] ?” Therefore, the resulting algorithm will have
the form of the following pseudo code:

Quantum Algorithm for finding the maximum from an unsorted table of m ele-
ments

1. Initialize k := random number; 0 ≤ k ≤ m− 1 as the starting index of this search;

2. Repeat O (
√
m) times

a. Set two quantum registers as |ψ〉 = 1√
m

∑m−1
i=0 |i〉|k〉; the first register is a superposition

of all indexes;

b. Use Grover’s algorithm for finding marked states from the first register (i.e. those which
make Ok (i) = 1);

c. Measure the first register. The outcome will be one of the basis states which are indexes
for values > P [k]. Let the measurement result be x. Make k := x;

3. Return k as result. It is the index of the maximum.

The complexity analysis performed in [2] reveals the fact that this algorithm will find the
index of the maximum in 13.6

√
m steps, with an error rate smaller than 1

2
.

The modified algorithm

In the initial algorithm, a quantum form for the pool of elements is not necessary. However, for
our QGA related purposes, we need to maintain the correlation between the individual register
(corresponding to the indexes) and the fitness register (corresponding to the fitness values).
Therefore, a maximum finding algorithm – that is usable in the desired, genetic algorithm
context – must have a quantum (i.e. basis state superposition) state for representing the
values, which in turn has to be correlated appropriately with the quantum register representing
the indexes.

This means that the oracle will operate on the values register, where its input data is
available. Hence, the oracle expression from Equation 5.6 will be modified accordingly:

Õy (x) =

{
1 if x > y
0 otherwise

(5.7)

98 CHAPTER 5. EVOLVABLE QUANTUM HARDWARE

In Equation 5.7, x, y ∈ N and are encoded by the superposed basis states from the values
register. Also, because we will have to run a number of s ∈ O (

√
m) steps to complete the

algorithm, so it is necessary that a number of s indexes-values quantum register pairs be
prepared. Each register pair, except the last one used, generates a partial maximum search
solution. The modified quantum maximum finding algorithm is presented in the following
pseudocode:

Quantum Algorithm for finding the maximum from an unsorted table of m ele-
ments, which is represented as a quantum state

1. Initialize k := random integer with 0 ≤ k ≤ m− 1; max := P [k] ;

2. For j := 0 to s− 1 set the pair registers as |ψ〉1j = 1√
m

∑m−1
i=0 |i〉index

j ⊗ |0〉value
j ;

3. For j := 0 to s−1 set the value corresponding to the index |ψ〉2j = P |ψ〉1j = 1√
m

∑m−1
i=0 |i〉index

j ⊗
|P [i]〉value

j ;

4. For j := 0 to s− 1 loop

(a) Apply the oracle on the value register Õmax (P [i]). Therefore, if |P [i]〉value
j > max then

the corresponding basis states are marked;

(b) Use Grover’s algorithm for finding marked states in the value register after applying
the oracle. As pointed out in reference [62], we find one of the marked basis states
|p〉 = |P [i]〉value

j , with P [i]max > 0;

(c) max := p;

5. Having the highest value in the |•〉value
s−1 register, we measure the |•〉index

s−1 register in order to
obtain the corresponding individual (or one of the corresponding individuals).

5.4 The oracle

The oracle implementation must be made so that the problems mentioned in reference [33], namely
α) and β) from Subsection 5.2.2, are dealt with. This subsection presents the envisaged solutions.

5.4.1 Solving problem α)

In order to deal with problem α), we have to adopt a constraint, which does not restrict the gen-
erality of the fitness functions. We consider the ordinary fitness function ffit (which applies only
on the valid individuals) ffit : {0, 1}N → {0, 1}M , which is Boolean (and therefore universal),
with a straightforward correspondence to the unitary representation Uffit

[62][65]. The modified
fitness function will accept invalid individuals as argument, and the returned values will belong
to distinct areas, corresponding to valid or invalid individuals. This can be achieved by defining
fmod

fit : {0, 1}N → {0, 1}M+1 as:

fmod
fit (x) ∈

{
0 × {0, 1}M if x is a non-valid individual
1 × {0, 1}M if x is a valid individual

(5.8)

5.4. THE ORACLE 99

The fitness values are encoded by the qubits in a modified fitness register, which has a (M + 1)-
qubit size. The valid individuals always produce fitness values with the most significant qubit being
’1’; a ’0’ value for the most significant qubit in the fitness register indicates the correspondence to a
non-valid individual, as presented in Figure 5.2 (where the quantum state matrix representation is
used).

x
x
x
x

x
x
x
x

individual
register

fitness
register

invalid
area

valid
area

00...0000...00

01...11

10...00

11...11

00...01

01...10

10...01

11...10

11...11

fitf
U

x - invalid individual
amplitude

X - valid individual
amplitude

Figure 5.2: The basics of fitness function construction: when is applied to valid individuals it
produces a value in the valid area (upper half: |10 . . . 00〉 . . . |11 . . . 11〉) of the fitness register,
whereas when applied to invalid individuals, the corresponding values in the fitness register
will always be in the invalid area (lower half: |00 . . . 00〉 . . . |01 . . .11〉).

5.4.2 Building the oracle

As our approach avoids solving problem β directly, the remaining task concerns the definition of
an appropriate (i.e. application specific) oracle, starting from Equation 5.7 and the algorithm from
Subsection 5.3.1.

We propose a solution that uses two’s complement number representation [71] for marking the
states that have a value greater than a given l ∈ N, l > 0. As a consequence, the fitness register will
have the form from Figure 5.3.

The oracle processes all the fitness register qubits except the most significant one (v), which
indicates if the value represented by the other qubits belongs to a valid individual or not. All
the value qubits (fM . . . f0) from the fitness register encode two’s complement positive integers as
fitness values. The oracle adds − (l + 1) to the fitness register, therefore the basis states (from the
state output by the quantum adder [113]) greater than l will always have fM

′ = 0 (see the oracle
implementation from Figure 5.4.)

100 CHAPTER 5. EVOLVABLE QUANTUM HARDWARE

v fM fM-1 fM-2
f0

valid qubit

fitness value qubits (two's complement)

Figure 5.3: The format of the fitness register, for the oracle implementation that is based on
a two’s complement approach.

For the solution given in Figure 5.4 we have used 2 negation gates (denoted with ’x’) and one
XOR gate [10] [62], in order to change the phase of the corresponding superposed basis states. The
architectures for the quantum arithmetic circuits, the adder/subtractor for our particular case, are
presented in references [34] and [113]. After marking the corresponding basis states (by shifting their
amplitudes), their value is restored by adding l + 1. Only the qubits containing the result of the
arithmetic function (f ′′0 . . . f ′′M) are used by the Grover iteration circuit [38][62] in order to find
one of the marked basis states.

o0

oM

f0

fM

v

Quantum
Two's

Complement
Subtractor

x

fM-1

f '0

f 'M

f 'M-1

x

Used by
Grover's
iteration
circuit

+1l

fitness register

0

oracle workspace
Oracle

o0

oM

v

Quantum
Two's

Complement
Adder

f ''0

f ''M

f ''M-1

Figure 5.4: Oracle implementation for a fitness register having the structure from Figure 5.3.

The Grover algorithm that is actually applied to the f ′′M . . . f ′′0 register complies with the
Grover algorithm version defined by reference [12], in order to find one of the marked solutions,
without any a priori knowledge about the number of solutions.

Although the oracle uses two’s complement addition (which means that we will have to change the
fitness values in the superposition), the correlation between the individual and the fitness registers

5.5. REDUCED QUANTUM GENETIC ALGORITHM 101

is not destroyed, because the addition is a pseudo-classical permutation function [65][66][113]. The
Grover iteration will find as a marked basis state |p〉 = |f ′′M . . . f ′′0〉, with p ∈ N, f ′′M , . . . , f ′′0 ∈
{0, 1} which is given by |p〉 = −|q〉 for |q〉 = |fM . . . f0〉, with fM , . . . , f0 ∈ {0, 1} = B.

The algorithm listed below is inspired from the quantum maximum algorithm from Section
5.3.1. The initial max value must obey the 2M+1 ≤ max ≤ 2M+2 − 1 condition, so that the search
for the highest fitness value will take place only in the valid fitness area. We have a number of
m ∈ O

(√
N
)

(due to the complexity analysis provided in [2]) pair registers (individual-fitness),
where the individual register is on N qubits, and the fitness register on M + 2 qubits. Also, it can
be said that m ”quantum selection steps” are required by this algorithm.

5.5 Reduced quantum genetic algorithm

Having a fitness register as defined in the previous subsection, the corresponding fitness function,
and the specially defined oracle, we are able to provide the pseudo-code that corresponds to running
a Genetic Algorithm in the quantum computational environment. It is called Reduced Quantum
Genetic Algorithm (RQGA) because it uses only one population (encoded in just one quantum
state), consisting of all possible individual binary representations (that correspond to valid and
invalid individuals).

Crossover and mutation operators are not used for finding the highest fitness value (they are not
required in a quantum context), which is obtained by employing Grover’s algorithm. Although these
operators are not required in the given context, we may say that this new approach also induces some
form of a ”quantum evolution”. The best fitness value emerges step by step, with each register pair
being employed. The selection is implemented by the ”marking the basis states” process. Grover’s
algorithm is used in order to obtain one of these basis states (i.e. selected individuals) out of the
quantum superposition. The selection process of the next step uses the value of Grover’s algorithm
output, and so on.

The algorithm listed below is inspired from the modified quantum maximum algorithm from
Section 5.3.1.The initial max value must obey the 2M+1 ≤ max ≤ 2M+2 − 1 relation, so that
the search for the highest fitness value will take place only in the valid fitness area. We have a
number of m ∈ O

(√
N
)

(due to the complexity analysis provided in reference [2])pair registers
(individual-fitness), where the individual register is on N qubits, and the fitness register on M + 2
qubits.

Reduced Quantum Genetic Algorithm

1. For i := 0 to m− 1 set the pair registers as |ψ〉1i = 1√
2N

∑2N−1
u=0 |u〉ind

i ⊗ |0〉fit
i ;

2. For i := 0 to m − 1 compute the unitary operation corresponding to fitness computation
|ψ〉2i = Uffit

|ψ〉1i = 1√
2N

∑2N−1
u=0 |u〉ind

i ⊗ |ffit (u)〉fit
i ;

3. max := random integer, so that 2M+1 ≤ max ≤ 2M+2 − 1;

4. For i := 0 to m− 1 loop

(a) Apply the oracle Õmax (ffit (u)). Therefore, if |ffit (u)〉fit
i > max then the corresponding

|ffit (u)〉fit
i basis states are marked;

102 CHAPTER 5. EVOLVABLE QUANTUM HARDWARE

(b) Use Grover’s iterations for finding marked states in the fitness register after applying the
oracle. We find one of the marked basis states |p〉 = |ffit (u)〉fit

i , with ffit (u)max ≥ 0;

(c) max := p+ 1;

5. Having the highest fitness value in the |•〉fit
m−1 register, we measure the |•〉ind

m−1 register in order
to obtain the corresponding individual (or one of the corresponding individuals, if there are
more than one solution).

Measuring the individual corresponding to the best fitness value is possible due to the fact that
only pseudo-classical operators [65] (i.e. Controlled NOT and Hadamard gates [62]) were applied
on the second (fitness) register, so that the correlation with the first (individual) register was not
destroyed.

Grover’s algorithm, interpreted as prescribed by reference [12], is a method of augmenting the
amplitude of oracle marked basis states, and it works even when the number of such states is not
known in advance. Therefore, Grover’s search will work even if the superposed basis states in the
search quantum register have uneven amplitudes. However, this means that the complexity assess-
ment of our proposed algorithm cannot be performed straightforwardly by referring to the complexity
of the initial algorithm (maximum finding quantum algorithm) which uses even amplitudes for the
basis states within the quantum superposition. Even if a much thorough investigation is required,
as far as the exact complexity analysis is concerned, we can assess the complexity with the following
proof. If the quantum amplitudes are not equal for all the superposed individual-fitness pair basis
states, an extra number of at most O (

√
n) steps are required to get to this point. Therefore, we

will have at most O (
√
n · √n) = O (n) steps to complete the execution of the Reduced Quantum

Genetic Algorithms. A practical example of how this algorithm works is presented in Appendix D.

5.6 Quantum evolutionary strategy

In this section we analyze how is affected the evolutionary strategy by the quantum computation
features, according to our perspective over the QGAs. Our main reference would be the general,
classical evolutionary computation systems, as described in reference [96] (pages 37-39). Figure 5.5
(a) is presenting the typical classical evolutionary system: generation of some individuals (usually
in a random manner), followed by the assessment-selection-variation loop (which will eventually
generate the solution).

The assessment process is based on computing fitness values, corresponding to the individuals
in the successive populations. Because we cannot be sure that the solution is an individual from the
current population, other individuals may be generated by sexual variation (crossover) or non-sexual
variation (mutation).

In our quantum computation approach, as presented in 5.5, the variation stage of the evolutionary
strategy is no longer necessary. The problem solving strategy for evolutionary quantum computation
is presented in Figure 5.5 (b). The generation stage means that all the possible individuals (valid
or non-valid) are generated as a basis-state superposition due to the fact that the qubits are used
to represent the chromosome (i.e. individual encoding). Then, the assessment is applied on all the
superposed individuals, therefore generating a fitness register, which consists of a superposition of
all the fitness values. The selection is applied on all the superposed individuals, which are available
within the quantum chromosome, by making use of Grover’s algorithm. The fact that all the
individuals are already available, as superposed, means that the techniques used for generating new
individuals are useless. Figure 5.5 (b) is reflecting this situation, because it is simpler than the model

5.6. QUANTUM EVOLUTIONARY STRATEGY 103

Generation (usually random)

Assessment (by fitness) Solution

Selection
(according to the assessment)

Variation
(crossover, mutation)

Classical
computation
(a)

Generation
(the entire population)

Assessment (by fitness) Solution

Selection
(according to the assessment)

Quantum
computation
(b)

Figure 5.5: A comparison between the classical and quantum evolutionary (and genetic)
algorithm strategy, inspired by [96].

104 CHAPTER 5. EVOLVABLE QUANTUM HARDWARE

from Figure 5.5 (a); this is the reason why we called the algorithm created according to this model
”Reduced Quantum Genetic Algorithm”.

5.7 Summary

This chapter described a methodology for running Genetic Algorithms on a Quantum Computer.
By taking advantage of the quantum computation features, all the possible chromosome binary
representations can be encoded in just one individual quantum register. This register is correlated
with its pair (fitness) register, which contains a superposition of all corresponding fitness values.
Due to quantum mechanical properties, measuring the highest fitness value in the fitness register,
leads to a post-measurement state of the corresponding individual register that contains superposed
basis state(s) encoding the individual(s) with the highest fitness.

Therefore, the initial problem is reduced to finding the best fitness value without destroying the
individual-fitness register correlation. This objective is achieved by adapting an existing quantum
algorithm for finding the maximum [2][28]. Without loosing the generality of the solution, the
adaptation requires that a specific structure be adopted for the fitness register, and a special oracle
be defined by employing two’s complement integer representation. As a result, the problem of finding
the highest fitness value can be solved by Grover’s algorithm without employing genetic operators
such as crossover and mutation.

We can conclude that the search strategy itself is different for QGAs in comparison with the
GAs; in fact, it isnt really genetic anymore. The special Oracle and Grover iterations are performing
m successive selection steps.

The fact that the complexity of the original quantum maximum finding algorithm is O (N) [2] and
our proposed algorithm is an adaptation of that does not increase the number of steps, indicates that
any GA may be performed on a Quantum Computer with polynomial efficiency. This consequence
would broaden the area of computational problems where the quantum solutions outperform the
classical ones, and can also be counterbalance to the rising skepticism that regards the effectiveness
of Grover’s search [116]. However, a thorough complexity analysis is required because, unlike the
initial algorithm, our proposal works with uneven quantum amplitudes in the search register.

Chapter 6

Conclusions

The new computational paradigms are subject for discussion within the computer science community
for a long time. Nevertheless, computer engineering has approached this subject for some years,
and a quite interesting debate has started, questioning whether Moore’s law is obsolete or not.
Regardless of the individual position and commitments involved in this debate, the general conclusion
is that the quest for new technologies is necessary in order to achieve significant progress in building
computational devices.

Because the new technology research efforts have soared, there is also commitment towards
concentrating these efforts on the most important issues. As already mentioned in the first chapter
of this thesis, the International Technology Roadmap for Semiconductors [126] is the worldwide
recognized document that defines the guidelines in order to achieve these goals.

This thesis acknowledges the objectives defined by the ITRS, and aims at contributing to devel-
oping CAD tools for designing quantum circuits – on one hand – and to designing fault tolerance
quantum algorithms and methodologies – on the other hand. Figures 6.1 and 6.2 present the ITRS
perspective on emerging technologies, including quantum computation, along with a illustrative
comparison with the classical CMOS technology.

As a reminder, we will present the main directions of this thesis:

Δ1) Runtime-efficient quantum circuits simulation;

Δ2) Design of fault-tolerant quantum circuits;

Δ3) Implementing evolvable quantum hardware;

The main motivating idea that underpins the whole thesis structure is to approach the quantum
computation field in a computer engineering fashion, by taking advantage of the already known
methodologies and tools developed in classical computer hardware design automation, CAD, recon-
figurable computing, and evolvable hardware.

This does dot mean that the proposed techniques are just a quantum counterpart for the clas-
sical ones; where the simple quantum adaptation is not appropriate, the necessary explanations are
provided along with emphasizing the distinctive characteristics of quantum computation.

This chapter will summarize the contributions of this thesis, by presenting the way goals stated
in Section 1.2 were approached from 3 points of view: the relevance for the ITRS document, the
original contributions, and what is to be done in the future with the proposed solutions.

105

106 CHAPTER 6. CONCLUSIONS

Figure 6.1: Emergent technology sequence, according to the Emerging Research Devices,
within the ITRS [126].

107

Figure 6.2: The parametric comparison between new technologies and CMOS – with respect
to speed, size, cost, and energy consumption – according to ITRS [126].

108 CHAPTER 6. CONCLUSIONS

6.1 Thesis relevance

6.1.1 Δ1 – Simulation

In the Emerging Research Devices (ERD) ITRS document [126], simulation is considered as playing
a ”key role (. . .) in characterizing the role of ERM (Emerging Research materials)”. Because we are
in the early stages of developing these new technologies, simulation cannot be very accurate, but it
can provide some valuable quantitative assessment means [126].

Some empirical and systematic modeling and simulation methodologies are required at the phys-
ical level, in order to deal with metrology needed for the assessments [126]. Although this thesis is
not concerned with this type of simulations, the results from the physical level are of great impor-
tance at the unitary level in quantum computation, especially when it’s about fault injection with
the fault abstract models, and error models taken into consideration for the QUERIST project.

The next subsection deals with the quantum fault tolerance imperatives, as described by ITRS
documents referring to ERD and ERM; but in order to assess the effectiveness of the quantum
FTAMs there has to be some simulation tool dedicated to that purpose. The guidelines for the
QUERIST project are intended to satisfy these needs.

6.1.2 Δ2 – Fault tolerance

In reference [126] (pages 37 - 41) the need for fault tolerant (”coherent”) quantum computation is
defined and characterized. The main enemy for all the technologies used (QED, trapped ions, and
solid state semiconductors and superconductors) is the decoherence phenomenon. ITRS states, as
we have already presented in Chapter 4, that the existing error correcting strategies are extremely
costly.

The fundamental issue is that classical approaches are used in order to fix massively parallel and
complex quantum state decoherence problems. Our rQGA and rQHW approaches use a quantum-
nature phenomenon (the superposed ECC circuits) in order to deal with the source of quantum ECC
inefficiency (unsafe recovery).

The fact that fault tolerance is a vital aspect for quantum computation is emphasized by the
fact that Table 64 from [126] urges the quest for efficient and lower-cost fault tolerance algorithms
and methodologies (FTAMs). The same table also points to a very important aspect which is still
opened to research solutions: quantum circuit testing is not possible directly.

6.1.3 Δ3 – Evolvable quantum hardware

This thesis direction has a special significance with respect to ITRS specifications, because it merges
two ERD architecture implementations (as presented in Table 64 from the [126] document): ”Bio-
logically Inspired Implementations” and ”Coherent Quantum Computation”.

Although this very idea was already brought up by others [33][96], this thesis proposes an original
view of this problem and provides the circuit implementation details.

6.2 Contributions

This section will enumerate the original contributions brought by this thesis, linked to the 3 main
directions as pointed in the prologue of the Chapter 6. The introductory first chapter provided the
motivation for the 3 directions (Δ1, Δ2, and Δ3) by presenting the thesis goals.

6.2. CONTRIBUTIONS 109

6.2.1 Δ1 – Simulation

Simulation of quantum computational systems is usually exponential. The quantum circuits make
no difference to this rule. Reducing the inner complexity of quantum circuit simulation may be a
prerequisite in approaching CAD and EDA (Electronic Design Automation) techniques to quantum
circuit design but, on the other hand, the polynomial simulation of quantum systems is not a realistic
goal. If a classical computer is able to simulate a quantum computer in polynomial time, then there
is no point in building a quantum computer in the first place. However, it was demonstrated that
quantum computation is much powerful than classical computation from the complexity point of
view [24].

Nevertheless, our quest is facilitated by the fact that there are few useful quantum algorithms
at this time, and therefore the involved quantum states will exhibit some a priori known patterns.
These features that can be capitalized on are also referred as simulation shortcuts [96].

This thesis proposes a HDL-based approach of quantum circuit simulation, which is appropriate
in the sense that it can be used for isolating the very source of simulation complexity – the entan-
glement phenomenon [105][106]. However, it was shown that this approach would not be effective
unless some sort of quantum state encoding is provided [106][107].

This encoding – used to facilitate effective quantum circuit simulation by providing incentive
for structural quantum circuit description even in the presence of entanglement – comes under the
form of the so-called bubble bit technique [107]. The experimental results show a better runtime
performance of our technique in comparison with the state-of-the-art. The drawback consists of
the memory overhead (polynomial with the number of qubits in the state) dictated by the bubble
records produced by the bubble bit insertion algorithm. Another advantage is that the bubble bit
technique can be easily adapted in order to allow fault injection [108].

Summarizing, the original contributions of this thesis in simulating quantum circuits are:

• a new, HDL-based, and entanglement-aware perspective on simulation of quantum circuits;

• a case study (concerning the well-known quantum algorithms: Shor, Grover, Deutsch-Jozsa)
aimed at defining the entanglemet role in quantum circuit simulation complexity [123];

• the bubble-bit encoding technique, which facilitates structural (therefore, polynomial) simu-
lation of quantum circuits;

• the guidlines for the QUERIST project, a tool that is designed to allow quantum fault injec-
tions in order to assess the effectiveness of the quantum FTAMs.

These achievements come with the following advantages:

• the simulation runtimes are significantly improved for Deutsch-Jozsa, Grover, and arithmetic
circuits involved in Shor’s algorithm;

• using the HDLs for quantum circuits description and simulation brings quantum computation
closer to design automation and future computer-aided design and test techniques;

• the bubble-bit technique is easily adaptable for simulation fault injection purposes.

The drawbacks, as compared with other gate-level simulation techniques, are:

• the memory overhead dictated by the bubble-bit encoding technique;

• the fact that the unitary transformations (which define the quantum gate actions) are also
encoded.

110 CHAPTER 6. CONCLUSIONS

6.2.2 Δ2 – Fault tolerance

Fault tolerance techniques are vital in quantum computation; therefore any progress in this area has
an important significance. Due to the nature of quantum computation, and the nature of the errors
that are affecting quantum circuits, detecting and correcting errors is difficult.

Due to the specific nature of quantum mechanics, implementing error correcting methods in
quantum circuits is confronted with a series of limitations and problems, which were surpassed
by ingenuous quantum circuit design techniques [76]. However, because of the high fault rate in
quantum computation, the problem can also be represented by the safe recovery.

The result is that arbitrary long fault tolerant quantum computation is not possible with only the
error correcting circuits. Therefore, besides appropriate coding (Steane-based codes [76]) the state-
of-the-art also relies on concatenated coding. However, as shown in this thesis, the concatenated
coding can be useless if the errors affecting the circuit are correlated.

Our solution [109] is based on designing the so-called reconfigurable (or programmable) Quantum
Gate Arrays (rQGA), as an application of the reconfigurable Quantum Hardware (rQHW) concept.
The reconfigurable quantum circuit has a quantum-nature configuration register (i.e. superposition
of states) which configures the rQGA as a superposition of distinct error-correcting circuits. Only
one of these circuits remains after measuring the configuration register, in order to be used for the
actual correction. However, the probability of an error occurring in the measured circuit decreases
exponentially with the number of actual superposed circuits.

Practical circuit implementation brings other problems to be solved, by further complicating the
issues. However, as shown in our analytical study, the proposed solution drastically improves the
accuracy threshold. Moreover, the circuit used for generating the configuration state is simplified,
thus dealing with the problem of preserving an accurate configuration.

Summarizing, the advantages brought by our solution are:

• it solves the problem of safe recovery in quantum error-correcting circuits;

• offers a solution of replacing the concatenated coding technique (prone to fail in the presence
of correlated errors), so that arbitrary long faul tolerant quantum computation is preserved;

• in fundamental terms, it brings a solution that exploits the exponential parallelism of quantum
computation in order to achieve dependability.

The limitations consists of the following issues:

• some gates are used by more than one superposed correcting circuit, thus an error affecting
that gate will affect more than one correcting circuit;

• the configuration state must be maintained accurately.

Even with the above-mentioned limitations, the main quantum circuit reliability measure (i.e.
the accuracy threshold) is significantly improved, with respect to the state-of-the-art [47][48].

6.2.3 Δ3 – Evolvable quantum hardware

This direction provides a solution within the computer-engineering context (i.e. is presenting a circuit
implementation of our approach) but its possible consequences transcend this field – it concerns the
computer science area.

6.3. FUTURE WORK 111

The initial goal was to develop a quantum counterpart for the versatile and robust evolvable
hardware concept. In classical computation EHW = RHW + GA (evolvable hardware = reconfig-
urable hardware + genetic algorithms), hence our objective can be reduced to designing a quantum
computation architecture for implementing genetic algorithms.

Again, the attempt to run GAs on quantum computers is not new [33], but the previous ap-
proaches were blocked when trying to build quantum counterparts for genetic operators [119] such as
crossover. Instead, our proposed view does not require crossover and mutation. As a matter of fact,
the selection mechanism consist of marking the ”better than current” partial solution individuals
(with a specially designed quantum oracle [62]) and then finding one of them with Grover’s algorithm
used as means for augmenting the amplitude of the marked states.

Another engineering ad-hoc decision was to define a special kind of fitness function, which will
return values even for non-valid individuals. The fitness values assigned to non-valid individuals
will clearly identify them. Therefore, one quantum register can be used to encode all the possible
individuals as superposed basis states. The individual with the best fitness will emerge by using and
adaptation of the already published maximum finding algorithm [2].

Even if the initial maximum finding algorithm has a O (
√
n) complexity, we cannot conclude that

this also the complexity of running GAs on the quantum computer, because the algorithm from [2]
deals with basis states that have all the same amplitude. Nevertheless, even if further investigation
is necessary in order to establish the exact complexity of the proposed Reduced Quantum Genetic
Algorithm (RQGA), the extra Grover steps used for extra-amplitude-augmentation will be no more
than O (

√
n). This means that the overall complexity cannot be more than O (n).

As a summary, we present the main achievement of this thesis’ third direction:

• for the first time, a comprehensive QGA (Quantum Genetic Algorithm) implementation is
presented;

• it is shown that the crossover and mutation operators are not necessary;

• the selection is made by means of specific quantum computation features, reducing the selection
process to Grover’s algorithm working with a specially-designed quantum oracle.

The most important consequence of the proposed QGA implemetation is that QGAs will outper-
form the classical implementations, with the observation that the exact complexity of our algorithm
(RQGA) is still to be assessed.

6.3 Future work

This thesis has addressed an emerging subject, the design of reliable quantum circuits. We are still
quite far from actually developing such devices on a commercial scale, but the academia and the
industry are preoccupied with the possibility of encountering such problems.

However, even if we will got to a point where the manufacturability of such devices becomes possi-
ble, design automation and CAD techniques will encounter the fundamental problem of exponential-
time simulation for quantum circuits (and quantum systems in general). Of course this drawback
must be dealt with in advance, in order not to affect the scalability of the automated designs.

Another aspect consists of dealing with the reliability issues in quantum circuitry. Without
specialized algorithms and methodologies used for mitigating the destructive effect of decoherence
in quantum states, there could be no realistic prospect of quantum computation.

112 CHAPTER 6. CONCLUSIONS

This thesis tries to deal with all these problems, by proposing a computer engineering view on
the field of quantum computation. It is inevitable, however, that this thesis covers a lot of other
issues from physics, computer science, placing itself at the frontiers of computation research.

It comes as obvious that this thesis is one of the many efforts to open a new highway on computer
engineering research. A lot is still to be done on all of the approached issues, but this thesis underpins
the idea that HDLs can be used successfully in simulating quantum circuits and in quantum simulated
fault injection. These elements must be subsequently used by automated quantum circuit design
techniques.

In the field of quantum reliability, this thesis shows the fact that reconfigurable (or program-
mable) arrays of gates could offer the ideal platform for building robust error-correcting circuits.
Also, genetic algorithms can program the reconfigurable quantum hardware, thus incentives for de-
veloping evolvable quantum hardware are created. As a consequence, we bring together two very
hot directions in emerging technology research. Still, a lot is to be done, including the development
of intrinsic fault tolerant quantum devices, innovative error correcting encoding, and finding new
applications for the QEHW concept.

We will now summarize what we think that is to be pursued in this area, by having the present
thesis as one of the emergence points.

6.3.1 Δ1 – Simulation

• Exploring the possibility of improving the bubble-bit encoding method, in order to reduce the
bubble record burden.

• Unitary-level automated synthesis [120] [121] [125] for our developed HDL-based simulation
framework.

• Integrating simulated fault injection technique, which has been developed in this thesis, in the
design process.

• Approaching system-level design in quantum computation.

• Using simulated fault injection for developing fault-tolerant architectures at the system level.

6.3.2 Δ2 – Fault tolerance

• Extending the rQGA technique for safe recovery, so that it will become suitable for more
quantum error-correcting codes.

• Developing reconfiguration techniques in order to avoid fighting with correlated errors.

• Settling the issue of concatenated coding necessity, when the rQGA technique is applied.

• Finding the most suitable quantum technology for the configuration register and for the rQGA
structure itself.

6.3.3 Δ3 – Evolvable quantum hardware

• Finding the exact complexity for the Quantum Genetic Algorithms.

• Finding applications for the Evolvable Quantum Hardware Concept.

6.3. FUTURE WORK 113

• Exploring the possibility of developing Quantum Cellular Automata (QCA) on EQHW plat-
forms.

114 CHAPTER 6. CONCLUSIONS

Appendix A

VHDL Description of Elementary
Quantum Gates

In order to describe the simple gates, a data structure must be built so that we can represent qubits
and quantum registers according to the matrix model. We have reduced the data package to the
necessary. Also, the example VHDL code fragments provided in this appendix are stripped from
any irrelevant statements or instructions.

The data structure
library ieee;

use ieee.math real.all;
use ieee.math complex.all;
package quantum is
type qubit is array(0 to 1) of complex;

type quregister is array(natural range<>)of complex;

type qubit vector is array(natural range<>)of qubit;

end quantum;

Another useful feature would be a function for transforming a register quantum state into a new
state, including an extra-qubit:

function tensor product 1(reg:quregister;qb:qubit)return quregister is
variable newreg:quregister;

variable half,odd:integer;

begin
assert power 2(reg’length)
report "not a valid quregister state"

severity error;
l1:for i in 0 to (2* reg’length)-1 loop
half:=i/2;

odd:=i-(2*half);

newreg(i):=reg(half)*qubit(odd);

end loop l1;

return newreg;

end tensor product 1;

115

116 APPENDIX A. VHDL DESCRIPTION OF ELEMENTARY QUANTUM GATES

This function can be included in the above package. Here, the function power 2 returns true if
its integer argument is a power of 2, and false if it isn’t.

A.1 Hadamard gate

The representation and the characterizing matrix for this gate are presented in Figure A.1. The
describing VHDL code follows:

H
1 11

1 12
H =

-

Figure A.1: Hadamard gate representation and corresponding unitary matrix.

entity walsh hadamard gate is
generic(delay:time);
port(intrare:in qubit; iesire:out qubit);
end walsh hadamard gate;
architecture whg a of walsh hadamard gate is
begin
iesire(0)<= (1.00/sqrt(2.00))*(intrare(0)+intrare(1)) after delay;
iesire(1)<= (1.00/sqrt(2.00))*(intrare(0)-intrare(1)) after delay;
end whg a;

A.2 Negation gate

N
0 1

1 0
xN = =�

Figure A.2: Negation gate representation and corresponding unitary matrix.

Figure A.2 presents the symbol used for this gate along with the corresponding gate. The
describing VHDL code is:

entity not gate is
generic(delay:time);
port(intrare:in qubit; iesire:out qubit);
end not gate;
architecture ng a of not gate is
begin
iesire(0)<= intrare(1) after delay;
iesire(1)<= intrare(0) after delay;
end ng a;

A.3. ROTATION GATE 117

A.3 Rotation gate

cos sin
2 2

()

sin cos
2 2

yR =

-

Ry()	 	

	 	

	 	

i
2

-i
2

e 0
()

0 e

zR =Rz()

Figure A.3: Rotation gates representation with corresponding unitary matrixes.

Figure A.3 presents the symbol used for this gates along with the corresponding gate. The
rotation gate is a generalization of Haddamard gate, operating only on a single qubit. Ry (θ) is the
rotation with θ around axis ŷ, while Rz (φ) is the rotation with φ around axis ẑ The appropriate
VHDL code is:

library ieee;
use ieee.math real.all;
use ieee.math complex.all;
entity y rotation gate is
generic(theta:real;delay:time);
port(intrare:in qubit; iesire:out qubit);
end y rotation gate;
architecture yrg a of y rotation gate is
begin
process(intrare)
variable sinus,cosinus:real;
begin
sinus:=sin(theta/2);
cosinus:=cos(theta/2);
iesire(0)<=cosinus*intrare(0)+sinus*intrare(1) after delay;
iesire(1)<=cosinus*intrare(1)-sinus*intrare(0) after delay;
end process;
end yrg a;
entity z rotation gate is
generic(phi:principal value;delay:time);
port(intrare:in qubit; iesire:out qubit);
end z rotation gate;
architecture zrg a of z rotation gate is
begin
process(intrare)
variable element0,element1:complex polar;
begin

118 APPENDIX A. VHDL DESCRIPTION OF ELEMENTARY QUANTUM GATES

element0.arg:=phi/2;element0.mag:=1;
element1.arg:=-(phi/2);element1.mag:=1;
iesire(0)<=element0*intrare(0) after delay;
iesire(1)<=element1*intrare(1) after delay;
end process;
end zrg a;

A.4 Conditional phase-shift gate

The conditional phase shift gate is a gate that could operate on more than one qubit as presented
Figure A.4. Besides the matrix expression, in this figure will appear the corresponding symbol. The
VHDL description of this n-qubit gate must take into account the fact that the state of the n qubits
is not always describable as the tensor product of the individual qubit states. Therefore, the simplest
way to simulate this gate is to have as input and output the overall input and output states (type
quregister):

i

1 0 0 0

0 1 0

0 0 1
()

1 0

0 0 e

P =P()�

�

�

Figure A.4: A n-qubit conditional phase-shift gate representation, with the 2n × 2n-size cor-
responding unitary matrix.

entity phase shift is
generic(epsilon:real;delay:time);
port(intrare:in quregister; iesire:out quregister);
end phase shift;
architecture ps a of phase shift is
begin
process(intrare)
variable temp:quregister;
variable tmp,phase:complex polar;
variable lg:integer;
begin
lg:=intrare’length;
l1:for i in 0 to lg-2 loop
temp(i):=intrare(i);
end loop l1;
phase.mag:=1;phase.arg:=epsilon;
tmp:=complex to polar(intrare(lg-1))*phase;
temp(lg-1):=polar to complex(tmp);
iesire<=temp after delay;

A.5. XOR AND TOFFOLI GATES 119

end process;
end ps a;

A.5 XOR and Toffoli gates

The XOR and Toffoli gates are in the same unitary gate class CNOTn−qubit, where XOR =
CNOT2−qubit and TOFF = CNOT3−qubit. Figure A.5 a,b, and c, present the XOR, TOFF and
the general CNOTn−qubit gates.

x0

z x0z

x0

a) XOR

x0

z (x0 x1)z

x0

x1 x1

b) TOFFOLI

x0

z z

x0

x1 x1

xn-2 xn-2

c) CNOTn-qubit

i=0

n-2

xi

Figure A.5: CNOT gates: a) XOR; b) TOFFOLI; c) the general CNOT operating on n
qubits.

Then, the description for the general n-qubit CNOT gate is:

entity c not is
generic(delay:time);
port(intrare:in quregister; iesire:out quregister);
end c not;
architecture cnot a of c not is
begin
process(intrare)
variable lg:integer;
variable temp:quregister;
begin
lg:= intrare’length;
assert lg-1 > 1
report "not a valid gate"
severity error;
l1:for i in 0 to (intrare’length)-1 loop
if i < lg-2
temp(i):=intrare(i);
elsif i=lg-2 then
temp(i):=intrare(i+1);
elsif i=lg-1 then
temp(i):=intrare(i-1);
end if;
end loop l1;

120 APPENDIX A. VHDL DESCRIPTION OF ELEMENTARY QUANTUM GATES

iesire<=temp after delay;
end process;
end cnot a;

A.6 Swap gate

The SWAP gate is operating over 2 qubits. Its matrix expression along with the symbol are given
in Figure A.6. The VHDL code follows:

SWAP

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

SWAP =
x

y x

y

Figure A.6: The symbol and corresponding unitary matrix for the SWAP gate.

entity swap gate is
generic(delay:time);
port(intrare:in quregister; iesire:out quregister);
end swap gate;
architecture arh sw of swap gate is
begin
process(intrare)
variable temp:quregister;
variable lg:integer;
begin
lg:= intrare’length;
assert lg /= 4
report "not a valid swap gate"
severity error;
temp(0):=intrare(0);temp(3):=intrare(3);
temp(1):=intrare(2);temp(2):=intrare(1);
iesire<=temp after delay;
end process;
end arh sw;

A.7 Quantum adders

The quantum adder, operating over a quantum register, is a composition of pseudo-classical oper-
ators. A n-qubit quantum adder or qadder could be decomposed in n 1-qubit full qadders. The
unitary expression of the 1-qubit qadder is

SUM1−qubit : |x, y, cin, 0〉 −→ |x, y, x⊕ y ⊕ cin, x · y + x · cin + y · cin〉 (A.1)

based on the equations of the classical 1-bit full adder [67][71].

A.7. QUANTUM ADDERS 121

Since we are forced to use only valid quantum pseudo-classical operators, the unitary diagram
of the 1-qubit quadder cell is the quantum network from Figure A.7.

x

y

Cin

Scratch

x

y

Cout

z �q

x

y

Cin

Scratch

x

y

Cout

z

Figure A.7: 1-Qubit full quadder, implemented with unitary gatesXOR and TOFF [63][113].

The way to get z is straightforward, z = x⊕ y ⊕ cin, but getting cout is much tricky. Therefore,
we must rewrite the classical cout expression so that it could be implemented with TOFF and XOR
gates:

cout = xy + xcin + ycin
= xycin + xycin + xcin + xycin + xycin
= y (x⊕ cin) + xcin + xycin
= y (x⊕ cin) + xcin
= [y (x⊕ cin)] ⊕ cin

(A.2)

because
ab+ b = a
a+ b = (a⊕ b) + ab

(A.3)

and
xciny (x⊕ cin) = xcinxcin + xcinyxcin = 0 + 0 = 1. (A.4)

Thus, the VHDL description is (entanglement is considered absent):

entity add cell is
port(x,y,cin,scratch:in qubit;xo,yo,z,cout:out qubit);
end add cell;
architecture structural of add cell is
component xor gate
generic(delay:time);
port(a,b:in qubit;a,rez:out qubit);
end component;
component toffoli gate
generic(delay:time);
port(a,b,c:in qubit;a,b,rez:out qubit);
end component;
signal t1,t2:qubit;
begin
c1:toffoli gate
generic map(delay=>10 ns);
port map(a=>x,b=>y,c=>scratch,rez=>t2);
c2:xor gate

122 APPENDIX A. VHDL DESCRIPTION OF ELEMENTARY QUANTUM GATES

generic map(delay=>10 ns);
port map(a=>x,b=>cin,rez=>t1);
c3:toffoli gate
generic map(delay=>10 ns);
port map(a=>y,b=>t1,c=>t2,rez=>cout);
c4:xor gate
generic map(delay=>10 ns);
port map(a=>y,b=>t1,rez=>z);
xo<=x;yo<=y;
end structural;
The typical way to operate for the quantum adder is making use of its ability to sum all the

possible superposed input states. In our case, for the 1-qubit adder from Figure A.7, qubits x and y
could be prepared to represent the superposition state of the 4 classical distinct states (eigenvectors
in a H4 Hilbert space): |00〉, |01〉, |10〉 and |11〉. In this situation (Figure A.8), carry in is |1〉 and
each superposed classical state contains the input qubit values and the corresponding output bit
values. When measuring the output state, the outcome will be one of the superposed input classical
states, with the corresponding output values (see Figure A.8 for details).

H

H0

0

0

1

1 1 1 1
00 01 10 11

2 2 2 2
= + + +�

()
1

0010 0101 1001 1111
2

= + + +

Figure A.8: A 1-qubit full quadder operating over a superposition of possible classical states
for inputs x and y. Carry in is |1〉 in this example, |ψ〉 is the state of inputs x and y (|x, y〉)
while |φ〉 is the state of the 4-qubit output.

The way that 1-qubit full quadder cells could be combined so that an n-qubit qadder is obtained
is presented in Figures A.9 and A.10.

The corresponding code, which is valid in the absence of entanglement, is:

entity adder 4 is
port(x,y,scratch:in qubit vector(0 to 3);cin:in qubit;
xx,yy,z:out qubit vector(0 to 3);cout:out qubit);
end adder 4;
architecture struct of adder 4 is
component add cell
port(xi,yi,ci,scr:in qubit;xo,yo,zo,co:out qubit);
end add cell;
constant zero:qubit:=((1,0),(0,0));
signal carry:qubit vector(0 to 3);

A.7. QUANTUM ADDERS 123

�q

x0

y0

z0

x0

y0

0

0
�q

0

x1

y1

x1

y1

z1

�q

0

xn-1

yn-1

zn-1

xn-1

yn-1

Coutn-1

Figure A.9: An n-qubit adder obtained by rippling the carry. Note that we need n scratch
qubits for completing this operation.

�qn

X n[-1:0]

Cout

Y n[-1:0]

Cin

Scratch n[-1:0]

X n[-1:0]

Y n[-1:0]

Z n[-1:0]

n

n

n

n

n

n

Figure A.10: The symbol for the n-qubit, used in quantum networks, with its details contained
in Figure A.9.

124 APPENDIX A. VHDL DESCRIPTION OF ELEMENTARY QUANTUM GATES

begin
u1:add cell
port map(xi=>x(0),yi=>y(0),ci=>zero,scr=>zero,
xo=>xx(0),yo<=yy(0),zo<=z(0),
co=>carry(0));
u2:add cell
port map(xi=>x(1),yi=>y(1),ci=>carry(0),scr=>zero,
xo=>xx(1),yo<=yy(1),zo<=z(1),
co=>carry(1));
u3:add cell
port map(xi=>x(2),yi=>y(2),ci=>carry(1),scr=>zero,
xo=>xx(2),yo<=yy(2),zo<=z(2),
co=>carry(2));
u4:add cell
port map(xi=>x(3),yi=>y(3),ci=>carry(2),scr=>zero,
xo=>xx(3),yo<=yy(3),zo<=z(3),
co=>carry(3));
cout<=carry(3);
end struct;

Appendix B

Deutsch-Jozsa Algorithm Simulation

The VHDL description of a circuit implementing Deutsch’s algorithm is contained in ”deutsch.vhd”:
library ieee;
use ieee.math real.all;
use ieee.math complex.all;
package quantum is
type qubit is array(0 to 1) of complex;
type quregister is array(natural range<>)of complex;
end quantum;
library ieee;
use ieee.math real.all;
use ieee.math complex.all;
use work.quantum.all;
entity deutsch is
port (xi,yi:in qubit;f0,f1:in bit; rez:out bit);
end deutsch;
architecture structural of deutsch is
component walsh hadamard gate
port(intrare:in qubit;iesire:out qubit);
end component;
component walsh hadamard phase
port(intrare:in qubit;iesire:out qubit);
end component;
component ufd gate
port(xii,yii:in qubit;fd0,fd1:in bit;xoo,yoo:out qubit);
end component;
component measure phase
port(intrare:in qubit;vector baza:out bit);
end component;
signal x in,y in,qx1,qy1,qx2,qy2:qubit;
signal fct0,fct1:bit;
begin
c1: walsh hadamard gate
port map(x in,qx1);
c2: walsh hadamard gate

125

126 APPENDIX B. DEUTSCH-JOZSA ALGORITHM SIMULATION

port map(y in,qy1);
c3: ufd gate
port map(qx1,qy1,fct0,fct1,qx2,qy2);
c4: measure phase
port map(qx2,rez);
x in(0).im <= 0.00;
x in(1).im <= 0.00;
x in(0).re <= 1.00;
x in(1).re <= 0.00;
y in(0).im <= 0.00;
y in(1).im <= 0.00;
y in(0).re <= 0.00;
y in(1).re <= 1.00;
fct0 <= ’1’;
fct1 <= ’0’;
end structural;
configuration cf deutsch of deutsch is
for structural
end for;
end cf deutsch;
library ieee;
use ieee.math real.all;
use ieee.math complex.all;
use work.quantum.all;
entity ufd gate is
port(xii,yii:in qubit;fd0,fd1:in bit;xoo,yoo:out qubit);
end ufd gate;
architecture b of ufd gate is
begin
process (xii,yii)
variable a0,a1:real;
begin
if fd0=’0’ then a0:=1.00;
else a0:=-1.00;
end if;
if fd1=’0’ then a1:=1.00;
else a1:=-1.00;
end if;
xoo(0)<= (a0*xii(0)) after 10 ns;
xoo(1)<= (a1*xii(1)) after 10 ns;
yoo<=yii after 10 ns;
end process;
end b;
library ieee;
use ieee.math real.all;
use ieee.math complex.all;
use work.quantum.all;
entity measure phase is

B.1. TIME DIAGRAMS FOR VHDL SIMULATION OF DEUTSCH’S ALGORITHM 127

port(intrare:in qubit;vector baza:out bit);
end measure phase;
architecture m of measure phase is
begin
process (intrare)
variable bal eq:bit;
begin
if intrare(0).im=0.00 and intrare(1).im=0.00 then
if ((intrare(0).re)*(intrare(1).re)) >= 0.00 then
bal eq:= ’0’;
else bal eq:=’1’;
end if;
end if;
vector baza <= bal eq after 5 ns;
end process;
end m;
library ieee;
use ieee.math real.all;
use ieee.math complex.all;
use work.quantum.all;
entity walsh hadamard gate is
port(intrare:in qubit;iesire:out qubit);
end walsh hadamard gate;
architecture whg a of walsh hadamard gate is
begin
iesire(0)<=(1.00/sqrt(2.00))*(intrare(0)+intrare(1))
after 10 ns;
iesire(1)<=(1.00/sqrt(2.00))*(intrare(0)-intrare(1))
after 10 ns;
end whg a;

B.1 Time diagrams for VHDL simulation of Deutsch’s

algorithm

B.1.1 For a balanced oracle

The time diagram resulted from simulating the algorithm, for a balanced oracle, is presented in
Figure B.1.

B.1.2 For a constant oracle

The time diagram resulted from simulating the algorithm, for a constant oracle, is presented in
Figure B.2.

128 APPENDIX B. DEUTSCH-JOZSA ALGORITHM SIMULATION

Figure B.1: Simulation results for Deutsch-Jozsa algorithm, when the oracle is a balanced
function.

B.1. TIME DIAGRAMS FOR VHDL SIMULATION OF DEUTSCH’S ALGORITHM 129

Figure B.2: Simulation results for Deutsch-Jozsa algorithm, when the oracle is a constant
function.

130 APPENDIX B. DEUTSCH-JOZSA ALGORITHM SIMULATION

Appendix C

Grover Algorithm Simulation (2-qubit
querry)

library ieee;
use ieee.math real.all;
use ieee.math complex.all;
package qupack is
-- the qubit state representation
type qubit is array(0 to 1)of complex;
-- array of qubits representation
type qubit vector is array(natural range<>)of qubit;
-- quantum register overall state representation
type quregister is array(natural range<>) of complex;
-- the type describing bubble structure
type bubb is record
nature:integer;
position:integer;
end record;
-- the bubble type
type bubble type is array(natural range<>) of bubb;
-- structure of bubble records
type rec rec is record
bubble:bubble type(0 to 1);
zeros:integer;
end record;
-- data type for bubble records
type bubble record is array(natural range<>) of rec rec;
-- data type for simulation of 2-qubit circuits
-- when ent=true we have entanglement and ’qr’ field
-- will be taken into consideration
type qudata 2q is record
qr:quregister(0 to 3);
qa:qubit vector(0 to 1);
ent:boolean;
end record;
type qudata 3q is record
qr:quregister(0 to 7);
qa:qubit vector(0 to 2);
bub:bubble record (0 to 1);

131

132 APPENDIX C. GROVER ALGORITHM SIMULATION (2-QUBIT QUERRY)

ent:boolean;
end record;
end qupack;
use work.qupack.all;
library ieee;
use ieee.math real.all;
use ieee.math complex.all;
entity grover circ is
port(search regi:in qudata 3q;ansi:in qubit;rez:out bit vector(0 to 3));
end grover circ;
architecture struct1 of grover circ is
component level1
port(si:in qudata 3q;ai:in qubit;so:out qudata 3q;ao:out qubit);
end component;
component oracle
port(si:in qudata 3q;ai:in qubit;so:out qudata 3q;ao:out qubit);
end component;
component level2
port(si:in qudata 3q;ai:in qubit;so:out qudata 3q;ao:out qubit);
end component;
component phase shift
port(si:in qudata 3q;ai:in qubit;so:out qudata 3q;ao:out qubit);
end component;
component level3
port(si:in qudata 3q;ai:in qubit;so:out qudata 3q;ao:out qubit);
end component;
component measurement
port(si:in qudata 3q;ai:in qubit; r:out bit vector(0 to 3));
end component;
component ent anal
port(si:in qudata 3q;ai:in qubit;so:out qudata 3q;ao:out qubit);
end component;
signal ta,search rego t,search rego tt,search rego ttt,search rego tttt,
search rego ttttt:qudata 3q;
signal tata,anso t,anso tt,anso ttt,anso tttt,anso ttttt:qubit;
begin
c1:level1 port map(search regi,ansi,search rego t,anso t);
c2:oracle port map(search rego t,anso t,search rego tt,anso tt);
c3:level2 port map(search rego tt,anso tt,search rego ttt,anso ttt);
c4:phase shift port map(search rego ttt,anso ttt,search rego tttt,anso tttt);
c41:ent anal port map(search rego tttt,anso tttt,ta,tata);
c5:level3 port map(ta,tata,search rego ttttt,anso ttttt);
c6:measurement port map(search rego ttttt,anso ttttt,rez);
end struct1;
architecture struct bub of grover circ is
component level1
port(si:in qudata 3q;ai:in qubit;so:out qudata 3q;ao:out qubit);
end component;
component oracle bub
port(si:in qudata 3q;ai:in qubit;so:out qudata 3q;ao:out qubit);
end component;
component level2 bub
port(si:in qudata 3q;ai:in qubit;so:out qudata 3q;ao:out qubit);
end component;

133

component phase shift bub
port(si:in qudata 3q;ai:in qubit;so:out qudata 3q;ao:out qubit);
end component;
component level3 bub
port(si:in qudata 3q;ai:in qubit;so:out qudata 3q;ao:out qubit);
end component;
component measurement bub
port(si:in qudata 3q;ai:in qubit; r:out bit vector(0 to 3));
end component;
signal search rego t,search rego tt,search rego ttt,search rego tttt,
search rego ttttt:qudata 3q;
signal anso t,anso tt,anso ttt,anso tttt,anso ttttt:qubit;
begin
c1:level1 port map(search regi,ansi,search rego t,anso t);
c2:oracle bub port map(search rego t,anso t,search rego tt,anso tt);
c3:level2 bub port map(search rego tt,anso tt,search rego ttt,anso ttt);
c4:phase shift bub port map(search rego ttt,anso ttt,search rego tttt,anso tttt);
c5:level3 bub port map(search rego tttt,anso tttt,search rego ttttt,anso ttttt);
c6:measurement bub port map(search rego ttttt,anso ttttt,rez);
end struct bub;
use work.qupack.all;
library ieee;
use ieee.math real.all;
use ieee.math complex.all;
entity level1 is
port(si:in qudata 3q;ai:in qubit;so:out qudata 3q;ao:out qubit);
end level1;
architecture l1a b of level1 is
begin
process (si,ai)
variable r:qudata 3q;
variable ti : quregister(0 to 7);
variable ra:qubit;
variable ati : quregister(0 to 1);
begin
l1: for i in 0 to 7 loop ti(i):=si.qr(i);
end loop l1;
ati(0):=ai(0);ati(1):=ai(1);
r.qr(0):=(1.00/2.00)*(ti(0)+ti(2)+ti(4)+ti(6));
r.qr(1):=(1.00/2.00)*(ti(1)+ti(3)+ti(5)+ti(7));
r.qr(2):=(1.00/2.00)*(ti(0)-ti(2)+ti(4)-ti(6));
r.qr(3):=(1.00/2.00)*(ti(1)-ti(3)+ti(5)-ti(7));
r.qr(4):=(1.00/2.00)*(ti(0)+ti(2)-ti(4)-ti(6));
r.qr(5):=(1.00/2.00)*(ti(1)+ti(3)-ti(5)-ti(7));
r.qr(6):=(1.00/2.00)*(ti(0)-ti(2)-ti(4)+ti(6));
r.qr(7):=(1.00/2.00)*(ti(1)-ti(3)-ti(5)+ti(7));
r.qa:=si.qa;
ra(0):=(1.00/sqrt(2.00))*(ati(0)+ati(1));
ra(1):=(1.00/sqrt(2.00))*(ati(0)-ati(1));
r.ent:=true; r.bub:=si.bub;
so <= r after 10 ns; ao <= ra after 10 ns;
end process;
end l1a b;
architecture l1a s of level1 is

134 APPENDIX C. GROVER ALGORITHM SIMULATION (2-QUBIT QUERRY)

component Hadamard gate
port(qi:in qubit;qo:out qubit);
end component;
component Identity gate
port(qi:in qubit;qo:out qubit);
end component;
begin
c1: Hadamard gate port map(si.qa(0),so.qa(0));
c2: Hadamard gate port map(si.qa(1),so.qa(1));
c3: Hadamard gate port map(ai,ao);
c4: Identity gate port map(si.qa(2),so.qa(2));
so.ent<=false after 10 ns;
so.qr<=si.qr after 10 ns;
so.bub<=si.bub after 10 ns;
end l1a s;
use work.qupack.all;
library ieee;
use ieee.math real.all;
use ieee.math complex.all;
entity Hadamard gate is
port(qi:in qubit;qo:out qubit);
end Hadamard gate;
architecture hga of Hadamard gate is
begin
qo(0)<=(1.00/sqrt(2.00))*(qi(0)+qi(1))after 10 ns;
qo(1)<=(1.00/sqrt(2.00))*(qi(0)-qi(1))after 10 ns;
end hga;
use work.qupack.all;
library ieee;
use ieee.math real.all;
use ieee.math complex.all;
entity Identity gate is
port(qi:in qubit;qo:out qubit);
end Identity gate;
architecture iga of Identity gate is
begin
qo(0)<= qi(0) after 10 ns;
qo(1)<= qi(1) after 10 ns;
end iga;
use work.qupack.all;
library ieee;
use ieee.math real.all;
use ieee.math complex.all;
entity hnh gate is
port(qi:in qubit;qo:out qubit);
end hnh gate;
architecture hnha of hnh gate is
begin
qo(0)<= qi(0) after 10 ns;
qo(1)<= (-1.00)*qi(1) after 10 ns;
end hnha;
use work.qupack.all;
library ieee;
use ieee.math real.all;

135

use ieee.math complex.all;
entity test grover is
end test grover;
architecture tga of test grover is
component grover circ
port(search regi:in qudata 3q;ansi:in qubit;rez:out bit vector(0 to 3));
end component;
signal ts:qudata 3q;
signal ta:qubit;
signal ro:bit vector(0 to 3);
begin
t1:grover circ port map(ts,ta,ro);
process
variable tsv:qudata 3q;
variable tav:qubit;
begin
tsv.ent:=false;
tsv.qr(0).re:=1.00;tsv.qr(0).im:=0.00;
tsv.qr(1).re:=0.00;tsv.qr(1).im:=0.00;
tsv.qr(2).re:=0.00;tsv.qr(2).im:=0.00;
tsv.qr(3).re:=0.00;tsv.qr(3).im:=0.00;
tsv.qr(4).re:=0.00;tsv.qr(4).im:=0.00;
tsv.qr(5).re:=0.00;tsv.qr(5).im:=0.00;
tsv.qr(6).re:=0.00;tsv.qr(6).im:=0.00;
tsv.qr(7).re:=0.00;tsv.qr(7).im:=0.00;
tsv.qa(0)(0).re:=1.00;tsv.qa(0)(0).im:=0.00;
tsv.qa(0)(1).re:=0.00;tsv.qa(0)(1).im:=0.00;
tsv.qa(1)(0).re:=1.00;tsv.qa(1)(0).im:=0.00;
tsv.qa(1)(1).re:=0.00;tsv.qa(1)(1).im:=0.00;
tsv.qa(2)(0).re:=1.00;tsv.qa(2)(0).im:=0.00;
tsv.qa(2)(1).re:=0.00;tsv.qa(2)(1).im:=0.00;
tsv.bub(0).zeros:=0;
tsv.bub(0).bubble(0).nature:=0;
tsv.bub(0).bubble(0).position:=-1;
tsv.bub(0).bubble(1).nature:=0;
tsv.bub(0).bubble(1).position:=-1;
tsv.bub(1).zeros:=0;
tsv.bub(1).bubble(0).nature:=0;
tsv.bub(1).bubble(0).position:=-1;
tsv.bub(1).bubble(1).nature:=0;
tsv.bub(1).bubble(1).position:=-1;
tav(0).re:=0.00;tav(0).im:=0.00;
tav(1).re:=1.00;tav(1).im:=0.00;
ts<=tsv;
ta<=tav;
wait;
end process;
end tga;
configuration beh sim of grover circ is
for struct1
for c1:level1 use entity work.level1(l1a b);
end for;
end for;
end beh sim;

136 APPENDIX C. GROVER ALGORITHM SIMULATION (2-QUBIT QUERRY)

configuration bub sim of test grover is
for tga
for t1:grover circ use entity work.grover circ(struct bub);
end for;
end for;
end bub sim;
use work.qupack.all;
library ieee;
use ieee.math real.all;
use ieee.math complex.all;
entity oracle is
port(si:in qudata 3q;ai:in qubit;so:out qudata 3q;ao:out qubit);
end oracle;
architecture oa b of oracle is
begin
process (si,ai)
variable r:qudata 3q;
variable ti : quregister(0 to 7);
begin
if si.ent then
l1: for i in 0 to 7 loop ti(i):=si.qr(i);
end loop l1;
else
ti(0):=si.qa(0)(0)*si.qa(1)(0)*si.qa(2)(0);
ti(1):=si.qa(0)(0)*si.qa(1)(0)*si.qa(2)(1);
ti(2):=si.qa(0)(0)*si.qa(1)(1)*si.qa(2)(0);
ti(3):=si.qa(0)(0)*si.qa(1)(1)*si.qa(2)(1);
ti(4):=si.qa(0)(1)*si.qa(1)(0)*si.qa(2)(0);
ti(5):=si.qa(0)(1)*si.qa(1)(0)*si.qa(2)(1);
ti(6):=si.qa(0)(1)*si.qa(1)(1)*si.qa(2)(0);
ti(7):=si.qa(0)(1)*si.qa(1)(1)*si.qa(2)(1);
end if;
r.qr(0):=ti(0);
r.qr(1):=ti(1);
r.qr(2):=ti(2);
r.qr(3):=ti(3);
r.qr(4):=-1.00 *ti(4);
r.qr(5):=ti(5);
r.qr(6):=ti(6);
r.qr(7):=ti(7);
r.qa:=si.qa; r.bub:=si.bub;
r.ent:=true;
so <= r after 10 ns; ao <= ai after 10 ns;
end process;
end oa b;
use work.qupack.all;
library ieee;
use ieee.math real.all;
use ieee.math complex.all;
entity level2 is
port(si:in qudata 3q;ai:in qubit;so:out qudata 3q;ao:out qubit);
end level2;
architecture l2a b of level2 is
begin

137

process (si,ai)
variable r:qudata 3q;
variable ti : quregister(0 to 7);
begin
l1: for i in 0 to 7 loop ti(i):=si.qr(i);
end loop l1;
r.qr(0):=(1.00/2.00)*(ti(0)+ti(2)+ti(4)+ti(6));
r.qr(1):=(1.00/2.00)*(ti(1)+ti(3)+ti(5)+ti(7));
r.qr(2):=(1.00/2.00)*(ti(0)-ti(2)+ti(4)-ti(6));
r.qr(3):=(1.00/2.00)*(ti(1)-ti(3)+ti(5)-ti(7));
r.qr(4):=(1.00/2.00)*(ti(0)+ti(2)-ti(4)-ti(6));
r.qr(5):=(1.00/2.00)*(ti(1)+ti(3)-ti(5)-ti(7));
r.qr(6):=(1.00/2.00)*(ti(0)-ti(2)-ti(4)+ti(6));
r.qr(7):=(1.00/2.00)*(ti(1)-ti(3)-ti(5)+ti(7));
r.qa:=si.qa;
r.ent:=true; r.bub:=si.bub;
so <= r after 10 ns; ao <= ai after 10 ns;
end process;
end l2a b;
use work.qupack.all;
library ieee;
use ieee.math real.all;
use ieee.math complex.all;
entity phase shift is
port(si:in qudata 3q;ai:in qubit;so:out qudata 3q;ao:out qubit);
end phase shift;
architecture pha b of phase shift is
begin
process (si,ai)
variable r:qudata 3q;
variable ti : quregister(0 to 7);
begin
l1: for i in 0 to 7 loop ti(i):=si.qr(i);
end loop l1;
r.qr(0):=ti(0);
r.qr(1):=ti(1);
r.qr(2):=-1.00 * ti(2);
r.qr(3):=ti(3);
r.qr(4):=-1.00 * ti(4);
r.qr(5):=ti(5);
r.qr(6):=-1.00 * ti(6);
r.qr(7):=ti(7);
r.qa:=si.qa; r.bub:=si.bub;
r.ent:=true;
so <= r after 10 ns; ao <= ai after 10 ns;
end process;
end pha b;
use work.qupack.all;
library ieee;
use ieee.math real.all;
use ieee.math complex.all;
entity ent anal is
port(si:in qudata 3q;ai:in qubit;so:out qudata 3q;ao:out qubit);
end ent anal;

138 APPENDIX C. GROVER ALGORITHM SIMULATION (2-QUBIT QUERRY)

architecture eaa of ent anal is
begin
process
variable r:qudata 3q;
variable ti : quregister(0 to 7);
begin
l1: for i in 0 to 7 loop ti(i):=si.qr(i);
end loop l1;
r.qr(0):=ti(0);
r.qr(1):=ti(1);
r.qr(2):=ti(2);
r.qr(3):=ti(3);
r.qr(4):=ti(4);
r.qr(5):=ti(5);
r.qr(6):=ti(6);
r.qr(7):=ti(7);
r.qa(0)(0).re:=(1.00/sqrt(2.00)); r.qa(0)(0).im:=0.00;r.qa(0)(1).re:=(-1.00/sqrt(2.00));
r.qa(0)(1).im:=0.00;
r.qa(1)(0).re:=(1.00/sqrt(2.00)); r.qa(1)(0).im:=0.00;r.qa(1)(1).re:=(1.00/sqrt(2.00));
r.qa(1)(1).im:=0.00;
r.qa(2)(0).re:=1.00; r.qa(2)(0).im:=0.00; r.qa(2)(1).re:=0.00;r.qa(2)(1).im:=0.00;
r.bub:=si.bub;
r.ent:=false;
wait on si.qa;
so <= r ; ao <= ai;
end process;
end eaa;
use work.qupack.all;
library ieee;
use ieee.math real.all;
use ieee.math complex.all;
entity level3 is
port(si:in qudata 3q;ai:in qubit;so:out qudata 3q;ao:out qubit);
end level3;
architecture l3a s of level3 is
component Hadamard gate
port(qi:in qubit;qo:out qubit);
end component;
component Identity gate
port(qi:in qubit;qo:out qubit);
end component;
begin
c1: Hadamard gate port map(si.qa(0),so.qa(0));
c2: Hadamard gate port map(si.qa(1),so.qa(1));
c3: Identity gate port map(ai,ao);
c4: Identity gate port map(si.qa(2),so.qa(2));
so.ent<=false after 10 ns;
so.qr<=si.qr after 10 ns;
so.bub<=si.bub after 10 ns;
end l3a s;
use work.qupack.all;
library ieee;
use ieee.math real.all;
use ieee.math complex.all;

139

entity measurement is
port(si:in qudata 3q;ai:in qubit; r:out bit vector(0 to 3));
end measurement;
architecture masa of measurement is
begin
process(si,ai)
variable rv:bit vector(0 to 3);
variable t:integer;
begin
if si.ent then
l0: for i in 0 to 7 loop if (si.qr(i).re /= 0.00 and si.qr(i).im /= 0.00) then
t:=i;
end if;
end loop l0;
case t is
when 0 => rv(0):=’0’;rv(1):=’0’;rv(2):=’0’;
when 1 => rv(0):=’0’;rv(1):=’0’;rv(2):=’1’;
when 2 => rv(0):=’0’;rv(1):=’1’;rv(2):=’0’;
when 3 => rv(0):=’0’;rv(1):=’1’;rv(2):=’1’;
when 4 => rv(0):=’1’;rv(1):=’0’;rv(2):=’0’;
when 5 => rv(0):=’1’;rv(1):=’0’;rv(2):=’1’;
when 6 => rv(0):=’1’;rv(1):=’1’;rv(2):=’0’;
when others => rv(0):=’1’;rv(1):=’1’;rv(2):=’1’;
end case;
else
l1:for i in 0 to 2 loop if si.qa(i)(0).re = 0.00 and si.qa(i)(0).im = 0.00 then rv(i):=’1’;
elsif si.qa(i)(1).re = 0.00 and si.qa(i)(1).im = 0.00 then rv(i):=’0’;
else rv(i):=’0’;
end if;
end loop l1;
end if;
if (ai(0).re = 0.00 and ai(0).im = 0.00) then rv(3):=’1’;
elsif ai(1).re = 0.00 and ai(1).im = 0.00 then rv(3):=’0’;
else rv(3):=’0’;
end if;
r <= rv after 10 ns;
end process;
end masa;
use work.qupack.all;
library ieee;
use ieee.math real.all;
use ieee.math complex.all;
entity oracle bub is
port(si:in qudata 3q;ai:in qubit;so:out qudata 3q;ao:out qubit);
end oracle bub;
architecture oba of oracle bub is
component hnh gate
port(qi:in qubit;qo:out qubit);
end component;
component Hadamard gate
port(qi:in qubit;qo:out qubit);
end component;
component Identity gate
port(qi:in qubit;qo:out qubit);

140 APPENDIX C. GROVER ALGORITHM SIMULATION (2-QUBIT QUERRY)

end component;
begin
c1: Identity gate port map(si.qa(0),so.qa(0));
c2: hnh gate port map(si.qa(1),so.qa(1));
c3: Identity gate port map(ai,ao);
c4: Hadamard gate port map(si.qa(2),so.qa(2));
so.ent<=true after 10 ns;
so.qr<=si.qr after 10 ns;
so.bub(0).bubble(0).nature <= -1 after 10 ns;
so.bub(0).bubble(0).position <= 3 after 10 ns;
so.bub(0).bubble(1).nature <= 1 after 10 ns;
so.bub(0).bubble(1).position <= 5 after 10 ns;
so.bub(0).zeros <= 2 after 10 ns;
so.bub(1).bubble(0).nature <= -1 after 10 ns;
so.bub(1).bubble(0).position <= 3 after 10 ns;
so.bub(1).bubble(1).nature <= 0 after 10 ns;
so.bub(1).bubble(1).position <= -1 after 10 ns;
so.bub(1).zeros <= -1 after 10 ns;
end oba;
use work.qupack.all;
library ieee;
use ieee.math real.all;
use ieee.math complex.all;
entity level2 bub is
port(si:in qudata 3q;ai:in qubit;so:out qudata 3q;ao:out qubit);
end level2 bub;
architecture l2ba of level2 bub is
component hnh gate
port(qi:in qubit;qo:out qubit);
end component;
component Identity gate
port(qi:in qubit;qo:out qubit);
end component;
begin
c1: hnh gate port map(si.qa(0),so.qa(0));
c2: hnh gate port map(si.qa(1),so.qa(1));
c3: Identity gate port map(ai,ao);
c4: Identity gate port map(si.qa(2),so.qa(2));
so.ent<=true after 10 ns;
so.qr<=si.qr after 10 ns;
so.bub(0).bubble(0).nature <= -1 after 10 ns;
so.bub(0).bubble(0).position <= 3 after 10 ns;
so.bub(0).bubble(1).nature <= -1 after 10 ns;
so.bub(0).bubble(1).position <= 5 after 10 ns;
so.bub(0).zeros <= 2 after 10 ns;
so.bub(1).bubble(0).nature <= 1 after 10 ns;
so.bub(1).bubble(0).position <= 3 after 10 ns;
so.bub(1).bubble(1).nature <= 0 after 10 ns;
so.bub(1).bubble(1).position <= -1 after 10 ns;
so.bub(1).zeros <= -1 after 10 ns;
end l2ba;
use work.qupack.all;
library ieee;
use ieee.math real.all;

141

use ieee.math complex.all;
entity phase shift bub is
port(si:in qudata 3q;ai:in qubit;so:out qudata 3q;ao:out qubit);
end phase shift bub;
architecture psba of phase shift bub is
component Hadamard gate
port(qi:in qubit;qo:out qubit);
end component;
component Identity gate
port(qi:in qubit;qo:out qubit);
end component;
begin
c1: Identity gate port map(si.qa(0),so.qa(0));
c2: Identity gate port map(si.qa(1),so.qa(1));
c3: Identity gate port map(ai,ao);
c4: Hadamard gate port map(si.qa(2),so.qa(2));
so.ent<=false after 10 ns;
so.qr<=si.qr after 10 ns;
so.bub(0).bubble(0).nature <= 0 after 10 ns;
so.bub(0).bubble(0).position <= -1 after 10 ns;
so.bub(0).bubble(1).nature <= 0 after 10 ns;
so.bub(0).bubble(1).position <= -1 after 10 ns;
so.bub(0).zeros <= 0 after 10 ns;
so.bub(1).bubble(0).nature <= 0 after 10 ns;
so.bub(1).bubble(0).position <= -1 after 10 ns;
so.bub(1).bubble(1).nature <= 0 after 10 ns;
so.bub(1).bubble(1).position <= -1 after 10 ns;
so.bub(1).zeros <= 0 after 10 ns;
end psba;
use work.qupack.all;
library ieee;
use ieee.math real.all;
use ieee.math complex.all;
entity level3 bub is
port(si:in qudata 3q;ai:in qubit;so:out qudata 3q;ao:out qubit);
end level3 bub;
architecture l3ba of level3 bub is
component Hadamard gate
port(qi:in qubit;qo:out qubit);
end component;
component Identity gate
port(qi:in qubit;qo:out qubit);
end component;
begin
c1: Hadamard gate port map(si.qa(0),so.qa(0));
c2: Hadamard gate port map(si.qa(1),so.qa(1));
c3: Identity gate port map(ai,ao);
c4: Identity gate port map(si.qa(2),so.qa(2));
so.ent<=false after 10 ns;
so.qr<=si.qr after 10 ns;
so.bub <= si.bub after 10 ns;
end l3ba;
use work.qupack.all;
library ieee;

142 APPENDIX C. GROVER ALGORITHM SIMULATION (2-QUBIT QUERRY)

use ieee.math real.all;
use ieee.math complex.all;
entity measurement bub is
port(si:in qudata 3q;ai:in qubit; r:out bit vector(0 to 3));
end measurement bub;
architecture masab of measurement bub is
begin
process(si,ai)
variable rv:bit vector(0 to 3);
variable t:integer;
begin
l1:for i in 0 to 2 loop
if si.qa(i)(0).re = 0.00 and si.qa(i)(0).im = 0.00 then rv(i):=’1’;
elsif si.qa(i)(1).re = 0.00 and si.qa(i)(1).im = 0.00 then rv(i):=’0’;
else rv(i):=’0’;
end if;
end loop l1;
if (ai(0).re = 0.00 and ai(0).im = 0.00) then rv(3):=’1’;
elsif ai(1).re = 0.00 and ai(1).im = 0.00 then rv(3):=’0’;
else rv(3):=’0’;
end if;
r <= rv after 10 ns;
end process;
end masab;

Appendix D

Running a genetic application on a
quantum computer

In this appendix we will examine an example of how the genetic algorithms will run according to the
algorithm described in Chapter 5 (Reduced Quantum Genetic Algorithm). Therefore we will take
into consideration a typical problem for the genetic approach.

Problem: A person has a backpack with a maximum capacity of 10 kilograms. He also has 4 items
with the following characteristics: item I1 having 7 kg and a value of 40 $, item I2 (4 kg, 100 $),
item I3 (2 kg, 50 $), and item I4 (3 kg, 30 $). Which items would this person carry in his backpack
so that it would have the maximum value ?

The classical genetic approach will have as chromosome a 4-bit code, where each ’1’ bit means
that the corresponding item is present in the backpack. For instance, a 1001 code indicates that
the backpack contains items I1 and I4. In the quantum version, the chromosome encoding will have
all the 4-qubit classical values (see Table D.1) as superposed basis states, which represent valid and
invalid (i.e. the items will add up to more than 10 kg) individuals.

|ψ〉1i =
1
4

15∑
u=0

|u〉ind
i ⊗ |0〉fit

i =
1
4

⎛
⎜⎜⎝

|0000〉 + |0001〉 + |0010〉 + |0011〉
+|0100〉 + |0101〉 + |0110〉 + |0111〉
+|1000〉 + |1001〉 + |1010〉 + |1011〉
+|1100〉 + |1101〉 + |1110〉 + |1111〉

⎞
⎟⎟⎠⊗ |0000000000〉 (D.1)

The fitness function that we will apply, would be an arithmetic function according to the re-
quirements formulated in Section 5.2.2. The fitness formula, given in Equation D.2, contains two
variables, the chromosome value val and the chromosome mass m; also two constants are used, the
total added value of all items (valt = 220) and the maximum allowed package mass (mmax = 10).
For any chromosome x, the fitness function is given by:

ffit (x) = val (x) − (valt + 1) × (m (x) div mmax) = val (x) − 221 × (m (x) div 10) (D.2)

Applying the fitness function over the individual registers |ρ〉ind
i means that we use the Uffit

basis state permutation, obtaining the state presented in Equation D.3.

143

144APPENDIX D. RUNNING A GENETIC APPLICATION ON A QUANTUM COMPUTER

I1 I2 I3 I4 Value [$] mass [kg] Validity

0 0 0 0 0 0 valid
0 0 0 1 30 3 valid
0 0 1 0 50 2 valid
0 0 1 1 80 5 valid
0 1 0 0 100 4 valid
0 1 0 1 130 7 valid
0 1 1 0 150 6 valid
0 1 1 1 180 9 valid
1 0 0 0 40 7 valid
1 0 0 1 70 10 valid
1 0 1 0 90 9 valid
1 0 1 1 120 12 invalid
1 1 0 0 140 11 invalid
1 1 0 1 170 14 invalid
1 1 1 0 190 13 invalid
1 1 1 1 220 16 invalid

Table D.1: All the chromosome binary combinations, valid and invalid, with the corresponding
fitness values.

|ψ〉2i = |ρ〉ind
i ⊗ |ρ〉fit

i =
1
4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|0000〉 ⊗ |1000000000〉
+|0001〉 ⊗ |1000011110〉
+|0010〉 ⊗ |1000110010〉
+|0011〉 ⊗ |1001010000〉
+|0100〉 ⊗ |1001100100〉
+|0101〉 ⊗ |1010000010〉
+|0110〉 ⊗ |1010010110〉
+|0111〉 ⊗ |1010110100〉
+|1000〉 ⊗ |1000101000〉
+|1001〉 ⊗ |1001000110〉
+|1010〉 ⊗ |1001011010〉
+|1011〉 ⊗ |0110011011〉
+|1100〉 ⊗ |0110101111〉
+|1101〉 ⊗ |0111001101〉
+|1110〉 ⊗ |0111100001〉
+|1111〉 ⊗ |0111111111〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(D.3)

The fitness values of the invalid individuals are negative numbers (all least significant 9 bits of
the fitness values represent 2’s complement numbers), with the most significant bit being dedicated
to indicating the validity of the corresponding chromosome (0 means invalid, 1 indicates a valid
individual), see Section 5.4.2 for details.

The next step of the Reduced Quantum Genetic Algorithm is to apply the oracle over the first
pair of individual-fitness registers. According to the algorithm from Section 5.5, we have to get a
random value for variable max. Suppose that the yielded value for max is 85, then the state of

145

the |ψ〉0 register at this point is given in Equation D.4 and D.5: |ψ〉30 is the pair registers state
after applying the subtractor and phase-shift part of the oracle, while |ψ〉40 is the state obtained
after applying the entire oracle, including the adder part (see Figure 5.4 from Section 5.4.2). One
observation linked to the details presented in Section 5.4.2 is that the phase shift (i.e. amplitude ai

becomes −ai) is triggered by a ’0’ value of the 2nd bit from the left in the fitness register.

|ψ〉30 = |ρ〉ind
0 ⊗ |φ〉fit

0 =
1
4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|0000〉 ⊗ |1110101011〉
+|0001〉 ⊗ |1111001001〉
+|0010〉 ⊗ |1111011101〉
+|0011〉 ⊗ |1111111011〉
−|0100〉 ⊗ |1000001111〉
−|0101〉 ⊗ |1000101101〉
−|0110〉 ⊗ |1001000001〉
−|0111〉 ⊗ |1001011111〉
+|1000〉 ⊗ |1111010011〉
+|1001〉 ⊗ |1111110001〉
−|1010〉 ⊗ |1000000101〉
+|1011〉 ⊗ |1101000110〉
+|1100〉 ⊗ |1101011010〉
+|1101〉 ⊗ |1101111000〉
+|1110〉 ⊗ |1110001100〉
+|1111〉 ⊗ |1110101010〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(D.4)

|ψ〉40 = |ρ〉ind
0 ⊗ |φ〉fit

0 =
1
4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|0000〉 ⊗ |1000000000〉
+|0001〉 ⊗ |1000011110〉
+|0010〉 ⊗ |1000110010〉
+|0011〉 ⊗ |1001010000〉
−|0100〉 ⊗ |1001100100〉
−|0101〉 ⊗ |1010000010〉
−|0110〉 ⊗ |1010010110〉
−|0111〉 ⊗ |1010110100〉
+|1000〉 ⊗ |1000101000〉
+|1001〉 ⊗ |1001000110〉
−|1010〉 ⊗ |1001011010〉
+|1011〉 ⊗ |0110011011〉
+|1100〉 ⊗ |0110101111〉
+|1101〉 ⊗ |0111001101〉
+|1110〉 ⊗ |0111100001〉
+|1111〉 ⊗ |0111111111〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(D.5)

After applying the Grover algorithm over the fitness register (rightmost 10 qubits) of |ψ〉0, we will
get state |ψ〉50, as presented in Equation D.6, where the amplitudes a0, a1, a2, a3, a8, a9, a11, a12, . . . a15

≈ 0 and |a4|2 + |a5|2 + |a6|2 + |a7|2 + |a10|2 ≈ 1.

146APPENDIX D. RUNNING A GENETIC APPLICATION ON A QUANTUM COMPUTER

|ψ〉50 = |ρ〉ind
0 ⊗ |φ〉fit

0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0|0000〉 ⊗ |1000000000〉
+a1|0001〉 ⊗ |1000011110〉
+a2|0010〉 ⊗ |1000110010〉
+a3|0011〉 ⊗ |1001010000〉
+a4|0100〉 ⊗ |1001100100〉
+a5|0101〉 ⊗ |1010000010〉
+a6|0110〉 ⊗ |1010010110〉
+a7|0111〉 ⊗ |1010110100〉
+a8|1000〉 ⊗ |1000101000〉
+a9|1001〉 ⊗ |1001000110〉

+a10|1010〉 ⊗ |1001011010〉
+a11|1011〉 ⊗ |0110011011〉
+a12|1100〉 ⊗ |0110101111〉
+a13|1101〉 ⊗ |0111001101〉
+a14|1110〉 ⊗ |0111100001〉
+a15|1111〉 ⊗ |0111111111〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(D.6)

Therefore, if we measure the fitness register of |ψ〉0 after applying Grover iterations, then we will
measure (with a high probability) one of the following basis states (of the rightmost 10 qubits of |ψ〉50):
|1001100100〉, |1010000010〉, |1010010110〉, |1010110100〉. Suppose that we measure |1010000010〉 (+
130 if we convert this value in decimal). In the individual register we will have |0101〉; also the new
max := 130 + 1.

The next algorithm iteration will involve the next individual-fitness pair registers (|ψ〉1 = |ρ〉ind
1 ⊗

|φ〉fit
1), by subsequently setting states |ψ〉31 (oracle – subtractor and phase-shift), |ψ〉41 (oracle – adder),

and |ψ〉51 (Grover iterations):

|ψ〉31 = |ρ〉ind
1 ⊗ |φ〉fit

1 =
1
4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|0000〉 ⊗ |1101111101〉
+|0001〉 ⊗ |1110011011〉
+|0010〉 ⊗ |1110101111〉
+|0011〉 ⊗ |1111001101〉
+|0100〉 ⊗ |1111100001〉
+|0101〉 ⊗ |1111111111〉
−|0110〉 ⊗ |1000010011〉
−|0111〉 ⊗ |1000110001〉
+|1000〉 ⊗ |1110100101〉
+|1001〉 ⊗ |1111000011〉
+|1010〉 ⊗ |1111010111〉
+|1011〉 ⊗ |0100011000〉
+|1100〉 ⊗ |0100101100〉
+|1101〉 ⊗ |0101001010〉
+|1110〉 ⊗ |0101011110〉
+|1111〉 ⊗ |0101111100〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(D.7)

147

|ψ〉41 = |ρ〉ind
1 ⊗ |φ〉fit

1 =
1
4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|0000〉 ⊗ |1000000000〉
+|0001〉 ⊗ |1000011110〉
+|0010〉 ⊗ |1000110010〉
+|0011〉 ⊗ |1001010000〉
+|0100〉 ⊗ |1001100100〉
+|0101〉 ⊗ |1010000010〉
−|0110〉 ⊗ |1010010110〉
−|0111〉 ⊗ |1010110100〉
+|1000〉 ⊗ |1000101000〉
+|1001〉 ⊗ |1001000110〉
+|1010〉 ⊗ |1001011010〉
+|1011〉 ⊗ |0110011011〉
+|1100〉 ⊗ |0110101111〉
+|1101〉 ⊗ |0111001101〉
+|1110〉 ⊗ |0111100001〉
+|1111〉 ⊗ |0111111111〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(D.8)

|ψ〉51 = |ρ〉ind
1 ⊗ |φ〉fit

1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0|0000〉 ⊗ |1000000000〉
+a1|0001〉 ⊗ |1000011110〉
+a2|0010〉 ⊗ |1000110010〉
+a3|0011〉 ⊗ |1001010000〉
+a4|0100〉 ⊗ |1001100100〉
+a5|0101〉 ⊗ |1010000010〉
+a6|0110〉 ⊗ |1010010110〉
+a7|0111〉 ⊗ |1010110100〉
+a8|1000〉 ⊗ |1000101000〉
+a9|1001〉 ⊗ |1001000110〉

+a10|1010〉 ⊗ |1001011010〉
+a11|1011〉 ⊗ |0110011011〉
+a12|1100〉 ⊗ |0110101111〉
+a13|1101〉 ⊗ |0111001101〉
+a14|1110〉 ⊗ |0111100001〉
+a15|1111〉 ⊗ |0111111111〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(D.9)

After applying the Grover algorithm over the fitness register (rightmost 10 qubits) of |φ〉fit
1 from

|ψ〉41, we will get state |ψ〉51, as presented in Equation D.9, where the amplitudes a0, a1, a2, a3, a4, a5, a8,
a9, . . . a15 ≈ 0 and |a6|2 + |a7|2 ≈ 1.

Therefore, if we measure the fitness register of |ψ〉51 after applying Grover iterations, then we will
measure (with a high probability) one of the following basis states (of the rightmost 10 qubits of
|ψ〉51): |1010010110〉, |1010110100〉. Suppose that we measure |1010110100〉 (+ 180 in decimal). In
the individual register we will have |0111〉, which is also the solution for our problem.

148APPENDIX D. RUNNING A GENETIC APPLICATION ON A QUANTUM COMPUTER

Bibliography

[1] D. Aharonov, M. Ben-Or, ”Fault Tolerant Quantum Computation with Constant Error”, In
Proc. 29th Ann. ACM Symposium on Theory of Computing, pp. 176-188, El Paso, Texas, (May
1997).

[2] A. Ahuja, S. Kapoor, ”A Quantum Algorithm for Finding the Maximum”, ArXiv:quant-
ph/9911082 (November 1999).

[3] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie, E. Martins, D. Powell,
”Fault Injection for Dependability Validation: A Methodology and Some Applications”, IEEE
Trans. on Soft. Eng. Vol.16, Iss.2 pp.166 - 182 (1990).

[4] J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie, D. Powell, ”Fault Injection and Dependability
Evaluation of Fault-Tolerant Systems”, LAAS-CNRS Research Report 91260 (1992).

[5] J. R. Armstrong, F. Gray, F. Gail, ”VHDL Design: Representation and Synthesis”, Prentice
Hall (2000).

[6] P. J. Ashenden, ”The Designer’s guide to VHDL (second edition)”, Morgan Kaufmann Pub-
lishers (2001).

[7] A. Avižienis, J-C. Laprie, B. Randell, C. Landwehr, ”Basic Concepts and Taxonomy of De-
pendable and Secure Computing”, IEEE Transactions on Dependable and Secure Computing,
Volume 1, Number 1, pp. 11-33, (January-March 2004).

[8] C.H. Bennett, ”Logical reversibility of computation”, IBM Journal of Research an Development,
17, pp. 525 (1973).

[9] C. H. Bennett, ”The Thermodynamics of Computation – a Review”, International Journal of
Theoretical Physics (1981)

[10] A. Barenco, C.H. Bennett, R. Cleve, D.P. Vincenzo, N. Margolus, P. Shor, T.Sleator, J. Smolin
and H. Weinfurter, ”Elementary gates for quantum computation”, Phys. Rev. A 52, 3457-3467
(1995), quant-ph/9503016.

[11] E. Bernstein, U. Vazirani, ”Quantum Complexity Theory”, SIAM J. Computing 26, 1411-73
(1997).

[12] M. Boyer, G. Brassard, P. Hoyer, A.Tapp, ”Tight bounds on quantum searching”, Fortsch.
Phys. – Prog.Phys., 46(4-5):493-505 (1998).

[13] B.H. Bransden, C.J. Joachain, ”Introduction to Quantum Mechanics”, Addison-Wesley Long-
man Ltd. (1989).

149

150 BIBLIOGRAPHY

[14] G. Brassard, P.Hoyer, ”Quantum counting”, A. Tapp, arXive e-print quant-ph/9805082 (1998).

[15] J. Cirac, P. Zoller, ”Quantum computation with cold trapped ions”, Phys. Rev. Lett., Vol. 74,
pp. 4091-4094 (1995).

[16] R. Cleve, D. Gottesman, ”Efficient computations of encoding for quantum error correction,”
Phys. Rev. A 56, 76-82 (1997).

[17] D. Coppersmith, ”An approximate Fourier transform useful in quantum factoring”, IBM Re-
search Report RC 19642 (1994).

[18] J. Crowcroft, ”On the Nature of Computing”, Communications of the ACM, Vol. 48, Nr. 2, pp.
19-20, (Feb. 2005).

[19] E.P. DeBenedictis, ”Will Moore’s Law Be Sufficient?”, Proceedings of the 2004 ACM/IEEE
Conference on Supercomputing, pp.45, (2004).

[20] E.P. DeBenedictis, ”Reversible logic for supercomputing”, Proceedings of the 2nd ACM Con-
ference on Computing Frontiers, pp. 391 - 402, (2005).

[21] T.A. Delong, B.W.Johnson, J.A. Profeta III, ”A Fault Injection Technique for VHDL
Behavioral-Level Models”, IEEE Design and Test of Computers Volume 13, Issue 4, pp. 24-
33, (1996).

[22] G. De Micheli, M. Sami, ”Hardware/Software CO-Design”, Kluwer Academic Publishers (1996).

[23] G. De Micheli, ”Design and Optimization of Digital Circuits”, McGraw-Hill, (1996).

[24] D. Deutsch, ”Quantum theory, the Church-Turing principle and the universal quantum com-
puter”, Proc. R. Soc. Lond. A 400, 97 (1985).

[25] D. Deutsch, ”Quantum computational networks”, Proceedings Royal Society London A 425, 73
(1989).

[26] D. Deutsch and R. Jozsa, ”Rapid Solution of Problems by Quantum Computation”, Proc. R.
Soc. London A, 439:553 (1992).

[27] D. DiVincenzo, ”Two-bit gates are universal for quantum computation”, Phys. Rev. A (AT5101)
(1995).

[28] C. Durr, P. Hoyer, ”A Quantum Algorithm for Finding the Minimum”. ArXiv:quant-
ph/9607014, (July 1996).

[29] A. Ekert, R. Jozsa, ”Quantum Algorithms: Entanglement Enhanced Information Processing,”
Phil. Trans. Roy. Soc. Lond. A, pp. 1779-1782, (1998).

[30] R.P. Feynman, ”Simulating Physics with Computers”, International Journal of Theoretical
Physics 21, p.467 (1982).

[31] R.P. Feynman, ”Quantum mechanical computers”, Optics News, 11, p.11 (1985).

[32] N. A. Gershenfeld, I. Chuang, S. Lloyd, ”Bulk quantum computation”, Proceedings of the 4th
Workshop on Physics of Computation, PhysComp96, p.134 (1996).

BIBLIOGRAPHY 151

[33] G.A. Giraldi, R. Portugal, R.N. Thess, ”Genetic Algorithms and Quantum Computation”,
ArXiv:cs.NE/0403003 (March 2004).

[34] P. Gossett,”Quantum Carry-Save Arithmetic”,Online preprint quant-ph/9808061 (1998).

[35] D. Gottesman, ”Class of quantum error-correcting codes saturating the quantum Hamming
bound,” Phys. Rev. A 54, 1862-1868 (1996).

[36] D. Gottesman, ”A theory of fault-tolerant quantum computation,” Phys. Rev. A 57, 127-137
(1998).

[37] L.K. Grover, In Proc. 28th Annual ACM Symposium on the Theory of Computation, pp.212-
219, ACM Press, (1996).

[38] L. Grover, ”Quantum mechanics helps in searching for a needle in a haystack”, Phys. Rev. Lett.
(79), pp. 325-328, (1997).

[39] L. Hales, S. Hallgren, ”An improved quantum Fourier transform algorithm and applications”,
41st Annual Symposium on Foundations of Computer Science (FOCS) Redondo Beach CA
(2000).

[40] K-H. Han, J-H. Kim, ”Genetic Quantum Algorithm and its Application to Combinatorial
Optimization Problem”, In Proc. of the 2000 Congress on Evolutionary Computation, cite-
seer.nj.nec.com/han00genetic.html, (2000).

[41] K-H. Han, J-H. Kim, ”Quantum-Inspired Evolutionary Algorithm for a Class of Combinato-
rial Optimization”, IEEE Transactions on Evolutionary Computation, vol. 6, No. 6, pp.580-593
(2002).

[42] J. P. Hayes, I. Polian, B. Becker, ”Testing for Missing-Gate Faults in Reversible Circuits”, Proc.
13th Asian Test Symposium, pp. 100-105, (2004).

[43] T. Hogg, ”Highly structured searches with quantum computers”, Physical Review Letters,
80:2473-2476, (1998).

[44] T. Hogg, ”Quantum search heuristics”, Physical Review A, 61:052311, (2000).

[45] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, J. Karlsson ”Fault injection into VHDL models: the
MEFISTO tool”, 24th Annual International Symposium on Fault-Tolerant Computing (FTCS-
24), Austin (USA), pp.66-75 (1994).

[46] A. U. Khalid, Z. Zilic, K. Radecka, ”FPGA Emulation of Quantum Circuits”, In Proc. ICCD
2004: pp. 310-315 (2004).

[47] E. Knill, ”Fault-Tolerant Postselected Quantum Computation: Schemes.”, quant-ph/0402171,
(2004).

[48] E. Knill, ”Fault-Tolerant Postselected Quantum Computation: Threshold Analysis.”, quant-
ph/0404104, (2004).

[49] D.E. Knuth, ”The art of computer programming. Volume 2: Seminumerical algorithms”,
Addison-Wesley, Massachusetts, 3rd edition, (1997).

152 BIBLIOGRAPHY

[50] J. Koza, ”Genetic programming: A paradigm for genetically breeding populations of computer
programs to solve problems”, Technical Report STAN-CS-90-1314, Department of Computer
Science, Stanford University (1990).

[51] J. Koza, ”Genetic programming: On the programming of computers by means of natural selec-
tion”, MIT Press, Cambridge, MA (1992).

[52] P. K. Lala, ”Self-Checking and Fault-Tolerant Digital Design”, Morgan Kaufmann Publishers,
San Francisco, CA, (2000).

[53] R. Landauer, ”Irreversibility and heat generation in the computing process”, IBM Journal of
Research an Development, 5, pp.183 (1961).

[54] A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and J. M. Pollard, ”The number field sieve”,
In Proceedings of the 22nd Annual ACM Symposium on the Theory of Computation, pages
564–572, (1990).

[55] M. Lukac, M. Perkowski, H. Goi, M. Pivtoraiko, H-Y. Chung, K. Chung, H. Jeech, K. Byung-
Guk, K. Yong-Duk, ”Evolutionary Approach to Quantum and Reversible Circuits Synthesis”,
Artificial Intelligence Review, Vol. 20 , Issue 3-4, pp. 361-417 (2003).

[56] M. Lukac, M. Perkowski, ”Evolving Quantum Circuits Using Genetic Algorithm”, In Proceed-
ings of the 2002 NASA/DoD Conference on Evolvable Hardware (EH’02), IEEE Computer
Society, Washington, DC, 177, (July 15 - 18, 2002).

[57] D. Mange, M. Sipper,A. Stauffer, G. Tempesti, ”Toward Robust Integrated Circuits: The
Embryonics Approach,” Proc. IEEE, 88, 4, pp.516-541, (2000).

[58] C. Moore and M. Nilsson, ”Parallel quantum computation and quantum codes”, Los Alamos
Preprint Archives (1998), quant-ph/9808027.

[59] C.Moore, ”Quantum circuits: fanout, parity, and counting.”, Los Alamos Preprint Archives
(1999), quant-ph/9903046.

[60] A. Narayanan, M. Moore, ”Quantum-Inspired Genetic Algorithms”. IEEE International Con-
ference on Evolutionary Computation (ICEC-96), Nagoya, Japan pp. 61-66 (May 1996).

[61] M.A. Nielsen, I.L. Chuang, ”Programmable Quantum Gate Arrays”, Phys. Rev. Lett. 79, Issue
2-14 321324 (1997).

[62] M.A. Nielsen, I.L. Chuang ”Quantum Computation and Quantum Information”,Cambridge
University Press (2000).

[63] K.M. Obenland, ”Using simulation to assess the feasibility of quantum computing”, Ph.D.
Thesis, University of Southern California, Electrical Engineering - Systems (1998).

[64] K.M. Obenland, A. Despain, ”Simulating the Effect of Decoherence and Inaccuracies on a
Quantum Computer”, Proc. 1st NASA Conference on Quantum Computation and Quantum
Communication (1998).

[65] B. Omer, ”A procedural formalism for quantum computing”, Technical Report, Department of
Theoretical Physics, Technical University of Vienna (1998).

BIBLIOGRAPHY 153

[66] B. Omer, ”Quantum programming in QCL”, Technical Report, Institute of Information Sys-
tems, Technical University of Vienna (2000).

[67] A. Omondi, ”Computer Arithmetic Systems. Algorithms, Architecture and Implementations”,
Prentice Hall (C.A.R. Hoare series) (1994).

[68] C. Ortega, A. Tyrrell, ”Reliability Analysis in Self-Repairing Embryonic Systems,” Proc. 1st
NASA/DoD Workshop Evolvable Hardware, pp. 120-128 (1999).

[69] M. Oskin, F. Chong, I. Chuang, ”A Practical Architecture for Reliable Quantum Computers”.
IEEE Computer, 35(1): 79-87 (2002).

[70] C.M. Papadimitriou, ”Computational Complexity”, Addison-Wesley, Reading MA, (1994).

[71] B. Parhami, ”Computer Arithmetic. Algorithms and Hardware Designs”, Oxford University
Press (2000).

[72] S. Parker, M. Plenio, ”Entanglement Simulations of Shor’s Algorithm,” J. Mod. Opt., Vol. 49,
Nr. 8 pp. 1325-1353, (2002).

[73] K. N. Patel, J. P. Hayes, I. L. Markov, ”Fault Testing for Reversible Circuits,” IEEE Trans. on
CAD, 23(8), pp. 1220-1230, (August 2004), quant-ph/0404003

[74] M. Perkowski, M. Lukac, M. Pivtoraiko, P. Kerntopf, M. Folgheraiter, D. Lee, H. Kim, H. Kim,
W. Hwangboo, J.-W. Kim, and Y. Choi, ”A hierarchical approach to computer aided design
of quantum circuits”, In Proceedings of 6th International Symposium on Representations and
Methodology of Future Computing Technology, RM pp.201-209, (2003).

[75] J. Preskill, ”Reliable Quantum Computers”, Proc. Roy. Soc. London A for the Proc. of Santa
Barbara Conference on Quantum Coherence and Decoherence (1996).

[76] J. Preskill, ”Fault-Tolerant Quantum Computation”, Online preprint quant-ph/9712048 (1997).

[77] J. Preskill, ”Quantum Computation”, Course Handouts, CALTECH (2001).

[78] J. Preskill, ”The cost of quantum fault tolerance”, 8th Workshop on Quantum Information
Processing (Invited Talk), MIT Cambridge, MA, USA (January 2005).

[79] L. Prodan, M. Udrescu, M. Vlăduţiu, ”Self-Repairing Embryonic Memory Arrays”, IEEE
NASA/DoD Conference on Evolvable Hardware, Seattle WA, USA, June 24 - 26, IEEE Press,
pp. 130-137, (2004).

[80] L. Prodan, M. Udrescu, M. Vlăduţiu, ”Reliability Assessment in Embryonics Inspired by Fault-
Tolerant Quantum Computation”, Proc. 2nd ACM Conference On Computing Frontiers, ACM
Press, pp. 323-333 (Ischia, Italy, 2005).

[81] L. Prodan, M. Udrescu, M. Vlăduţiu, ”Multiple-Level Concatenated Coding in Embryonics: A
Dependability Analysis”, GECCO (ACM-SIGEVO), ACM Press, pp. 941-948, Washigton, DC,
USA, (June 25-29 2005).

[82] L. Prodan, M. Udrescu, M. Vlăduţiu, ”Survivability of Embryonic Memories: Analysis and
Design Principles”, IEEE NASA/DoD Conference on Evolvable Hardware (EH’05), IEEE Press,
pp. 280-289, Washington, DC, USA, (June 29 - July 1, 2005).

154 BIBLIOGRAPHY

[83] M. Reck, A. Zeilinger, H.J. Bernstein, and P. Bertani, ”Experimental realization of any discrete
unitary operator”, Phys. Rev. Lett. 73, 58 (1994).

[84] M. Rimen, J. Ohlsson, J. Karlsson, E. Jenn, J. Arlat, ”Validation of fault tolerance by fault
injection in VHDL simulation models”, Rapport LAAS No.92469, (December 1992).

[85] M. Rimen, J. Ohlsson, J. Karlsson, E. Jenn, J. Arlat, ”Design guidelines of a VHDL-based
simulation tool for the validation of fault tolerance”, Rapport LAAS No93170 Contrat ESPRIT
III Esprit Basic Research Action No.6362, (May 1993).

[86] B. Rylander, T. Soule, J. Foster, ”Computational complexity, genetic programming, and impli-
cations”, Proc. 4th EuroGP, pp. 348-360 (2001).

[87] B. Rylander, T. Soule, J. Foster, J. Alves-Foss, ”Quantum Evolutionary Programming”, In
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), pp.
1005-1011 Morgan Kaufmann (2001).

[88] V. V. Shende, S. S. Bullock, I. L. Markov, ”A Practical Top-down Approach to Quantum
Circuit Synthesis,” Proc. Asia and South Pacific Design Automation Conference, pp. 272-275,
Shanghai, China, (2005) quant-ph/0406176.

[89] P.W. Shor, ”Algorithms for Quantum Computation: Discrete Logarithms and Factoring,” Proc.
35th Symp. on Foundations of Computer Science, pp.124-134, (1994).

[90] P.W. Shor, ”Fault-tolerant quantum computation”, Proceedings of the 37th Annual IEEE Sym-
posium on Foundations of Computer Science (1996).

[91] P. W. Shor ”Quantum Computing”, Documenta Mathematica, Extra Volume ICM 1998, 1-1000
(1998).

[92] R. Some, W. Kim, G. Khanoyan, L. Callum, A. Agrawal, J. Beahan, ”A Software-Implemented
Fault Injection Methodology for Design and Validation of System Fault Tolerance”, Interna-
tional Conference on Dependable Systems and Networks (DSN’01), pp. 501-506 (2001).

[93] L. Spector, H. Barnum, K.J. Bernstein, N. Swamy, ”Genetic Programming For Quantum Com-
puters”, Proceedings of the 3rd Annual Conference on Genetic Programming, Madison, Wis-
consin, USA, Morgan Kaufmann Publishers, pp. 365–373, (1998).

[94] L. Spector, H. Barnum, K.J. Bernstein, N. Swamy, ”Quantum Computing Applications of
Genetic Programming”, In Advances in Genetic Programming, volume 3, chapter 7, pp. 135–
160, MIT Press (1999).

[95] L. Spector, H. Barnum, K.J. Bernstein, N. Swamy, ”Finding a Better-than-Classical Quan-
tum AND/OR Algorithm Using Genetic Programming”, In Proceedings of 1999 Congress of
Evolutionary Computation, Piscataway, NJ, IEEE Press vol 3 pp.2239-2246 (1999).

[96] L. Spector, ”Automatic Quantum Computer Programming: A Genetic Programming Ap-
proach”, Kluwer Academic Publishers, (2004).

[97] A.M. Steane, ”Error Correcting Codes in Quantum Theory”, Phys. Rev. Lett. 77, 793 (1996).

[98] A.M. Steane, ”Multiple Particle Interference and Quantum Error Correction”, Proc. Roy. Soc.
Lond. A 452, 2551 (1996).

BIBLIOGRAPHY 155

[99] A.M. Steane, ”Overhead and noise threshold of fault-tolerant quantum error correction”, Los
Alamos e-printarchive, quant-ph/0207119, (2002).

[100] K. Svore, A. Cross, A. Aho, I. Chuang, I. Markov, ”Towards a software architecture for quan-
tum computing design tools”, Proc. 2nd International Workshop on Quantum Programming
Languages, pp. 145-162, Turku Finland, (July 2004).

[101] K. Svozil, ”Quantum computation and complexity theory”, Course given at the Institut für In-
formationssysteme, Abteilung für Datenbanken und Expertensysteme, University of Technology
Vienna (1994) hep-th/9412047

[102] A. Thompson, ”Hardware Evolution: Automatic design of electronic circuits in reconfigurable
hardware by artificial evolution”, Springer-Verlag distinguished dissertation series, (1998).

[103] T. Toffoli, ”Reversible Computing”, Automata, Languages and Programming, eds. J.W. de
Bakker and J. van Leeuwen, Springer New York, (1980).

[104] M. Udrescu, ”The basics of quantum computing”, Transactions on Automatic Control and
Computer Science, University ”Politehnica” Timişoara, Vol 44 (58) No. 1,2, pp. 17-24 (1999).

[105] M. Udrescu, L. Prodan, M. Vlăduţiu, ”A new perspective in simulating quantum circuits”,
Proc. LBP AAAI GECCO pp.283-290, Chicago IL (2003).

[106] M. Udrescu, L. Prodan, M. Vlăduţiu, ”Using HDLs for Describing Quantum Circuits: A
Framework for Efficient Quantum Algorithm Simulation”, Proc. 1st ACM Conf. On Computing
Frontiers pp.96-110 (Ischia, April 2004).

[107] M. Udrescu, L. Prodan, M. Vlăduţiu, ”The Bubble Bit Technique as Improvement of HDL-
Based Quantum Circuits Simulation.” IEEE 38th Annual Simulation Symposium, San Diego
CA, USA, IEEE Press, pp. 217-224 (April 2 - 8, 2005).

[108] M. Udrescu, L. Prodan, M. Vlăduţiu, ”Simulated Fault Injection in Quantum Circuits with
the Bubble Bit Technique.” 7th International Conference on Adaptive and Natural Computing
Algorithms (ICANNGA), Coimbra, Portugal, Springer WienNewYork pp. 276-279 (March 21 -
23, 2005).

[109] M. Udrescu, L. Prodan, M. Vlăduţiu, ”Improving Quantum Circuit Dependability with Re-
configurable Quantum Gate Arrays”, 2nd ACM Conference On Computing Frontiers, ACM
Press, pp. 133-144 (Ischia, Italy, 2005).

[110] M. Udrescu, ”Using Hardware Engineering in Quantum Computation: Efficient Circuit Simu-
lation and Reliability Improvement”, SIGDA Ph.D. Forum at Design Automation Conference,
(Anaheim, CA, 2005), http://www.sigda.org/daforum/abs/38.html.

[111] L.G. Valiant, ”Quantum Circuits That Can Be Simulated Classically in Polynomial Time,”
SIAM J.Comp. 31:4, pp. 1229-1254, (2002).

[112] W. van Dam, ”Quantum Cellular Automata”, Master’s Thesis, Computer Science Institute,
University of Nijmegen, The Netherlands (1996).

[113] V. Vedral, A. Barenco, A. Ekert, ”Quantum Networks for Elementary Arithmetic Operations”,
Online preprint quant-ph/9511018, (1996).

156 BIBLIOGRAPHY

[114] G. Viamontes, M. Rajagopalan, I. Markov, J.P. Hayes, ”Gate-Level Simulation of Quantum
Circuits”, Proc.of the Asia South Pacific Design Automation Conference, pp.295-301, (2003).

[115] G. Viamontes, I. Markov, J.P. Hayes, ”High-performance QuIDD-based Simulation of Quan-
tum Circuits,” Proc. Design Autom. and Test in Europe (DATE), Paris, France, pp. 1354-1359,
(February 2004).

[116] G. F. Viamontes, I. L. Markov and J. P. Hayes, ”Is Quantum Search Practical?,” Intl. Work-
shop on Logic and Synthesis, pp. 478-485, (2004).

[117] G. F. Viamontes, I. L. Markov and J. P. Hayes, ”Graph-based Simulation of Quantum Compu-
tation in the Density Matrix Representation,” Quantum Information and Computation, vol.5,
no.2 pp. 113-130, (February 2005) quant-ph/0403114.

[118] G. Vidal, ”Efficient Classical Simulation of Slightly Entangled Quantum Computations”, Phys.
Rev. Lett. 91, 147902 (2003)

[119] D. Whitley, ”A Genetic Algorithm Tutorial”, Statistics and Computing Journal, Chapman
and Hall, (1994).

[120] C.P. Williams, A.G. Gray, ”Automated design of quantum circuits”, In Proc. of 1st NASA
International Conference on Quantum Computing and Quantum Communications QCQC ’98,
LNCS No. 1509 Springer-Verlag, pp. 113-125, Palm Springs, CA (1998).

[121] G. Yang, W.N.N. Hung, X. Song, M. Perkowski, ”Exact Synthesis of 3-Qubit Quantum Circuits
from Non-Binary Quantum Gates Using Multiple-Valued Logic and Group Theory”, Proceed-
ings Design Automation and Test in Europe (DATE) Conference, Munich, Germany, Vol.1, pp.
434-435 (2005).

[122] Y. Yangyang, Barry W. Johnson, ”A Perspective on the State of Research on Fault Injection
Techniques”, Technical Report UVA-CSCS-FIT-001 University of Virginia (May 2002).

[123] A.C.-C. Yao, ”Quantum Circuit Complexity”, Proc. 34th Annual Symposium on the Founda-
tions of Computer Science (IEEE Computer Society Press, Los Alamitos CA) p.352 (1993).

[124] C. Zalka, ”Threshold Estimate for Fault Tolerant Quantum Computation”, quant-ph/9612028
(1996).

[125] J. Zhang, J. Vala, S. Sastry, and K.B. Whaley, ”Optimal Quantum Circuit Synthesis from
Controlled-Unitary Gates”, Phys. Rev. A 69, 042309 (2004).

[126] ****, ”Emerging Research Devices with a New Section on Emerging Research Materi-
als”, International Technology Roadmap for Semiconductors (ITRS) Report (2004 Update),
http://www.itrs.net/Common/2004Update/, (2004).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

