

UNIVERSITATEA POLITEHNICA DIN TIMIŞOARA

PHD THESIS

SELF-REPAIRING MEMORY ARRAYS

INSPIRED BY BIOLOGICAL PROCESSES

LUCIAN PRODAN
POLITEHNICA UNIVERSITY OF TIMISOARA – UPT

ROMANIA

Thesis Director: Prof. Mircea VLADUTIU (UPT – Timisoara)

Thesis Committee: Acad. Mircea PETRESCU (UPB – Bucharest)

 Prof. Gianluca TEMPESTI (EPF – Lausanne)

 Prof. Sergiu NEDEVSCHI (UT – Cluj Napoca)

OCTOBER 14, 2005

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

ABSTRACT

Maintaining the strong momentum of the scientific and technological
advances from the past several decades proves to be especially difficult when
computing is concerned. Its evolution of modern computing equipment has to
pursue a twin track: some applications require speed above anything else, while
others require the highest possible reliability. However, regardless the priority
target, classic systems appear to have approached their limits, therefore fueling
the need for new computing paradigms and architectures. Emerging technologies
are set to explore the potential of biologically-inspired computing and quantum
computing, which will hopefully lead to new avenues for progress in computing,
both from a paradigmatic and an architectural standpoint; these emerging
technology vectors were acknowledged in a recent ITRS (International
Technology Roadmap on Semiconductors) report.

As the computing systems gain in architectural complexity, with an ever
increasing number of processing units being integrated onto the same silicon die
through technology scaling, the idea of drawing inspiration from biology unveils
a range of potential benefits. On one hand, how to design and manage such
complex computing systems in order to provide both performance and fault
tolerance could find appropriate answers through studying the living systems.
Their complexity is apparent both in their sheer numbers of parts (for instance, a
human being is made of 1013 cells), and in their behaviors: living beings are
endowed with robustness to damage (they are able to develop and operate
correctly despite assaults from the environment or genetic mutation) and are
highly dynamic (cells die and are replaced, they fit the environment through
different phenotypes). Exploring the mechanisms that underlie these attributes
of the living systems in computing is the major goal of the Embryonics project, a
long-term research initiative that provides the framework for this thesis.

The research carried over the Embryonics project led to the development of
a new, architecturally uniform, bio-inspired FPGA, called MuxTree, with built-in
self-test and self-repair. While allowing universal computation and featuring a
hierarchical strategy of achieving fault-tolerance, this architecture was ill-suited
for the implementation of memory structures required by micro-programmed
machines. The first main goal of this thesis was therefore to expand the MuxTree
architecture in order to allow an efficient and flexible way of data storage, while
preserving its bio-inspired self-repair strategy.

The main challenge of introducing a memory structure in the MuxTree
design was integrating it and the required additional features with the already
proven mechanisms of growth, differentiation, self-test and self-repair. The
functional characteristics of each MuxTree programmable element are
determined by the genetic information stored inside a special purpose
configuration register. We chose to better exploit this resource by introducing a
new operating mode, which we called the memory mode. The previous operation
was preserved under the name of logic mode, while in memory mode the
MuxTree element allows the implementation of memory structures of variable

 Abstract Ph.D. Thesis Page i

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

dimensions, through chaining the configuration registers into what we called a
cyclic memory. Access to genetic information is sequential (as is in living beings)
and there is a choice between maximum data storage and no information routing
(long memory mode), and minimum data storage with information routing
capability (short memory mode). However, the addition of the new operating
mode raises some issues:
• the original self-testing mechanism preserved from the MuxTree design,

cannot just simply extend to obtain a self-testable memory structure;
• an original fault tolerance strategy has to be developed in order to expand the

robustness of the Embryonics concepts over the memory structures.
The second goal of this thesis was to provide the newly introduced memory

structures with a mechanism of self-test that could be integrated with the extant
two-level self-repair strategy. The motivation lies in the different nature of what
was to be protected: information recovery, required by the protection of data
(when in memory mode), is ensuring a correct functionality (when in logic mode).
Choosing the appropriate error recovery strategy in case of memory structures is
argued by the occurrence of soft errors, which are subject to influence normal
operation of applications targeted by the Embryonics project. A considerable
challenge represented the integration of the self-testing mechanisms, for the
logic and the memory modes, with the hierarhical strategy of self-repair.

After evaluating several strategies for error recovery in memory structures,
we decided in favor of protecting each memory structure through a Hamming-
type single error correcting code. A thorough analysis over the reliability of
MuxTree machines is also provided, for the considered strategies. This is further
extended through the assessment of the accuracy threshold, a parameter
borrowed from another fault-rich computational environment represented by
quantum computing, shown to also work well for the Embryonics project. In fact,
the accuracy threshold parameter can be used in order to estimate the upper
bound of the error frequency that would still allow a successful error recovery.
Furthermore, a methodology of implementing concatenated coding in
Embryonics for the purpose of further extending the robustness of computational
processes is presented.

The initial goals of the thesis were met and the circuit was implemented in
actual hardware, using the Embryonics demonstrator platform. Several memory
configurations were tested in order to demonstrate both a correct functionality
and the successful integration with legacy mechanisms.

Page ii Ph.D. Thesis Abstract

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

REZUMAT

Menţinerea puternicului avânt înregistrat în ultimele decenii, atât din
punct de vedere ştiinţific, cât şi din punct de vedere tehnologic, devine o sarcină
în mod particular complicată în ceea ce priveşte echipamentele de calcul. În mod
necesar, evoluţia calculatorului modern trebuie să abordeze două direcţii: în timp
ce o categorie de aplicaţii necesită cu prioritate viteza maximă de calcul, altele
revendică în primul rând caracteristici optime de fiabilitate. Indiferent de
prioritate însă, sistemele clasice de calcul se prezintă ca fiind foarte aproape de
limitele lor, alimentând în consecinţă necesitatea investigării unor noi paradigme
şi arhitecturi computaţionale. În acest context, tehnologiile emergente ţintesc
explorarea potenţialului calculului bioinspirat si a celui cuantic, direcţii prin care
este de presupus că se va ajunge la noi posibilităţi de progres în tehnica de calcul,
atât din punct de vedere paradigmatic, cât şi din punct de vedere arhitectural;
vectorii reprezentând aceste tehnologii emergente sunt menţionaţi în recentul
raport ITRS (International Technology Roadmap on Semiconductors).

Pe măsură ce sistemele de calcul câştigă în complexitatea arhitecturală, un
număr mereu crescând de unităţi de procesare putând fi întegrate pe acelaşi
substrat de siliciu prin scalare tehnologică, ideea de a beneficia în domeniul
calculatoarelor de inspiraţie din domeniul biologiei dezvăluie o întreagă paletă de
potenţiale beneficii. Pe de o parte, modalitatea de a realiza şi gestiona un design
al unui sistem de calcul de o asemenea complexitate astfel încât să fie întrunite
dezideratele de performanţă şi toleranţă la defectare ar putea fi inspirată de
studiul sistemelor vii. Complexitatea acestora transpare atât prin numărul
masiv de componente (de exemplu, se estimează că o fiinţă umană conţine
aproximativ 1013 celule), cât şi prin comportament: fiinţele vii sunt robuste (sunt
capabile să se dezvolte şi să opereze în mod corect în pofida acţiunii nefaste a
mediului înconjurător sau a mutaţiilor genetice) şi sunt extrem de dinamice
(celulele mor şi sunt înlocuite de altele noi, prezintă o mare capacitate de
adaptare la mediu prin diverse fenotipuri). Explorarea mecanismelor care
determină toate aceste atribute ale fiinţelor vii reprezintă ţinta majoră a
proiectului Embryonics, proiect de cercetare de lungă durată care asigură
platforma acestei teze.

Cercetările întreprinse asupra proiectului Embryonics au condus la
dezvoltarea unui nou circuit programabil de tip FPGA, denumit MuxTree, având
o arhitectură uniformă şi înglobând facilităţi de auto-testare şi auto-reparare.
Deşi permiţând procese de calcul universal şi implementând o strategie ierarhică
în scopul obţinerii unui grad superior de toleranţă la defectare, această
arhitectură este mai puţin adaptată implementării unor structuri de memorie,
care sunt necesare pentru orice sistem de calcul microprogramat. De aceea,
prima ţintă majoră a acestei teze a fost extinderea arhitecturii MuxTree în scopul
de a ingădui o stocare flexibilă şi eficientă a datelor, concomitent cu păstrarea
neafectată a strategiei ierarhice de autoreparare existente.

Principala provocare a introducerii unei structuri de memorie în designul
MuxTree a fost integrarea acesteia, împreună cu mecanismele adiţionale

 Abstract Ph.D. Thesis Page iii

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

necesare, în peisajul mecanismelor existente, cu funcţionalitate anterior
verificată, reprezentate de creştere şi diferenţiere celulară, auto-testare şi auto-
reparare. Caracteristicile funcţionale ale elementului programabil MuxTree sunt
determinate de înfomaţia genetică stocată în interiorul unui registru de uz
special, numit de configurare. Am ales să exploatăm mai eficace această resursă
prin introducerea unui nou mod de operare, denumit modul memorie. Modul
anterior de funcţionare a fost conservat sub denumirea de modul logic, în modul
memorie fiind posibilă implementarea unor structuri de elemente MuxTree de
dimensiuni variabile, prin asamblarea registrelor de configurare în ceea ce am
numit memorie ciclică. Accesul la informaţia genetică este realizat în mod
secvenţial (într-un mod asemănător celui din fiinţele vii) iar flexibilitatea este
asigurată prin posibilitatea de selecţie între două modalităţi, modul lung de
memorie (spaţiu maxim de stocare, rutare limitată a informaţiei) şi modul scurt
de memorie (spaţiu redus de stocare, rutare normală a informaţiei). Introducerea
acestui nou mod de operare a fost însă însoţită de apariţia unor probleme:
• mecanismul original de auto-testare, prezervat din precedentul design

MuxTree, nu poate fi extins în mod direct pentru a obţine o structură de
memorie auto-testabilă;

• este necesară o strategie originală de obţinere a toleranţei la defecte pentru a
extinde robusteţea conceptelor Embryonics asupra structurilor de memorie.

Cea de-a doua ţintă majoră a tezei o constituie adăugarea asupra noilor
structuri de memorie a unui mecanism de auto-testare care să poată fi integrat în
strategia existentă de auto-reparare pe două niveluri. Motivaţia este argumentată
de natura diferită a ceea ce se doreşte a se proteja: refacerea informaţiei,
necesitată de structurile de memorie determină, în acelaşi timp şi o corectă
funcţionalitate a structurilor operând în mod logic. Alegerea unei strategii
corespunzătoare pentru revenirea din eroare, in ceea ce priveşte structurile de
memorie, a fost determinată de caracteristicile erorilor de tip soft, susceptibile de
a influenţa corecta funcţionare a aplicaţiilor-ţintă ale proiectului Embryonics. O
provocare considerabilă a fost constituită de integrarea mecanimelor de auto-
testare, pentru modurile memorie şi logic, în strategia ierarhică de auto-reparare.

După evaluarea diferitelor strategii de revenire din eroare în ceea ce
priveşte structurile de memorie, decizia luată a fost protejarea acestora prin
intermediul unui cod Hamming, corector al erorii singulare. O analiză completă
asupra caracteristicilor de fiabilitate ale arhitecturii MuxTree a fost prezentată
pentru strategiile considerate. Aceasta este extinsă prin investigarea unui
parametru numit prag de acurateţe a computaţiei, transferat dintr-un alt mediu
computaţional cu o bogată susceptibilitate la erori, şi anume calculul cuantic,
care s-a dovedit a fi potrivit inclusiv proiectului Embryonics. De fapt, acest
parametru poate fi utilizat în scopul cuantificării limitei superioare a frecvenţei
erorilor pentru a permite în continuare desfăşurarea cu succes a proceselor de
revenire din eroare. Mai mult, teza prezintă şi o metodologie de implementare a
codurilor concatenate în Embryonics, în scopul de a extinde robusteţea proceselor
computaţionale la nivelul acestei platforme.

Ţintele iniţiale ale tezei au fost îndeplinite, iar noul design MuxTree a fost
implementat in hardware, utilizând platforma demonstrativă existentă. Au fost
realizate şi testate câteva configuraţii de memorie pentru a demonstra atât
corecta lor funcţionare cât şi integrarea de succes în paleta de mecanisme
prezente în designul anterior.

Page iv Ph.D. Thesis Abstract

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

ACKNOWLEDGEMENTS

The coming of a PhD thesis is granted by a mixture between two
essential ingredients: the culmination of several years of study and the ever
understanding uphold from family, teachers and friends. Since it would be
impossible to individually thank all the people who deserve it, I feel
compelled to make a final appeal to their goodwill. I will, however,
acknowledge my gratitude to those who made this thesis possible and
adorned these years with their unconditional support.

First, of course, my parents, who have always been willing to endure
considerable deprivations to provide me with the best in life. My wife and my
son, who beared calmly with my frequent periods of being totally immersed
in research. They kept me surrounded constantly with all their love and
caring; needless to say, without their efforts, it would have been impossible
to stand where I am today.

My mentors, from two different countries, united by the same
dedication for the academia, who contributed to my becoming both through
their friendship and professional excellence:

Professor Mircea Vladutiu, the thesis director and a true connoisseur of
seeding the spiritual urge that drives any research. It is he whom I owe the
introduction to the joyful realms of computer hardware design.

From abroad, the extraordinary team of the Logic Systems Laboratory,
led by Professor Daniel Mange, who fathered my access to the exquisite
world of the Embryonics project during my research activity at the EPFL –
the Swiss Federal Institute of Technology at Lausanne. Professor Gianluca
Tempesti, who shared with me the ups and downs while walking along the
MuxTree development path, both as my direct supervisor and, later, as my
colleague. My integration in the “ontogenetic team” unveiled, apart from
some of the more “secret” insights of the project, a more profound
perspective over human relations, which made the research efforts in their
company never a burden, but always a privilege.

The experts that stood the burden of reading and appraising the effort
put into this thesis: Professor Mircea Petrescu from the “Politehnica”
University of Bucharest and Member of the Romanian Academy, and
Professor Sergiu Nedevschi, from the Technical University of Cluj-Napoca.

If this thesis builds on scientific results, it is because means of
encouragement were found in critical moments. I would like to take this
opportunity to thank the rector of our university, Professor Nicolae Robu, for
the significant support he provided in order to attend key conferences.

Last, but not least, my colleague Mihai Udrescu, with whom I shared
the office and catalyst of many fruitful exchanges of ideas. My appreciation
also goes to our students, especially to Nicola Velciov. If tight deadlines
could be met, it is also thanks to their contribution.

 Acknowledgements Ph.D. Thesis Page v

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

The research carried out throughout this thesis was supported in part
by:
– the Swiss National Foundation under grant 21-54113.98;
– the Consorzio Ferrara Richerche, Università di Ferrara, Ferrara, Italy;
– the Leenards Foundation, Lausanne, Switzerland;
– ACM SIGEVO Travel Grant, 2005;
– the Romanian Ministry of Education and Research through grant

CNCSIS nr.643/2005.
During times when funding becomes more and more scarce for everything
that does not seem to have an immediate industrial application, it is inciting
to know that long-term research still remains possible.

Page vi Ph.D. Thesis Acknowledgements

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

TABLE OF CONTENTS

Abstract………….…………………………………………..……………………….…… i

Rezumat………….…………………………………………..……………………….…. iii

Acknowledgements.……………………………………..………………………..….. v

Chapter 1. Introduction

1.1 Motivations………………………………………………………………… 2
1.2 The Legacy………………………………………………………………… 3

1.2.1 The POE Model……………………..…..……………………………4
1.2.2 The Embryonics Project…………….……………………………… 5
1.2.3 A Plea for Bio-Inspiration……………………..……………………7

1.3 Features……………………………………..……………………………… 8
1.4 Outline…………………………………………………………………….. 10

Chapter 2. Bio-Inspired Architectures

2.1 Brief History of Bio-Inspiration……………………………………….. 13
2.1.1 Introduction………………………………………………………… 13
2.1.2 The Road to Bio-Inspiration…………………………………….. .14
2.1.3 The Technology……………………………………………………..16

2.1.3.1 Characteristics of an FPGA……………….……………. 16
2.1.3.2 Bio-Inspiration and Robustness……………………….. 17

2.1.4 Bio-Inspired Computing………………………………………….. 18
2.2 The Embryonics Project…………………………..……………………. 20

2.2.1 Scope of Embryonics……………………………………………… 21
2.2.2 Bio-Inspired Robustness……………………….………………… 21
2.2.3 Bio-Inspired Functionality……………………….……………… 22

2.2.3.1 Artificial Organisms and Cellular Coordinates…..... 23
2.2.3.2 The Artificial Cell……………………………………….. 25
2.2.3.3 The Artificial Molecule………………………………….. 27

2.3 Objectives………………………………………………………….……… 30

Chapter 3. A Bio-Inspired Memory Architecture

3.1. Introduction………………………………………………………………. 33
3.2. Memory-Related Issues: Cyclic VS Addressable……………………. 34
3.3. Memory Organization…………………………………………………... 36
 3.3.1. The Global Memory……………………………………………….. 36
 3.3.2. The Basic Memory……………………. …………………………37
3.4. Memory Architecture……………….. …………………………………..38

 3.4.1. Introduction………………………………………………………… 38
 3.4.2. Short Overview……………………. ……………………………….38
 3.4.3. The Memory Structure…………………….………………………39

Table of Contents Ph.D. Thesis Page vii

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

 3.4.4. Data Routing………………………………………………………. 41
 3.4.5. Operating Modes for the Configuration Register………… …..42
 3.5. The Molecular Code……………………. ………………………………..43
 3.5.1. The Logic Mode (M=0) …………………………………………… 44
 3.5.1.1. General Description……………………………………... 44
 3.5.1.2. An Example………………………………………………. 45
 3.5.2. The Memory Mode (M=1) ……………………………………….. 47
 3.5.2.1. General Description…………………………………….. 47
 3.5.2.2. The Short Memory Mode (Q=0) ………………………. 50
 3.5.2.3. The Long Memory Mode (Q=1) ……………………….. 50
 3.5.2.4. An Example………………………………………………. 53
 3.6. The Hold Mechanism……………………………………………………….. 54
 3.7. Multiple-Level Fault-Tolerance…………………. …………………………55
 3.7.1. Self-Repair at the Molecular Level…………………………….. 56
 3.7.2. Self-Repair at the Cellular Level………………………………. 59
 3.7.3. The UNKILL Mechanism……………………………………….. 60
 3.8. Testing the RAM-MuxTreeSR Prototype ………………………..………. 61
 3.8.1 The Space Divider……………………………………………………. 61
 3.8.1.1. General Description……………………………………... 61
 3.8.1.2. An Example……………………………………………….. 62
 3.8.2 Prototype Configuration………………………………………….. 64

Chapter 4. Reliable MuxTree Memory Arrays
 4.1 Introduction…………………………………………………………………… 69
 4.1.1 Bio-Inspired Storage…………………….…………………………69
 4.1.2 Fault, Error, Failure…………………….…………………………70
 4.1.3 Inspiration Toward Achieving Dependability………………… 72
 4.1.4 Self-Repair in RAM-MuxTreeSR……………………………….. 73
 4.2 Single Event Upsets: An Analysis……………………………………….. 74
 4.2.1 Radioactive Isotopes …………………….………………………...76

 4.2.2 Cosmic Ray Influence ……………………………………………. 76
 4.2.3 Modelling Cosmic Ray Influence……………………………….. 79
 4.2.4 Brief Introduction to Particle Physics………………………….. 80
 4.2.5 Ion-Induced SEUs…………………………………………………. 82
 4.2.6 Neutron-Induced SEUs……………………………………………83
 4.2.7 SEUs Induced by Alpha Particles………………………………. 85
 4.2.8 Proton-Induced SEUs…………………………………………….. 86
 4.2.9 Conclusions………………………………………………………… 87

 4.3 A Reliability Analysis……………………………………………………… 88
 4.3.1 Datapath Model for Embryonic Memory Structures………… 89
 4.3.2 Preliminaries………………………………………………………. 90
 4.3.3 Strategies for Macro-Molecular Fault-Tolerance…………….. 92
 4.3.4 Fault-Tolerance at the Macro-Molecular Level………………. 93

 4.3.4.1 SEC Strategy…………………………………………….. 93
 4.3.4.2 DEC Strategy…………………………………………….. 95

 4.3.5. Fault Tolerance at the Molecular Level……………………….. 97
 4.3.5.1 SEC Strategy…………………………………………….. 98
 4.3.5.2 DEC Strategy…………………………………………….. 99

 4.3.6. Cosmic Ray Influence on Reliability………………………….. 101
 4.4 FTRAM-MuxTree: Fault Tolerant Macro-Molecules………………… 103

Page viii Ph.D. Thesis Table of Contents

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

 4.4.1 Error Correcting Coding Techniques…………………………. 104
 4.4.2 Single Error Correction Codes with Double
 Error Detection……………………………………………………108

 4.4.3 Possible Error Scenarios in a Macro-Molecule……………… 110
 4.4.4 Architecture of a FTRAM MuxTree Molecule………………. 112
 4.4.4.1 Architecture of a SEC Macro-Molecule…………….. 112
 4.4.4.2 Architecture of a SEC-DED Macro-Molecule……… 115
 4.4.5 Fault-Tolerant Memory Arrays: An Example……………….. 119
 4.5 Macro-Molecular Accuracy Threshold…………………………………. 123

 4.5.1 Quantum Dependability………………………………………… 123
 4.5.2 Quantum-Inspired Dependability in Embryonics…………... 125

 4.6 Fault Tolerance Assessment in Embryonics………………………….. 128
 4.6.1 Reliability at the Molecular Level…………………………….. 128

 4.6.1.1 Reliability of a Macro-Molecule………………………. 130
 4.6.1.2 Reliability of an Ensemble of Logic Molecules…….. 131

 4.6.2 Reliability at the Cellular Level……………………………….. 131
 4.6.3 Reliability at the Organismic Level…………………………… 132

 4.7 Bridging Quantum and Bio-Inspired Computing……………………. 134
 4.7.1 From Multiple-Level Self-Repairing to
 Multiple-Level Coding………………………………………….. 134

 4.7.2 Conclusions……………………………………………………….. 137

Chapter 5. Conclusions
 5.1 Analysis of the Results…………………………………………………… 139
 5.2 Original Contributions…………………………………………………… 142
 5.3 Electronic Stem Cells…………………………………………………….. 143
 5.4 Embryonics: Present and Future……………………………………….. 145

Appendix. A Hardware Implementation
 A.1 RAM-MuxTreeSR…………………………………………………………. 149
 A.1.1 Overview………………………………………………………….. 149
 A.1.2 Molecular Resources…………………………………………….. 150

 A.1.3 The HOLD signal………………………………………………… 155
 A.2 FTRAM-MuxTreeSR……………………………………………………… 159
 A.2.1 Overview………………………………………………………….. 159
 A.2.2 The INV signal…………………………………………………… 159
 A.2.3 The KILL signal………………………………………………….. 160
 A.2.4 ECL implementation of a (7,3) Hamming SEC code……….. 161
 A.2.5 Experimentation with macro-molecules……………………… 162

References…………………………………………………..………………………... 165

List of Publications.……………………………………..……………………….... 173

Table of Contents Ph.D. Thesis Page ix

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

Page x Ph.D. Thesis Table of Contents

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

CHAPTER 1

INTRODUCTION

It is difficult, if not impossible, to think of modern ages without considering
computers. Throughout their relatively short history computers have shown an
evolution both dramatic and dynamic. Born as a consequence of the ever-
inquisitive human spirit, computing systems have since shown a continuous
development process driven by necessity.

The modernity of a certain computer is sometimes measured by referring to
its generation. First generation computers, based on electronic tubes, were
unique machines, occupying quite a large area; they are now obsolete and,
compared to present days computers, they certainly appear as ridiculous. But
they will forever be present in computing history as its first milestone. A crucial
moment that allowed spectacular progress came was the introduction of the
transistor. This set another milestone in computing, showing a green light for a
second, more powerful generation of computers. By this time, the concepts of
designing and implementing a computer were also emerging with John von
Neumann setting another milestone with the architecture that now carries his
name. Present days computers have reached such levels of design complexity
that could only be dreamed of in the past. The strong momentum of technological
advances in the last three decades allowed a continuous process of shrinking the
transistors on the silicon wafer, thus enabling a larger crowd of devices onto the
same chip. What initially started as experimental technology has now reached
sub-micron levels (with the 90nm process now available) and is still going down,
unveiling new problems that, according to Gigascale Silicon Research Center,
can be grouped into problems of the small (caused by the transistor dimensions
on the silicon wafer), problems of the large (caused by the process of designing
and testing a device containing such an enormous number of transistors), and
problems of the diverse [30]. The industry’s focus on problems of the small, which
have been thus far dominant, is now shifting on problems of the large, as they
need to be efficiently solved in order to sustain further growth.

Though solidly set towards evolution, the difficulty computers experience
along this track comes from it being manifold: some applications require speed
above anything else, while others require the highest possible reliability;
unfortunately, computers themselves can fully fulfill none of the requests, thus
fueling the need for different and better suited designs. But stretching the limits
of human skill and creativity to make better computers has nowadays become a
twofold process, by necessity: while solving technological problems involved is
certainly essential, this is pursued in parallel with a quest for new inspiration in
their design, both in software and in hardware.

In its continuous strive to make computing systems run faster and be more
reliable, mankind is now looking for new, as yet unexplored, computing

Chapter 1 Ph.D. Thesis Page 1

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

paradigms as classic systems appear to have approached their limits. Two
inspiring sources seem to be within our grasp.

Nature may very well provide such inspiration, exhibiting biological
solutions that are omnipresent and, considering the time spent for evolving
them, as close to perfection as possible (though the optimality of nature’s
mechanisms is perhaps arguable from an engineering perspective). In a context
of scientific rush at both design level (to build new, innovative computers) and
paradigmatic level (generating new algorithms, running on new principles),
nature presents a wealth of inspiration. The idea of importing biological features
into human-made machines is not at all new, a variety of robots being part of
everyday life: able to meet requirements such as brute force, flexibility and
reliability, they have become indispensable. Yet all living organisms are provided
by nature with at least two special features – self-repair and self-replication –
that still remain inaccessible to current machine design. At the paradigmatic
level, a new focus on the laws of physics could once again be put to work in order
to achieve quantum computing, which could further enhance the computing
forces at our disposal. These are two directions that show the potential of setting
new and awaited milestones by producing, if not revolutionary, then at least
some evolutionary effects over modern computing. This thesis is concerned with
the first one, as part of the development of a much larger, bio-inspired research
project.

This introductory chapter will briefly present the motivations that lie
behind this thesis and some of the basic features we wish to introduce, together
with a brief outline of the overall structure of the thesis itself.

1.1 Motivations

The current state-of-the-art in computing stands, undoubtedly, for the
quest to achieve dependable, fault tolerant systems while preserving the raw
performance. Human-built machines tend to show little flexibility and brittle
responses, not being quite able to cope with the exposure to a dynamically
changing environment, all these in deep contrast to the wonderfully adaptable
biological systems built by Nature. The surrounding environment, a huge
repository of various solutions constantly tested along many million years, made
engineers aware they could draw some inspiration from it. History records
indicate there was a clear separation between the two categories of scientists and
engineers – while scientists aimed to a better understanding of things, and
ultimately Nature, engineers tried to imitate it when creating tools. However,
the modern era is narrowing the gap by forcing them to work together, in a
symbiotic process: during research activity, scientists need tools created by
engineers, while engineers use scientific knowledge in the process of tool creation
[67].

There is no doubt Nature has developed and thoroughly tested its solutions
in time; such a long time that it would be impossible for engineers to replicate
the process and allocate the same amount for testing. And considering
dependable, fault tolerant systems, there is no closer source of inspiration than
Nature itself, proven and endorsed by the uncountable variety of living beings.

Page 2 Ph.D. Thesis Chapter 1

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

However, engineers face a dilemma when trying to implement Nature’s
solutions: while studying natural sciences is an essentially an analytic process,
creating devices that would exhibit some of the most interesting features found
in living organisms happens to be essentially a synthetic process [119]. There are
at least three major issues:
• would adapting mechanisms from nature in engineering also replicate the

results?
• were exactly would the two of them, Nature and science/engineering, meet?
• finally, is the process of exporting biological features in computer engineering

technically possible?
These are some of the questions both engineers and scientists are strongly

arguing about, for the benefits seem to be very well worth the effort [99]. The
potential of biologically-inspired and quantum computing architectures is
acknowledged by the ITRS report on emerging technologies (see Figure 1-1)
[169]:

Figure 1-1: Emerging technology sequence [169].

1.2 The Legacy

Answers to the aforementioned issues came along with the advent of bio-
inspired digital systems, pioneered by John von Neumann as a brilliant scientist
who will mark the history of mankind with his achievements. Not only a gifted
mathematician, he extended his ingenious, sharp mind over a variety of fields,
including him being part of the Project Manhattan and later the father of the
modern computer architecture, the IAS machine. He also considered the aspects
involved by the reliability of computing systems [80, 81] and later in his life he
found a great interest in what he called the theory of automata [56, 61, 79, 112,
120], inspired by the similarities and differences between the artificial automata
(computers) and natural automata (biological organisms).

Parenting the concept of the stored program at the Institute for Advanced
Study in Princeton was driven by his perception that computers could be used

Chapter 1 Ph.D. Thesis Page 3

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

successfully to applied mathematics for specific problems. Aware of the vast
parallelism involved in the biological systems, but also of many issues that would
have to be solved in order to take any advantage of it, he preferred to design a
sequential architecture for the IAS machine.

Always looking for a synergy between a range of fields (in which von
Neumann certainly didn’t lack expertise), his last research effort before his
untimely death in 1957 focused on the theory of automata which led to a set of
principles an artificial system with biological attributes would have to follow. He
began investigating the similarities between a computer and a nervous system
[78] and later proposed an architecture for a self-replicating system consisting of
two parts [79]:
• A universal constructor. Von Neumann’s view was that self-replication should

come as a particular case of construction universality. In other words, such a
self-replicating machine should be able not only to construct identical copies
but any machine, given an appropriate description.

• A universal computer. The computing capabilities of the machine should
extend over any finite program; A. Turing defined such a class of automata,
now known as the universal Turing machines [80].

Von Neumann’s research was never completed, but his theory of automata
may be considered even today as an inspiration in developing bio-inspired
systems.

1.2.1 The POE Model

Intricate behavioral patterns are exhibited by all members of the biological
world, the marvel of life hiding inside them being so different and yet so similar
to each other. All the features exhibited by living beings come as the result of a
continuously running evolutionary process that can be considered as taking place
along three axes [67, 119]:
• The very first level of organization concerns the temporal evolution of the

genetic program. Called phylogeny (P), it is the result of a non-deterministic,
low-error rate reproduction process of the genome, thus giving rise to
biological diversity.

• The second level of organization is concerned by the temporal evolution of a
multicellular organism, from the early stage of the primordial cell (the zygote)
to the final, mature organism. Called ontogeny (O), this is essentially a
deterministic, low-error rate process that includes two distinct processes:
cellular division and cellular differentiation.

• The third level of organization arises from the apparently insufficient
capacity of the previous levels to integrate complex structures such as the
nervous, immune or endocrine systems. Furthermore, the changing topologies
of these systems throughout a normal individual’s life also support the
concept of such a superior level of organization, called epigenesis (E).

If each level is represented by an axis (Figure 1-2), this leads to partitioning
the space of all living beings, the result being what is called the POE model. All
of the above considered, the taxonomy of artificial, bio-inspired systems may be
regarded as falling over the POE model, containing the same three directions
along which natural, biological evolution guides itself, in a quasi-perfect analogy
[107, 119].

Page 4 Ph.D. Thesis Chapter 1

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

Using the taxonomy provided by the POE model, one can investigate the
existence of a variety of bio-inspired systems that belong mostly to a certain axis
or plane. Phylogenetic processes can be observed under the form of evolutionary
processes, such as genetic algorithms (GA), genetic programming (GP), widely
known as evolutionary algorithms (EA). There exists both software (in the form
of a population of artificial individuals, used to evolve an acceptable solution by
using genetic operators such as cross-over and mutation) [35, 41] and hardware
(evolutionary algorithms applied to the synthesis of digital circuits)
implementations [109].

Epigenetic processes are implemented, both in software and hardware, as
artificial neural networks (or ANNs) of two types: learned systems (that feature
an instinctive behavior and limited generalization capability) and learning
systems (that adapt continuously to a dynamic environment and feature a high
generalization capability). Though hardware implementations of ANNs remain a
very small minority compared to software, it is worth mentioning that new
momentum in designing bio-inspired systems endowed with epigenetic processes
in hardware was gained through using the latest generation of programmable
circuits, the field programmable gate arrays (the FPGAs) [89, 90].

Ontogenetic processes can be primarily assimilated to growth or
construction, through the processes of cellular division and cellular
differentiation. These show a critical importance to the world of digital
electronics since one of their direct consequences is the ability of self-repair.
Pioneered by John von Neumann, the research along the ontogenetic direction
can be viewed over several stages [67]; while the majority of implementations
concern unicellular automata, there is a long-term research project that adapts
the cellular processes by proposing an ontogenetic hardware architecture, called
Embryonics.

Figure 1-2: The three axes of the POE model.

1.2.2 The Embryonics Project

The main purpose of Embryonics (a contraction of embryonic electronics) is
to attempt to build a bridge over the existing gap between the worlds of biology
and electronics. Perhaps seeming totally disjoint at a first glance, the two worlds
are in fact not that dissimilar; as argued in the previous section, each of the
three directions of the POE model were actually considered already (at least
theoretically) for implementations. Therefore any of the insights revealed from
this profound exploration process should be carefully analyzed and considered for
a potential adaptation and/or insertion into new mechanisms over silicon devices.
The entire Embryonics project is generously dimensioned to accommodate the

Chapter 1 Ph.D. Thesis Page 5

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

design and implementation of novel bio-inspired hardware, including (but not
limited to) the ontogenetic axis [118].

Ontogenetic processes that take place in all multicellular living beings are
believed to be driven by the genetic program, a copy of which is present into each
cell, be it muscle, nerve or any other tissue. Its relentless execution expands the
runtime period over the entity’s entire lifetime, and is by itself an example of
perfection. The genetic program is not executed in its entirety, a complex
mixture of factors partitioning it into groups of components called genes, and also
determining which genes will be executed by one particular cell. By this process
of selecting the genes to be interpreted and executed, nature has implemented a
mechanism that transfers the partitioning from the genetic program to the
cellular level. As a consequence, by executing different parts of the genome, cells
develop different types of functionalities through a process known as cellular
differentiation. Other natural mechanisms such as healing or reproducing may
be regarded as facets of the same genetic program.

The ideas that lie behind the Embryonics project extract their substance
from the fascination of this most powerful program also known as the genome.
After years of continuous research and refinement, the Embryonics project has
reached a mature stage, its central dogma being a four-level architecture (shown
in Figure 2-2). The most basic brick in Embryonics is the molecule, essentially a
reconfigurable circuit capable of universal computation; molecules are assembled
to make cells, which in turn make up organisms, thus achieving multicellular
organization, and finally, a population of organisms. The strength of Embryonics
comes from the fact that each cell stores a complete copy of the genetic program
of the organism it belongs to, the only differences between two different cells
being the portions of the genome each executes, through a coordinate-based
mechanism that ensures cellular differentiation.
There are several key features that are vital for Embryonics:
– The multicellular architecture allows the construction of complex entities,

built of identical, simple cells that are built by even simpler molecules. As the
levels increase in the organization axis (Table 1-1), so does the complexity of
the corresponding entities. The situation is borrowed from biology but there
are, of course, many aspects that prevent these similarities from actually
becoming identities: we do not have access to the complex chemical plant
Nature uses to assemble its molecules and cells; instead we have to provide
the artificial environment as an empty, non-functional array of reconfigurable
logic, that will be subject to pseudo-biological mechanisms in order to
assemble our artificial cells from artificial molecules. Furthermore, an
artificial organism’s performance is given by the sum of the functionalities of
its own cells that operate in parallel; this is also borrowed from biology where
living beings exploit a massively parallel operating of their components.

– The ontogenetic processes give biological entities their incredible degree of
robustness; during its normal life, a living organism suffers temporary
illnesses and wounds that are normally cured in time. The temporality of
these environmental aggressions is ensured by the two processes mentioned
before, namely cellular division and cellular differentiation. Dead cells from
broken tissues are successfully replaced by newly-born ones, whether they
originate directly from an identical cell or indirectly by a process of modified
behavior as a result of a differentiation process that takes place in the gene

Page 6 Ph.D. Thesis Chapter 1

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

expression process: given that any cell stores a complete copy of the genome, a
cell can become of any type by simply executing the right genes.

While the similarity with their biological counterparts is one of the main
purposes of the entire project, these vital features of Embryonics also share the
names from the world of digital computerware. Therefore, one can say that the
biological mechanism of cellular division has as its direct consequence in
Embryonics the mechanisms of self-replication, while the cellular differentiation
from biology takes the form of self-repair mechanisms.

Biology Electronics

Multicellular organism Parallel computer system
Cell Processor

Molecule FPGA Element

Table 1-1: Analogies present in Embryonics [128].

1.2.3 A Plea for Bio-Inspiration

Emergent behaviors observed in biological organisms demonstrate their
intrinsic robustness. On one hand, wounds and illnesses (faults and errors in
artificial systems) are not rare at all, while on the other hand the overall activity
of the organism (the functionality of the artificial system) remains virtually
unaffected. All these happen because of the self-diagnosing and self-healing
capabilities that take place ceaselessly inside living beings (the power of
replacing damaged cells and tissues with newly fabricated ones has the
consequence of being able to heal quickly). While this was successfully
implemented and then perfected by Nature over a very large period of time, the
power of fabricating new things is something that human-made machines
certainly lack (even considering this as feasible, dedicating the same time to
adapt and perfect the necessary mechanisms as Nature did is obviously
impossible). On the other hand, bringing a robustness degree to artificial
systems, i.e. incorporating fault tolerance, might not necessarily have to rely on
actually fabricating the required basic bricks: they could lie inside the system,
passively assisting its normal operations and only becoming active when there is
a fault detected, as part of what is called redundancy.

Self-healing mechanisms from nature have a direct correspondent in
artificial systems where they are called self-repairing mechanisms. The
redundancy feature cannot be separated from the possibility of reconfiguring the
system. Depending on how redundancy is achieved two types can be
distinguished: hardware redundancy, making use of multiple replicated
resources, and time redundancy, making use of multiple tasks running in
parallel for the same goal [53, 65, 67, 128]. Bio-inspired redundancy is one of the
researched paths [85, 86], while a bio-inspired fault detection known as
immunotronics successfully implements a mapping of the biological immune
system to the world of silicon [6, 40, 144, 157].

The key aspects and differences between bio-inspired alternatives such as
Embryonics [60, 71, 72] and classical designs for fault-tolerance lie in the
distributed nature of the reconfiguration process. In hardware redundancy, the
faulty resources are taken over by identical spare ones, the physical re-routing
processes being usually decided and initiated by some kind of centralized

Chapter 1 Ph.D. Thesis Page 7

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

processing unit. While this approach has a proven effectiveness, its centralized
nature presents some major disadvantages concerning the scalability and
reliability. Centralized controls do not scale well to arbitrarily large networks.
Moreover, the entire system is no more reliable than its centralized processing
unit; any fault arising here could potentially jeopardize its normal operations
and thus leading to the failure of the entire system [39, 44, 46].

1.3 Features

All organisms from nature (be them unicellular or pluricellular) store in
each of the composing cells their individual and unique genetic program, whose
ceaseless operation constitutes the supreme act of living. The features that
differentiate living beings from each other are heavily influenced by the genome
itself, by its structure and by its size. While our artificial organisms are also
genome-driven, expanding bio-inspiration is a dynamic process that not only
means adapting biological mechanism in digital electronics but also constantly
updating the structure of the genome itself in order to ensure the degrees of
efficiency and flexibility required by all newly imported bio-inspired features.

The complexity that can be achieved by using our architecture reflects upon
the complexity of the genome’s structure, which is made of thee distinct
components. The polymerase genome is the information required for the initial
process of delimiting the space occupied by one cell. This is done by a special
mechanism called the space divider, which effectively attaches a geographical
blueprint to each molecule, the result being a rectangular cluster made of the
molecules that make up our cell. The entire process of encoding the cellular
boundaries is similar to what can be encountered in nature under the form of the
cellular membrane.

The ribosomic genome determines the functionality of the entire cell; since a
cell may be considered as the sum of its molecular components, the ribosomic
genome is an assembly of all binary strings that are used to configure each
MuxTree molecule’s internal logic [67, 100, 128, 131]. Through a proper
configuration of the ribosomic genome, our artificial molecules and cells may
implement complex digital machines. There is however an important limitation
concerning implementations that make use of any memory structure: the only
memory resource present inside a molecule that might be used for such a
purpose has a storage capacity of a single bit [128, 131]; as a natural
consequence, any form of memory would need a huge number of molecules just
for storage purposes, thus all the remaining resources are but a significant
waste. A typical example where the ribosomic genome shows insufficient abilities
would be any microprogrammed machine.

As a measure of extending the limitations of the ribosomic genome, the
operative genome [63] has been introduced. It was designed to establish an
efficient way of implementing more flexible memory structures, also providing
the means to a more complete utilization of internal resources at the molecular
level. Although the introduction of the operative genome brings new possibilities
in building a memory structure within an Embryonics machine, the operation is
far from being a straightforward graft, as there are several issues arising that
have to be settled. The existing hierarchical model imposes a distributed-type

Page 8 Ph.D. Thesis Chapter 1

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

memory, that is, the memory structure has to be composed of basic memory
units. A larger storage space would imply a correspondently larger number of
such units; also, it should be possible for independent memory structures to co-
exist within the same organism. Furthermore, the memory allocation should
offer a reasonable balance between storage capacity and functional attributes (if
storage is more important than functionality, then a reduced number of internal
resources would be available; the opposite situation is when functionality is most
important and the use of internal logic would have to be maximized).

From these observations we can outline the basics of the new structure. We
decided in favor of a cyclic-type memory architecture, based on a new operating
mode introduced at the molecular level called the memory mode. Together, all
these make possible the use of a new memory structure, created by effectively
chaining molecules operating in memory mode into an extended shift register,
structure that we will call macro-molecule. In order to provide flexibility in using
the macro-molecules and to address the functionality-storage balance issue
mentioned previously, two memory operating sub-modes are available for any
molecule. The long memory mode locks the molecule’s communication resources
to the north-south, and east-west fixed paths while providing the maximum
possible storage space, while the short memory mode keeps the communications
resources available but offers half the storage space.

The artificial organisms in Embryonics offer superior robustness due to a
quite capable self-repair mechanism that stretches over both the molecular and
the cellular levels. Such a hierarchical approach for self-repair allows for an
effective way of tolerating faults: it has the capacity of reconfiguring according to
different severity levels, by addressing the least severe first (represented by
faulty molecules), and then the most severe (represented by faulty cells), while it
inflicts minimal resource loss through reconfiguration (replacing one faulty
molecule is certainly less expensive than replacing an entire cell). Although
covering a large area of possible faults, the self-repair mechanism currently
expands over the strictly functional parts of each molecule only. Since these are
driven by the ribosomic genome, the operative genome (and of course, the macro-
molecule) is left aside with virtually no error protection. While ensuring self-
repair over the functionality is certainly important, the newly introduced
memory structures represent per-se a hole in the robust package of Embryonics,
as the integrity of the entire genome (that also governs over functionality) is no
longer fully protected. It is therefore imperative that the existing mechanisms of
fault-tolerance be extended in order to accommodate the operative genome.

Finally, the introduction of new mechanisms that expand bio-inspiration is
also envisaged. The biological process of healing presumes periods of time during
which the wounded entity is at least partially incapacitated. We developed a
similar mechanism, based on repeated attempts of re-powering a totally
incapacitated organism or cell, which we called unkill. Based on the fact that
repaired faults are often of a transient nature, after a cell “dies” it might be
brought to life again by simply re-charging the genome, the success of this
process indicating the disappearance of such faults.

Chapter 1 Ph.D. Thesis Page 9

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

1.4 Outline

The complexity of such a vast research project as Embryonics has powerful
repercussions over the description effort. As the introduction of the new type of
genome influences the self-repair, while aspects closely related to self-repair
influence the genome, one can safely predict that such a reciprocal dependence
will be hard to describe step-by-step, in a linear fashion. However, we will try to
keep an as clear separation as possible between the issues this thesis deals with.

Being part of a much larger research direction, many of the conceptual and
design choices made in this thesis come as consequences of a continuous
development process over the existing design; such a process requires this thesis
be a building brick pertaining to a scientifically engineered edifice, rather than a
standalone one by itself. Chapter 2 will present an Embryonics overview,
expanding section 1.2.2, but also narrowing the focus over the actual design
concepts. The essential issues concerning bio-inspiration in digital hardware are
introduced in a more detailed context of Embryonics, with examples on how an
artificial organism is built out of artificial cells and molecules. Since the
Embryonics project always was, and continues to be, a collective effort, we
cannot claim originality for the contents of this chapter though we feel such a
deeper introduction towards this thesis’ goals is absolutely necessary.

Chapter 3 is entirely dedicated to the new memory implementation under
the form of the operative genome, whose need was previously justified [128]. Its
development and implementation are original and required a substantial amount
of research. The chapter begins by introducing the motivation of the problem and
then presents the arguments, which favored our decision towards a cyclic-type
memory, as opposed to other, more classical architectures. After a description of
the new memory organization, the chapter goes deeper into the implementation
details and gives examples on the ways storage data can be routed. Details on
how the process of growing the cellular membrane (which is achieved with the
special mechanism called space divider) is achieved are also given here. The end
of the chapter contains coverage of the self-repair mechanism in the new context
of the memory-operating mode (with examples of the actual reconfiguration
process provided) and the mechanism used for controlling the memory.

Chapter 4 is dedicated to the key aspects concerning memory fault
tolerance. It will start with a comprehensive description of the causes and effects
of the transient faults and, in particular, of those known under the name of soft
fails. Details of the particle physics that may lead to soft fails are presented;
though not an original contribution in its essence, we believe the review of soft
fails’ influence presents significant importance with respect to potential
Embryonics applications in hostile environments. As a natural step, we will next
describe the process of designing an upgraded self-repairing mechanism (which
would protect both the ribosomic and the operative genome). Furthermore, an
analysis of the methodology of configuring the operative genome in order to
obtain a fault tolerant memory is presented. An example of a complete cell, with
the operative genome using a Hamming-type, error-correcting coding is also
provided.

Chapter 5 contains our conclusions, analyzing the final design with respect
to the initial requirements previously motivated in section 1.1 and set in section
1.3. An original view over the bio-inspiration degree of the Embryonics project is

Page 10 Ph.D. Thesis Chapter 1

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

given in the light of the last scientific findings in modern biology, concerning the
human DNA and the stem cells. The final words are reserved for several
considerations on Embryonics; while providing an outsider’s view over possible
real-life applications may prove considerably challenging for someone deeply
involved in such a vast project, we make a last attempt on portraying the future
of this project. We hope our ambition would some day be rewarded.

The body of thesis will be followed by an appendix describing details of the
implementation.

Chapter 1 Ph.D. Thesis Page 11

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

Page 12 Ph.D. Thesis Chapter 1

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

CHAPTER 2

BIO-INSPIRED COMPUTING SYSTEMS

2.1. A Brief History of Bio-Inspiration

2.1.1 Introduction

Ever since the advent of modern computing systems, the quest for
performance seems to have taken intriguing paths: in the beginning it was the
rush for more and more raw computing power; as this need was increasingly
fulfilled, computing power continued to remain a top priority. Techniques were
developed in order to maintain performance progress for various types of digital
systems [32, 50, 88, 153, 159]. The performance achieved by computers seems
these days somewhat sufficient, transforming the aim of computer designers
from a single purpose – performance – to a list of top priorities. An essential
requirement of modern computing systems and part of this list dependability,
which is a synthetic term involving (as stated by IFIP’s working group WG 10.4)
a list of parameters such as reliability, fault tolerance, availability,
performability, safety, and others; in real world, a dependable system will
operate normally over long periods of time before experiencing any fail
(reliability), will recover quickly from it (testability, fault tolerance), while the
performance level won’t drop under a certain, acceptable, level (performability).

The need for dependable computing systems cannot be considered exactly
new, but until recently, building such systems was almost always a secondary
target. By attaining a sufficient level in terms of performance, an entire range of
new applications made it obvious that performance by itself was no longer
enough. Such is the case of space applications, which represent a special category
for digital computing; long-term exposure to aggressive (even hostile)
environments prohibit or limit any human intervention, therefore endorsing the
quest for dependable systems, which has turned into a vital requirement instead
of a negotiable quality indicator.

Designing dependable and reliable computing systems is one of the modern-
day designer’s tasks, and any literature survey reveals enormous amounts of
work carried in order to ensure these much needed characteristics both at the
conceptual level [3] and at the hardware level [22, 23, 93], in particular in
FPGAs [31, 43, 77, 131]. An essential part of the dependability equation is
played by fault tolerance (covering a variety of aspects such as fault detection
and fault recovery). Unfortunately, a sufficiently dependable (this being, of
course, application dependent) computer remains an idealistic target so far,
proven by a series of unsuccesses of on-board computers at high altitudes and in
the outer space (Japan’s Nozomi and UK’s Beagle-2 probes, both lost on the way
towards Mars, are perhaps the most recent pieces of evidence that mankind still

Chapter 2 Ph.D. Thesis Page 13

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

has some improvement room left where building dependable equipment is
concerned). With current designs being insufficiently dependable, other sources
of inspiration may be worth exploring.

A very generous, yet not fully researched and understood, source of
inspiration lies very close to each and every one of us: nature. Nature exhibits
omnipresent biological solutions, which, considering the time spent for evolving
them, are as close to perfection as possible. In a context of scientific progress at
both the design level (to build new, innovative computers such as based on bio-
inspired architectures) and the paradigmatic level (generating new algorithms,
running on new principles, such as molecular and quantum computing), nature
presents a wealth of inspiration.

Biological organisms are the most intricate structures known to man, with
a highly complex behavior, due to massive, parallel cooperation between huge
numbers of relatively simple elements, the cells. And considering dependable,
fault tolerant systems, there is no closer source of inspiration than Nature itself,
proven and endorsed by the uncountable variety of living beings, with a life span
up to several hundreds (for the animal regnum) or even thousands (for the
vegetal regnum) of years. Trying to exploit nature’s results only seems a natural
step.

Present-day technology has pushed the architecture of computing systems
towards such levels of complexity that the design of new, innovative computers
has become a challenge for human intelligence. Despite not being a new concept,
biological inspiration in the field of designing artificial machines still represents
a research activity. Recent technological advances combined with the focus
shifting from the mechanical world to the realms of information led to re-
evaluating the biological inspiration when designing computer hardware. The
dream of creating artificial machines featuring the robustness and the efficiency
of living beings is even closer to becoming a reality [119].

2.1.2 The Road to Bio-Inspiration

The analogy between biology and electronics might appear fuzzy at a first
glance [16, 67, 107, 118, 119]. But considering the facts that the function of a
living cell is determined by the genome, and that a computer’s functionality is
determined by the operating program, then the two may be regarded as sharing
a certain degree of similarity.

Of course, carbon-based biology is different enough than silicon-based
computing, making it quite difficult to establish a straightforward similarity
between them (except, perhaps, at a very superficial level). It might be worth
mentioning that, while the environment simply exists for the biological entities
in nature, which depend on it in order to survive and replicate, any artificial
mechanism needs a suitable environment in order to operate, which is also
artificial. Furthermore, no artificial mechanism is as yet capable of a similar
performance as everyday natural processes of birth and growth; what in biology
is possible with the aid of complex chemical processes must be provided initially
in electronics. However, despite a variety of aspects that sever the connections
between the two worlds, some basic biological concepts may appear to encourage
their coming closer to each other, and may prove extremely interesting from a
hardware designer’s point of view (such as robustness, evolution, and healing),
thus making the research for adapting them into digital devices a real challenge.

Page 14 Ph.D. Thesis Chapter 2

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

Considering the field of designing electronic circuits, bio-inspiration was not
overlooked by one of the founders of modern computer engineering, John von
Neumann, the parent of the first self-replicating computing machines [61, 69,
105]. Several years before his untimely death he began to develop a theory of
automata, which was to contain a systematic theory of mixed mathematical and
logical forms, with the aim of contributing to a better understanding of both
natural systems and computers [79, 120].

Shortly after John von Neumann passed away, Francis Crick, one of the
discoverers of the DNA’s structure, enounced the central dogma of molecular
biology, that proteins are not made directly from genes, the intermediary being
the RNA [11, 120]. The DNA is the container for the information needed by a
biological organism to carry out each of its functions; it is the DNA’s data that
allows the zygote to divide and differentiate to grow the organism as a
multicellular identity that will interact with the environment, adapt to its
conditions, heal, reproduce, and eventually die. Thus we assist to a certain
layering of the roles played by the essential biological molecules [120]:
• DNA is the carrier of information;
• RNA is the messenger (the elements decoding the RNA genetic information to

produce the necessary proteins are called ribosomes [106]);
• proteins are the executors.

Considering the biological findings, if any piece of digital hardware is to
achieve some degree of bio-inspiration, several biological features would have to
find their correspondents in the world of electronics. Similarities exist already:
the DNA might be regarded as equivalent to a memory, the RNA as a
communication unit, and the proteins as equivalent to parts from a logical unit.
However, there is an essential problem, which was solved by Nature from the
very beginning, that has yet to find a solution in electronics: proteins are
synthesized by living organisms from raw materials that are readily available
and offered by the surrounding environment, a task that is, at least for the
moment, impossible to implement by silicon devices. Instead of synthesizing any
proteins, the only available solution is that their electronic equivalents be
supplied by the artificial environment, thus mimicking the synthesizing process
by choosing only the useful parts from the environment through a process of
digital configuration. In order to implement such mechanisms, bio-inspired
machines have to be able to change their hardware functionality by using
information. By consequence, it can be concluded that a piece of bio-inspired
hardware would present the following features:
• a memory structure carrying the genetic information and equivalent to the

biological DNA;
• a decoding/routing unit that would manage genetic information in a similar

way the biological RNA does;
• a functional unit that would execute the genetic program, similar to the

biological proteins.
The central dogma of modern molecular biology entails the formula

“genotype + ribotype = phenotype”. As such, von Neumann could not have
explicitly thought about this equivalence, which makes it astounding that the
system he developed with no prior knowledge of the DNA structure, still meets
this equation. His universal constructor self-replicates similar to the natural
process: the tape stores the description for the entire machine (the genotype), it

Chapter 2 Ph.D. Thesis Page 15

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

is interpreted by a ribosome (the ribotype), and together they make the machine
itself (the phenotype) [61].

2.1.3 The Technology

The key technology available, which today allows the development of bio-
inspired hardware architectures, can be found in the programmable logic
devices, usually referred to as FPGAs (Field Programmable Gate Arrays) [7,
140]. Composed by a two-dimensional array of identical elements, each being
capable of implementing a variety of different functions, FPGAs can be used to
play the role of just about any kind of digital circuit by individually configuring
the functionality of the programmable elements, as well as all the connections
between them. They seem to be the ideal platform for developing bio-inspired
hardware, which requires the layout of the circuit be changed by mechanisms
implementing self-replication, evolution or healing (self-repair) and adaptation to
the environment.

2.1.3.1. Characteristics of the FPGAs

Any FPGA device [87] may be decomposed into two essential layers (see
Figure 2-1) that give its power and flexibility: the functional layer and the
communication layer. The functionality of the device comes from a number of
structurally identical elementary units, usually composed of a few gates and flip-
flops that can be configured to allow for any kind of combinational and/or
sequential implementations (bottom left in Figure 2-1). In order to feed the
elementary units and also drive required signals inside the device, the
communication layer consists of input-output busses (bottom right in Figure 2-1);
furthermore, the direction of driving a signal may be changed by configuring the
bus connections, which are themselves configurable. A special case of elementary
units are those situated at the boundaries, as these will likely play the role of
user-defined IO ports, thus allowing the FPGA to interact with its exterior
environment at the expense of a limited functionality.

The internal architecture of an FPGA allows unleashing the inherent
parallelism in operating its building bricks. They are small and simple enough
(architectural uniformity being also possible) to achieve massively parallel
operating (able to perform bit-level operations), yet they are complex enough to
allow further organizing, layering, and communicating as separate entities of
various shapes and roles (also able to perform systolic operations). Designing
with FPGAs is considered in present days one of the most efficient ways of
prototyping, testing and evolving new architectures; a special bonus is offered by
the possibilities of on-line modifications in a FPGA configuration, with on-line
hardware evolution being a very attractive tool in the near future [68]. Much
work has been carried out over methods of designing efficiently with FPGAs for
the purpose of implementing testable and self-testing computing machines [1, 2,
31, 43, 77, 126].

Another key advantage of the FPGAs lies in the configurable
interconnections, thus making them especially suited for bio-inspired design.
Efficient and flexible (at least in theory), bio-inspired fault-tolerance requires
some sort of hierarchy when dealing with resource reconfiguration. Such a
hierarchical mode of configuring the interconnections can be offered by FPGAs;
for instance, the 6000 series from Xilinx has been involved in evolvable hardware

Page 16 Ph.D. Thesis Chapter 2

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

research because of its suitability for such applications [19, 26]. One of its strong
points is a mechanism that provides abundant, hierarchical connectivity between
groups of elementary logic blocks (FastLANE™ routing technology) [171], being
provided as follows:
• each elementary cell connects directly with the four adjacent neighbors;
• an upper layer provides interconnections between blocks consisting of 4×4

elementary cells (length 4 FastLANE™);
• another communication layer provides interconnections between tiles, i.e. 4×4

blocks, that is, 16×16 elementary cells (length 16 FastLANE™);
• finally, information can be routed chip-wide, between structures of 64×64

elementary cells, or 4×4 tiles (length 64 FastLANE™).

2.1.3.2. Bio-Inspiration and Robustness

Inspiration from natural systems in engineering seems appealing due to
their extraordinary resilience: living organisms are continuously immersed into a
dynamically changing environment (which, to make matters worse, is also non-
deterministic), yet they manage to survive, prosper, and reproduce. They
succeeded in taming the sometimes harsh and aggressive environment in order
to live for such extended periods of time any design engineer would wish to build
systems operating for such long and with such efficiency. Therefore,
dependability would provide in engineering a definition close to what robustness
actually means in nature.

Figure 2-1: Basic structure of an FPGA.

Chapter 2 Ph.D. Thesis Page 17

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

In order to implement bio-inspired, dependable systems that would match
the robustness witnessed in any biological organism, one has to assess its driving
forces by answering at least the following questions:
• what mechanisms make biological entities robust, and
• how can these be implemented in engineering so as to build systems with

comparable dependability levels.
Answering the first question requires one to observe how the natural

healing processes occur in living organisms, as the key quality allowing them to
overcome the damaging effects of not only the surrounding environment, but also
of interactions with other organisms, lies in their capacity of regeneration. A
majority of illnesses and wounds that leave the organism partially incapacitated
are successfully cured through regeneration in time. This remarkable curing
potential lies in the capability of all living beings to grow new cells that, in the
end, will completely replace the cells composing the damaged organ or tissue. An
engineering approach, however, would encounter here its first serious obstacle to
implement natural healing processes in electronics; if replacing faulty circuits
and devices can be implemented from an operational standpoint (through
reconfiguration, majority voting or other strategies), fabricating new
replacement circuits on-line or “regenerating” them remains a matter of fiction.
Therefore, bio-inspired digital design would have to content with reconfiguration
strategies for self-repairing, as only these are, as of yet, available; this also
provides a strategy for answering the second question.

However, the ability of all living beings to grow new cells in order to repair
damaged organs and tissues includes an additional feature of locating the exact
boundaries of the region that needs healing; such a mechanism would be similar
to what is called self-testing in digital design. But in nature growing new cells is
not sufficient per se for the healing to be complete; new cells may replace
damaged cells only if they are the same, i.e. they share the same structure and
functionality. By consequence, bio-inspired self-testing and self-repairing will not
be sufficient in order to produce a close imitation of natural healing; faulty
artificial cells can be replaced only by new units with the same characteristics.

2.1.4. Bio-Inspired Computing

The first computing system that might be regarded as to comprise bio-
inspired concepts comes from the very dawn of the computer era and is actually
the von Neumann architecture, developed at the Institute for Advanced Study
(IAS): the entire system is built around a central processing unit (which may be
seen in analogy with a brain), which is connected with a range of peripheral
devices (analog to sensory organs and limbs) through a network of buses (analog
to the nervous system) and also accesses a memory system (somewhat similar to
a genetic memory). The validity of the structural concepts of this architecture
was proven by the fact they are used, with little or no change, even today by
modern computers. However, if roots of bio-inspiration can be found from the
very beginning of the classical computation, new momentum was gained with the
technological progress, bio-inspired applications now covering all three axes that
make up the POE framework [119].

The phylogenetic axis is represented mainly by software implementations
based on genetic algorithms [35, 41]. Formally introduced in the United States in
the 1970s by John Holland (University of Michigan), genetic algorithms are very

Page 18 Ph.D. Thesis Chapter 2

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

attractive for some optimization problems, where classical algorithms may get
stuck over local optima; they encode and combine the problem’s possible
solutions using genetic-like operators such as crossover (or recombination) and
mutation in order to evolve a better result. Both these operators are non-
deterministic by nature, and therefore fundamentally different than classic
algorithms, thus offering a potential edge in digital computing. However, the
evolution in the space of potential solutions pursues a predefined goal, the
artificial population has no material existence, and individuals do not interact
simultaneously, as opposed to natural systems [49]. Furthermore, the artificial
phylogenetic implementations require a fitness calculation based on some
characteristics of the pursued goal (which is obviously not an open-ended
evolution), also very different than natural processes where evolution is open-
ended (it does not appear to target a specific goal) [67].

A recent emerging field has been significantly influenced by the progress in
reconfigurable hardware design and evolutionary computing. Called evolvable
hardware, it is a special category that allows phylogenetic operations to be
actually run inside computer hardware [116, 117, 158]. There is still an ongoing
debate on how to define it properly; it may be regarded as a hardware solution to
some evolutionary techniques but it may also be regarded as performing online
bio-inspired adaptation processes. As an example of the latter, the Firefly
machine is a hardware implementation of evolving cellular automata in order to
solve the synchronization task, illustrating the phenomenon of a firefly
population that reaches the state of pulsating synchronously [108].

According to the POE model (presented in Chapter 1, section 1.2.1), at a
certain level, living matter continuously reorganizes itself based on learning
experiences that take place by interacting with the surrounding environment.
Therefore, along the epigenetic axis, one can find implementations involving
artificial neural networks (ANNs) as attempts of building computing systems
endowed with the capability of learning. Another category is expert systems,
which try to emulate the processes that are linked to human intelligence. Of the
three known epigenetic systems, namely the nervous, endocrine and immune
systems, epigenetic artificial processes are usually inspired by the first [24].
There has been a vast scientific effort covering the research in this area, on both
learned and learning systems, but there are still few hardware applications
allowing true, online learning [89, 91]. The immune system is also providing bio-
inspiration, as there are some implementations for error detection purposes [157]
and even attempts towards the implementation of an artificial immune system
[6, 40]; computer viruses were also found to integrate attacking strategies used
by their biological correspondents [122].

Ontogenetic characteristics are specific to another organization level of the
living matter, comprising all the developmental processes that take place in a
multicellular organism. In contrast to the phylogenetic processes, ontogenetic
processes are deterministic by nature, any occurring error therefore producing a
severely handicapped or non-viable organism [155]. John von Neumann was the
first to formalize the theory of self-reproducing automata capable of universal
computation and universal construction [79]. Unfortunately, the complexity of
such machines prohibited any physical implementation at that time; today, self-
reproducing automata capable of universal computation have been implemented
both in hardware [92, 111, 118] and software [19, 47, 129] but implementing the
universal construction feature continues to elude modern science.

Chapter 2 Ph.D. Thesis Page 19

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

Ontogenetic processes include cellular division (starting from the moment
of inception, with the mother cell or the zygote) and the specialization of
daughter cells according to their position within the ensemble, known as cellular
differentiation. Therefore, systems that implement ontogenetic processes in
hardware need to be based on a hierarchic, modular (cellular) architecture,
features made possible with the arrival of the reconfigurable devices. A
representative example is the BioWatch [108, 124, 125], a time keeping machine
that exhibits a hierarchical strategy of tolerating a range of possible faults by
implementing both cellular division and cellular differentiation processes, and
implemented recently over the artificial tissue of BioWall. Essentially, BioWall
offers a bio-inspired platform that draws its powers from an array of 5700
Spartan FPGAs [134, 135]; apart from BioWatch, the BioWall demonstrates
implementations of self-replicating loops, Turing neural networks, solving the
synchronization task (the original FireFly machine was also ported on the
BioWall platform), and string comparison computing.

Both the Firefly and the BioWatch machines are bio-inspired attempts to
explore the potential of ontogenetic processes applied to computer hardware.
While they each contribute to the establishing of evolvable hardware as a new
field of research in computing, they are both offsprings of a much larger research
project, focusing on the exploration of the POE model’s implications in digital
devices: it is known as the Embryonics project and this thesis is part of the
collective research effort involved.

2.2. The Embryonics Project

Embryonics stands as a contraction for embryonic electronics and is the
name of a long-term research project launched by the Logic Systems Laboratory
at the Swiss Federal Institute of Technology, Lausanne [62]; it aims at
establishing a bridge between the world of biology and the one of electronics, in
particular the world of digital circuits. The main goal is to use biologically
inspired mechanisms – borrowed from nature and adapted to electronics – and to
draw inspiration from two distinct sources [66, 123, 128, 131]. The first is the
biological mechanism of multi-cellular organization: the complex biological
behavior is a result of massive parallel operation of a multitude of simple
elements, the cells, each containing a complete description of the organism itself,
which is the genome. The second is von Neumann's concept of self-replication of a
universal computer, a mechanism allowing the automatic creation of multiple
identical copies of a machine from a single instance [79, 128].

As a general research project, Embryonics is conceived not so much to
achieve a specific goal, but to explore the uncovering insights by applying new
concepts (inspired from biology) to a known field (digital computing). It tries to
determine if interesting results can be obtained by applying biological concepts
and mechanisms to the world of electronics [128] and to assess the potential of
bio-inspired digital design in order to build innovative computing systems
featuring superior robustness (i.e. fault tolerance in computer science) and
beyond. As any original concept, Embryonics is also law protected by a number of
patents [57, 58, 59].

Page 20 Ph.D. Thesis Chapter 2

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

2.2.1 Scope of Embryonics

The POE model presented in Chapter 1 provides a general framework for
all bio-inspired implementations in digital computing; however, simultaneous
exploration of all three research directions (phylogeny, ontogeny and epigenesis)
would not prove to be an effective approach: Nature itself perfected the biological
mechanisms over a very long time, and the process is still ongoing. Rather than
attempting such a task, Embryonics offers the perspective of studying the
feasibility of bio-inspiration in hardware design, along any individual direction of
the POE model. In particular, the current focus of Embryonics is over the
ontogenetic processes, as they may be regarded as constituents of the first level
of organization of the living matter, offering a foundation for achieving
robustness.

By demonstrating the technical possibility of modifying hardware by the
use of information – and this is the case with the FPGAs – the feasibility of
creating bio-inspired computer hardware was proven. Drawing inspiration from
biological organisms has therefore led us to define the electronic organism as a
two-dimensional array of processing elements, all identical in structure (similar
to biological cells) and each executing a different part of the same program (the
genome), depending on the position in the array (again, similar to biological cells)
[25, 128].

2.2.2 Bio-Inspired Robustness

There are two essential biological mechanisms that can be considered as
strong providers of reliability: multicellular organization and cellular division
and specialization. Rather than following a centralized approach, if viewed from
an “administrative” perspective, the organization in Embryonics is distributed
over multiple entities that share the same basic structure: the cells. There are
important advantages over computing processes also, since such an organization
provides the platform for dynamically reconfigurable architectures, the
processing power stemming from the distributed, massively parallel operations
that are tailored for a specific application. Furthermore, the multicellular
organization allows establishing an architectural hierarchy that will prove useful
for robust computing and will also allow a sense of scale when analyzing such a
system.

After thorough consideration of the aspects involved by creating an
artificial ontogeny landscape, Embryonics adopted a quasi-biological, four-level
architecture (see Figure 2-2) that allows a hierarchical separation between
artificial entities that are different in complexity. The topmost level, similar to
what is found in nature, is the population level. Essentially, the totality of
organisms that “live” within a certain artificial environment (which is the entire
computing system), make up what is called a population; individuals from a
population (which may be viewed as computers operating in parallel) interact
both with each other and with the environment itself.

One level lower in this hierarchy, the organismic level describes the
internal structure of one organism. Each organism corresponds to a parallel
computer system, member of a population (which is the higher level of
organization), and may be decomposed into its more basic components. Its
processing power is given by the massively parallel operation of its components,
the cells; they are basic processing units and represent the cellular level. In

Chapter 2 Ph.D. Thesis Page 21

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

nature, cells are the smallest biological entities that carry the entire genetic
program of an organism, meaning they carry sufficient information to allow them
to specialize in order to perform any required cellular activity; being basic
processors, cells in Embryonics are similar to their biological correspondents,
being able to perform any processing duty specified by their program.

The flexibility of biological cells comes from an even smaller scale
perspective: they are built of molecules and possess the ability of fabricating new
molecules according to their need. Therefore Embryonics’ lowest level is the
molecular level, represented by the simplest element that is part of the cellular
structure; essentially, it is the element of a reconfigurable circuit capable of
universal computation. Since this appears very much similar to the elementary
unit of a fine-grained FPGA, Embryonics opens the way to designing a new type
of fine-grained FPGA device that would feature bio-inspired mechanisms in
order to deliver superior robustness.

Each of the four levels in Embryonics is shown in Figure 2-2. Going through
the hierarchy, one may observe how the building bricks are assembled to form
increasingly complex entities: the most basic parts, the molecules, are put
together in order to make up the basic processor, or the cell. A single cell may
also play the role of a unicellular organism, while a multicellular organism will
be an ensemble containing more cells. Be it uni- or multi- cellular, such an
artificial organism is a parallel computer inside which cells operate individually
and cooperate with each other for a higher, organismic, purpose. At the top of the
hierarchy lies the group of all organisms from within the artificial environment,
the population.

2.2.3 Bio-Inspired Functionality

The reconfigurable nature of the Embryonics framework requires a piece of
configuring software in order to define the functionality of the hardware, through
a process also inspired from actual biological processes. In nature, living entities
are driven by genetic information encoded in the DNA. Therefore, the
Embryonics project also uses genetic information under the form of an artificial
genome, which actually contains a low level encoding of the entire organism’s
hardware features (our genome is a binary configuration string analogous to the
configuration bitstream of any FPGA).

In nature, the genome contains information regarding specifications of the
entire organism; stored in each cell, it is organized in smaller fractions of the
code called genes, which encode characteristics of a certain organ or tissue. In
Embryonics cells perform independent tasks, despite all cells from an organism
sharing the same hardware architecture and the same genome. The differences
in cellular functionality arise from the fact that not all genes are executed by all
cells; according to the specified task, a cell executes a set of genes through a
process called gene expression (genes A to F are shown in Figure 2-2 at the
organismic level).

The history of the Embryonics project did not see from the very beginning
the hierarchy shown in Figure 2-2 as based on four different levels. It is worth
mentioning how this hierarchical architecture was established, as this has a
crucial influence over the functional aspect of the entire framework.

Page 22 Ph.D. Thesis Chapter 2

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

2.2.3.1 Artificial Organisms and Cellular Coordinates

Storing a copy of the genome in each cell might not seem very efficient;
however, this has the appearance of a fair price for achieving some of the
biological strengths. As a most interesting feature exhibited by biological cells,
robustness is a consequence of the redundancy we find to be wasteful: each cell
contains a copy of the entire genome and, theoretically, might replace any other
cell by using a coordinate-based mechanism [151]. Since the gene expression uses
the coordinate mechanism, a healthy cell can take over the functionality of a
faulty one by changing gene execution through a process of updating its
coordinates.

Theoretically, the design of an electronic organism could be implemented
using any of the commercially available FPGAs [7, 140]; in practice however, this
is difficult to achieve, since a processor, however simple, is a relatively complex
circuit and restricting the amount of programmable logic to a single chip could
rapidly raise limits when implementing the two-dimensional array of cells. An
electronic organism therefore requires a completely homogenous, self-repairable
FPGA, which could easily be configured as an array of identical elements. No
commercial FPGA has these features, the conception and development of a new
FPGA, capable of self-repair and self-replication being actually one of the main
challenges of the Embryonics project [55, 63, 67, 128, 129, 131, 133].

Figure 2-2: The four levels of organization in Embryonics [63].

Figure 2-3 presents an organism that suffers two errors, within two
different cells. At the beginning (Figure 2-3, left), all cells operate normally, the
organism consisting of active cells (marked as blue) and spare cells that would
become active should any error be encountered (marked as yellow). The
functional status of a cell at any particular moment is given by the genetic
specifications contained by the genome, with respect to its geographical location
given by its coordinates. The coordinate mechanism starts the numbering from
the lower left (or the south-west) cell, which will be labeled as having the
coordinates (1,1), the first being the horizontal and the last being the vertical

Chapter 2 Ph.D. Thesis Page 23

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

coordinate. Each cell will therefore calculate its own coordinates (X, Y) based on
the coordinates communicated by its neighbors to the west (with coordinates
(WX, WY)) and to the south (with coordinates (SX, SY)), as follows:

: 1, :X WX Y SY= + = +1.
At a certain moment, errors are detected in two different cells (having the

coordinates (2,3) and (3,2)) and the self-repairing mechanism is triggered.
Cellular universality plays an important role here: since the organism possesses
the ability of recovering (there are spare cells available for repairing), the faulty
cells are marked as “dead” thus triggering a re-evaluation of coordinates for each
cell. The genome stored by each cell contains genetic information regarding all
the cells from within an organism; each cell will express a certain set of genes, in
accordance with a specific set of coordinates. When the new coordinates are
computed due to the reconfiguration implied by the self-repairing process (the
direction being from bottom to top and from left to right), the gene expression
mechanism will force a new set of genes to be expressed by each cell positioned at
the right of a faulty one; this appears as shifting an entire row of cells one
position to the right, starting with the right neighbor of the faulty cell. The
organism recovers by activating spare cells, as required by the self-repairing
process (shown in Figure 2-3, right) [133].

Figure 2-3: A small (4x3 cells) artificial organism with no faulty cells

(left) and reconfiguration (self-repairing) after detection of
a faulty cell (right) [128].

The redundancy introduced by having a copy of the genome in each cell
provides an intrinsic support for self-repair. By providing a set of spare cells, i.e.
cells that are inactive during normal operation, the organism is able to
reconfigure its structure to avoid using faulty processors [56]. However, there are
situations when the number of spare cells is outcome by the number of faulty
ones; since faulty elements are too many, this will lead to the impossibility of the
organism to successfully reconfigure itself, the result being the death of the
entire organism.

The coordinate mechanism presented previously also proves to be useful
when the colonization of an electronic environment with identical organisms (in
nature, such a process is called self-replication) is required. Because the function
of a cell depends on its coordinates, it is possible to implement the self-
replication mechanism by simply cycling the coordinates [115]: when the
configuration of an organism is complete, the process is repeated, the result

Page 24 Ph.D. Thesis Chapter 2

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

being the configuration of new, identical organisms to the east and north of the
original one. This way multiple copies of the same organism can be obtained, as
shown in Figure 2-4.

2.2.3.2 The Artificial Cell

Biological organisms provide a powerful example of systems exhibiting
complex behavior; it seems this is a result of parallel interaction of many simple
cells, rather of the complexity of each element. One of the goals of the
Embryonics project is to show that biological inspiration allows us, without
excessive difficulty, to design complex systems based on combining simple cells
[63, 67, 70, 100, 101, 103, 132].

The previous subsection introduced the features of the electronic organism
in Embryonics, which have consequences over the lower level of organization,
represented by the cells. The genome program must be stored in each of the cells
and all must feature a coordinate-dependent access mechanism. The minimal
feature set for our electronic cells must therefore include [128]:
• an [X, Y] coordinate system to allow the cell to locate its position inside the

organismic array and thus its function;
• a memory to store the genome;
• an interpreter to read and execute the genome; in digital computing this is

equivalent to specifying a language according to which the genetic program
will be encoded;

• a functional unit, for data processing purposes; this may contain a variety of
logic elements, from a single register to a full arithmetic and logic unit (ALU)
and beyond, depending on the application;

• a set of interconnections handled by a routing unit that will allow cells to
communicate with each other.

Figure 2-4: Multiple copies of the same organism through

coordinate cycling [128].

Furthermore, each cell requires some means of separation from other cells,
similar to the cellular membrane encountered in biology. Therefore one may find
that the genetic program has to deal with a double aspect: it has to specify and
configure the functional resources inside the cell, but at the same time it also has
to store the software to be executed by functional units, either of its own or

Chapter 2 Ph.D. Thesis Page 25

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

pertaining to other cells. Therefore, several different pieces of information need
to be stored inside the genome:
• the polymerase genome is the part of the genetic information that establishes

a boundary between cells, thus encoding the electronic correspondent of the
biological cellular membrane;

• the ribosomic genome is the genome portion that specifies the configuration of
the electronic ribosomes represented by the functional resources; assimilated
in an FPGA-type environment as programmable logic blocks (which assemble
cabled-logic machines), the ribosomes have the role of executing pieces of
specific software, which is also encoded by the genome;

• finally, the software driving the ribosomes from a single cell, or even different
cells is called the operative genome, and may be regarded as being actually
the software that drives microprogrammed machines.

The architecture of an artificial cell that would encompass all required
features is shown in Figure 2-5A. Designed to operate as an element from a two-
dimensional array of any finite size, the first implementation of a cell in
Embryonics was called the MicTree cell [16, 62, 66]. At the time, the cellular
level (see Figure 2-2) was the bottom of the Embryonics hierarchy, the cell being
realized using an FPGA mounted on a custom printed circuit board together with
a set of 7-segment displays and LEDs, which was then inserted in a plastic box,
called Biodule 601 [16], shown in Figure 2-5B.

A. B.

Figure 2-5: The artificial cell. A: the internal architecture and B: physical
implementation of the MicTree cell. [Photo by André Badertscher]

The biodules are capable to be fitted together like a puzzle, forming a two-
dimensional array in which direct neighbor-to-neighbor connections are provided
[128] without the need for extra cables. The electronic organism consists
therefore of a two-dimensional array of MicTree cells. The fixed architecture of
the MicTree cell, while perfectly capable of demonstrating the capabilities of the
Embryonics hierarchical architecture of a bio-inspired computing system,
presents, however, several constraints. One such limitation is due to the fixed
size (four bits) of each of the coordinate registers, the consequence being an
organism limited in dimension to a maximum of 16x16 cells [55, 62, 66]; the
functional unit consists of a register, also four bits wide. While this is quite

Page 26 Ph.D. Thesis Chapter 2

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

sufficient for the purpose of building a fully functional demonstrator system, it is
a serious limitation for the range of potential applications.

The memory of the Biodule 601 has a capacity of 1024 words, each being 8
bits wide. Applications implemented with MicTree cells include the Biowatch
machine (which uses four MicTree cells), a cellular automaton that generates
random numbers (which uses five MicTree cells), and a parenthesis-checking
Turing machine (which uses ten MicTree cells) [67].

While the MicTree cell’s architecture is simple and flexible, allowing the
implementation of a range of applications (given that a sufficient number of such
cells is available), it generates a few issues that are worth considering:
• the MicTree cell is actually a microprogrammed machine with a fixed

functional unit and with programmable connections; this comes in
contradiction with the fact that several different cellular architectures can be
found in nature. Moreover, with a four bit-wide register, the functional unit
may be considered as too weak for many applications, thus forcing a shift in
complexity towards the genetic program;

• the physically-fixed cellular dimensions make the existence of the polymerase
genome obsolete;

• the memory available for genome storage has a fixed capacity that will
eventually limit the implementation capabilities of such a system;

• though a cellular architecture does present some advantages over traditional
systems, considering the wide range of possible applications, it would be more
adequate to be able to tailor the cells to the specific patterns required.

All these issues may appear as independent if seen purely from an engineering
standpoint; but since they are closely connected in the biological world,
addressing them may be done in a bio-inspired fashion,. Nature has perfected a
solution that provides a flexible cellular architecture: each cell is built by
molecular structures, determined and synthesized with the support of complex
chemical processes. While mastering such processes in electronics is not within
the grasp of modern science, another level of organization that would become the
bottom of the Embryonics hierarchy and placed below the cellular level can be
implemented: this is the molecular level.

2.2.3.3 The Artificial Molecule

As previously mentioned, the cellular level provides an intrinsic capability
for self-repair through its coordinate system. While in biological organisms a
cell's death is a common thing to happen (it will be replaced by another, freshly
grown, one), cost effectiveness in digital engineering makes only a limited
number of expendable cells affordable. For instance, if we assume that a cell
consists of a few hundred molecules, the resource penalty inflicted by its “death”
obviously requires minimizing the occurrence of such situations.

A possible solution is to also endow cells with a certain degree of fault
tolerance by performing a transfer of the self-repairing concepts from the cellular
level (described in subsection 2.2.3.1 and shown in Figure 2-3) to the molecular
level. Such a decision will have important effects over the molecular level,
appearing somewhat as a scaled down version of the cellular level:
• the molecules themselves will be universal, meaning that any two molecules

can be configured so as to exchange or take over roles from each other;

Chapter 2 Ph.D. Thesis Page 27

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

• the concept of spares will also be present at the molecular level, allowing any
cell to tolerate a number of occurring faults by internal (molecular)
reconfiguration using spare molecules.

Furthermore, because cells will be composed of molecules, all requirements
mentioned in the previous subsection will have to be scaled down and
accommodated at the molecular level. As a direct consequence, the architecture
of a molecule will contain the following:
• a simple, fine-grained, functional unit, capable of universal computation. It

has to be fully reconfigurable, that is, both the functionality and the
inputs/outputs are programmable;

• a routing unit managing the communications between molecules, from either
direct neighbors or from separated molecules;

• a genome memory that will accommodate the configuration for both the
functional unit and the routing unit;

• finally, due to the fact that cells don’t have a fixed size anymore, the
polymerase genome (which encodes the boundaries of the cell, similar to the
cellular membrane in biology) has to be also accommodated by each molecule.

One should remark that any molecule with such an architecture will store only
parts of the cellular polymerase genome (each molecule has to know its position
with respect to a certain cell, whether its location is inside the cell or at one of its
borders), of the ribosomic genome (the functional and the routing units are
ribosomic resources for the cell), and of the operative genome (the remaining
storage space from the genome memory, containing other sequences of
microcode); the entire cellular genome is therefore the collection of individual
molecular parts.

The implementation of an electronic molecule that meets all of the above
requirements was called MuxTree and was realized by using the same principle
of inserting the actual hardware inside a plastic box (shown in Figure 2-6),
allowing the creation of puzzle-like structures used previously for the MicTree
cells [133].

Figure 2-6: The implementation of the MuxTree molecule.

[Photo by André Badertscher]

Page 28 Ph.D. Thesis Chapter 2

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

The conception and early development of the MuxTree molecule was the
subject of a Ph.D. thesis [128]; it was designed to implement the basic element of
a multiplexer-based, bio-inspired FPGA and realized by using a commercially
available chip of the Xilinx 4000 series [67]. Like all FPGAs, MuxTree units also
provide a puzzle-like assembly as a two-dimensional array of elements.

The architecture of MuxTree includes all necessary resources mentioned
above, the block schematic being shown in Figure 2-7. The functional unit (FU)
of the MuxTree molecule offers both combinational and sequential resources
under the form of two-input multiplexer – hence the name – and a D-type flip-
flop; any function can be implemented, regardless the complexity, by combining a
sufficient number of MuxTree molecules.

The switching block (SB) is responsible of the programmable connectivity
between molecules (see Figure 2.8). There are two categories of interconnections
that can be used: those intended for transporting information between non-
neighboring molecules (similar to long distance buses in commercial FPGAs, for
instance FastLANE™ in the Xilinx 6000 series), which are programmable, and
those that manage communication between neighboring molecules (similar to
short distance buses or direct connections), which are not programmable. The
long distance buses cover all four directions (both input and output) and
information is routed according to the information stored by the configuration
register (CREG), each direction being able of accepting information flow by using
the multiplexers, either from any other direction or as constant, preset signals
(shown as a rectangle input for each multiplexer in Figure 2-8).

Figure 2-7: Block schematic of the MuxTree molecule.

The configuration register (CREG) is a special purpose register used to
store the information required to drive the programmable functional unit (FU)
and the switching block (SB). By consequence, CREG stores a binary string
called the molcode, which accommodates the molecule’s ribosomic and operative
genomes. While the ribosomic genome drives the molecular ribosomic parts
(which are the FU and the SB), the operative genome is indirectly determined by
the molcode: it has to be stored in one bit-wide pieces of information by using the
only available memory unit, the flip-flop. Implementing any micro-programmed
machine will therefore face the difficult problem of microprogram storage, which

Chapter 2 Ph.D. Thesis Page 29

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

will have to be stored bit by bit by MuxTree molecules. This is an essential
shortcoming since it is both terribly ineffective (involving a bit-by-bit storage of a
program) and resource wasting (the rest of FU and the SB being difficult to use
to their full potential inside a structure meant to store pieces of microcode), the
Embryonics project had to develop other solutions.

Figure 2-8: Block schematic of the Switch Block.

2.3. Objectives

As part of a long-term research project such as Embryonics, this thesis aims
at establishing advancing steps that will preserve some of the already existing
concepts, introduce new ones and/or modify existing ones, in order to bring the
architecture of ontogenetic machines to a more mature and stable state. The
previous research efforts materialized in a Ph.D. thesis [128] with the conclusion
that the current architecture of MuxTree was to be improved with respect to its
memory capabilities, both because of engineering reasons (providing an efficient
storage for the genetic micro-program) and of bio-inspired reasons (the biological
genome, which is quite large, is stored by a dedicated memory structure, which is
the DNA). While the Embryonics project spans over at least the phylogenetic (a
first hardware implementation, the FireFly machine, though technically not
being part of Embryonics, allowed the exploration of on-line evolutionary
processes) and ontogenetic directions (the BioWatch being a demonstrator
platform built of MicTree cells and MuxTree molecules) [26, 108], the goal of this
thesis is to advance the research along the ontogenetic direction (see Figure 2-9).

Therefore, the main objective is to extend the architecture of MuxTree by
transforming the configuration register CREG into a flexible molecular resource
that would also provide storage space for the operative genome. Furthermore, an
effective design methodology would preserve the concepts and mechanisms
already proven in the Embryonics framework but also bring new flexibility by
adopting bio-inspired means for building memory structures. Last, but not least,
due to its novelty character, the introduction of a new concept is usually followed
by unforeseen problems regarding its integration within the platform, an aspect
that also has to be taken into account and settled successfully.

Page 30 Ph.D. Thesis Chapter 2

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

Figure 2-9: The Embryonics project in the POE landscape.

Advancing the Embryonics design towards a more mature state will be done
according to the requirements of today’s space exploration era; this we believe to
be its most valuable potential application, where extremely long term operations
without the possibility of human maintenance require superior levels of fault
tolerance as a top priority.

Chapter 2 Ph.D. Thesis Page 31

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

Page 32 Ph.D. Thesis Chapter 2

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

CHAPTER 3

A BIO-INSPIRED MEMORY ARCHITECTURE

3.1. Introduction

As argued in Chapter 2, MuxTree is actually a new concept in designing
digital circuits [57, 58, 59]; although its conception process was inspired from the
generous spring of bio-inspiration, its birth was not struggle-free, as the internal
architecture would have to be capable of performing real-world tasks more
reliably than current, classic machines, while keeping overall costs at a
reasonable level. There is at least one issue that may be regarded as a
disadvantage: although any digital hardware can be built by using MuxTree
molecules only, implementing large memory areas feels quite ineffective. This
happens because the only internal resource of the MuxTree molecule available as
a storage unit is a single flip-flop (from the functional unit FU), while a wider
storage capability is already present (represented by the configuration register
CREG) but is unavailable to the user (see Chapter 2, Figure 2-7). With a memory
capacity of only one bit per molecule, building a memory structure even for a
simple micro-programmed machine is prohibitive; furthermore, the intrinsic
characteristics of a storage area will likely lead these molecules to not making a
full use of their remaining (logic) resources.

Under these considerations, although a current implementation already
existed [72, 131], a more refined architecture was perceived to be feasible,
particularly when storage features were concerned, while preserving the already
proven mechanisms unaltered. The memory issue is vital, since it does not imply
only dozens of bits of genetic information; a typical dimension of an entire
genetic program is of hundreds or even thousands of words. Therefore we came
to look forward to exploring new possibilities for MuxTree, in order to enhance
its design while keeping all of its strengths.

Making the MuxTree as versatile as possible appears as a matter of scale:
at the cellular level, the MicTree cell (see Chapter 2, Figure 2-5) contains a
dedicated memory for genome storage, which will have to be assembled in an
efficient manner by smaller units – the MuxTree molecules – when going to the
molecular level. Our approach towards enhancing the original design, called
MuxTreeSR is to provide bio-inspired storage that would also be as efficient as
possible [100, 101, 102, 103]; this was called RAM-MuxTreeSR [100].

An example of a memory structure in Embryonics is presented in Figure 3-
1, where an electronic cell contains 4 blocks of separate memory areas,
implemented with RAM-MuxTreeSR molecules. The dotted boxes denote the
memory molecules grouped together as rectangular memory structures while the
light color indicates the non-memory molecules, which will actually process the
information stored inside the memory. The dotted rectangles delimit standalone

Chapter 3 Ph.D. Thesis Page 33

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

memory areas, each featuring outputs ports (shown as NOUT in Figure 3-4) that
provide stored genetic information every clock cycle. These memory areas are
delimited from each other and from non-memory units (denoted as dotted lines)
in a similar way done by the cellular membrane (actually by a mechanism of
growing a special border, which encloses the area [47, 123, 128]; this membrane
determines the dimensions of a cell); because this partitioning does not take
place at the cellular level, involving molecules instead, we decided to call them
macro-molecules.

Figure 3-1: General structure of RAM-MuxTreeSR memory structures.

In order to implement such structures, there are several essential issues
that have to be settled before the beginning of any design process: addressing a
memory block, delimiting memory blocks from each other (in a similar way the
cellular membrane does), and preserving/enhancing existent mechanisms in the
new context.

3.2. Memory-Related Issues: Cyclic VS Addressable

Implementing a memory area might not seem to involve different issues
than the case of implementing a random access type memory (RAM) or even a
read-only memory (ROM). However, rather than building a random access
memory out of MuxTree molecules, the purpose is to have the genome memory
implemented in a bio-inspired manner that would be both suitable to the
MuxTree architecture and efficient from a computing perspective.

Since the prototype MuxTree element was not specifically designed for
data storage from the beginning, it did not have special features covering this
issue; instead, the focus was on achieving the best connectivity and robustness.
The only possibility for data storage was offered by the flip-flop in the functional
unit, a solution that unfortunately required a great number of MuxTree elements
for implementing even a small memory area. This is the main reason why
making the best possible use of the configuration register was particularly
appealing. However, the feasibility of such approach, together with the
immediate consequences over the Embryonics framework required careful
consideration.

Page 34 Ph.D. Thesis Chapter 3

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

The architecture of a conventional RAM memory is well known. However,
the goal was not necessarily implementing its exact structure with MuxTree
elements, although it is technically possible. Considering the storage capability
of the MuxTree being present under the form of its only flip-flop, it would seem
quite a waste to implement a RAM memory; this task would require a great
number of MuxTree elements used as a storage capacity of one single bit only,
while rendering the rest of the internal logic largely unusable.

On one hand, this approach would provide us a great flexibility. Since the
memory will be used to store the genetic program, a RAM-type implementation –
i.e. an addressable type of memory – would allow jump-like instructions to be
present in the genetic program. However, the amount of additional logic needed
inside the MuxTree for efficiently implementing a RAM-like memory proved far
too large to be taken into consideration.

On the other hand, another option presents itself under the form of a
cyclic type of memory [100, 102], a non-standard memory structure that allows
continuous and sequential access to its data. This means that, although
functional within the Embryonics framework, this type of memory will not be
addressable – i.e. it will not allow the presence of jump-like instructions in the
genetic program – the advantage being the amount of logic necessary to
implement the memory in this way would be significantly reduced. The memory
will continuously shift its data and the access to a given word at a specific
address will not be possible; however, this is not a requirement since the genetic
program will be executed continuously, similar to the process that takes place in
every living being. The minimum amount of logic necessary to carry out the
implementation on this path is worth in terms of sacrificing the power of a RAM
memory, a synthetic comparison between the two types of memory being shown
in Figure 3-2.

 A. B.

Figure 3-2: Addressable memory (A) VS cyclic memory (B).

There are several ways one can design a cyclic-type memory. Rather than
storing words into one large memory, our approach was to distribute a word
worth of genetic information into several, smaller memory areas.

The memory we want to implement does not have the same constraints as
typical RAM memories, such as random memory cell addressing, so it will not
need the complicated addressing mechanism, the address decoders and all the
required additional logic. Its purpose is to store the genetic program, which is not

Chapter 3 Ph.D. Thesis Page 35

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

supposed to change during the normal operation of the system, with the imposed
constraint being the memory should be able to shift its data, also allowing an
output point for the data stream, i.e. the data must be accessible through a
particular port. Since the MuxTree features ensure that information propagate
initially throughout the configuration process and then later, throughout the
busses driven by the switching block (see Chapter 2, Figure 2-8), it would be
useful to also re-use as many existing connection patterns as possible.

3.3 Memory Organization

3.3.1 The Global Memory

The memory designed for the Embryonics project has neither the features of
a conventional random access memory, nor the actual structure of a RAM;
instead, it is actually more similar to a read-only memory (ROM), providing
access ports to the stored data through a cyclic mechanism [100, 102]. For
instance, storing a memory word that is 4-bit wide, the memory array will be an
abstract entity, consisting out of 4 basic memory areas. This is where the
memory area actually differs in structure when compared with conventional
memories. From now on, we will refer to the overall memory structure as to the
global memory and we will use for the actual storing region the term of basic
memory (i.e. macro-molecule) area, since this is the fundamental storage area in
our organism. These terms are necessary since the global memory might consist
of several basic memory areas that are actually distributed inside the cell. An
example of the global memory inside the electronic organism is shown in Figure
3-3 and consists of memory molecules (dark colored) grouped in four macro-
molecules or basic memory areas; each dotted rectangle delimits a macro-
molecule, meaning each word of the genetic program is 4-bit wide.

Figure 3-3: A global memory of 4 macro-molecules inside a cell.

Because the basic memory area continuously shifts its stored data, the
output data being available at the topmost elements of each basic memory area,
from 4 similar data outputs coming from the 4 basic memory areas we will get a
4-bit wide information. This is another characteristic that differentiates the
functionality of the global memory area from conventional memories. For the

Page 36 Ph.D. Thesis Chapter 3

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

reasons presented above, the organization of the information inside a macro-
molecule follows a vertical direction rather than the more usual horizontal one.
The memory areas shown in Figure 3-3 have the same number of molecules
because they are supposed, in this example, to store words of the same genetic
program. Otherwise, the number of molecules may differ.

The way the memory is organized in the Embryonics project resembles the
biological way: instead of having a memory storing all the needed information,
our cells may contain several macro-molecules; the molecules, in turn,
concurrently do the same activity: they allow data access by continuously
shifting the information. This presents a strongly resemblance with the
biological parallelism that is present in any given cell.

A rather poetic sight, using a top-down point of view for our electronic
organism, would be that our memory architecture behaves like the DNA: the
information is coded – inside DNA by chemical components, inside our memory
by binary code – and the DNA has the structure of a chain while our memory
shows the same similarity through the manner memory molecules connect to
each other. The DNA (our memory) provides the genetic information – the
genome (or, in our case, the genetic program) – and thus ensures the living
process (the functionality) of the cell, be it biological or electronic [101]. Part of
this process is shown in Figure 3-4, where the information flow from one
MuxTree memory molecule to another follows a circle-like path, starting with the
bottom-left molecule, going upside to the top and then repeating the process until
the right-most column. This is where the information is routed so as to reach
again to the bottom-left molecule.

Figure 3-4: Information path within the basic memory area.

3.3.2 The Basic Memory (Macro-Molecule)

From a certain point of view, a macro-molecule is actually very similar in
structure to the cell itself; it is a rectangular area inside a cell, which is also a
rectangular area. Because of the similarity between them, the ground for re-
using the connections is already established and such is the case of a normal,
non-memory region; all what is needed is a mechanism similar, in a way, to the
cellular automaton building the cellular membrane.

The information stored in this memory has to be continuously shifted. This
ensures that at every clock cycle the memory array assembles with its data

Chapter 3 Ph.D. Thesis Page 37

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

outputs one complete memory word. The words stored inside the memory are
therefore output at the data-out connections and can be re-routed by using the
normal, non-memory molecules.

3.4 Memory Architecture

3.4.1 Introduction

Following a long established tradition of implementing the designs as
actual hardware prototypes rather than limiting ourselves only to software
simulations, we will go into more details concerning the prototype development
and the conceptual issues involved by the addition of memory structures. First,
the memory architecture will be introduced, together with the necessary
modifications to achieve such structures. Extending the mechanisms for self-
repair and self-replication so that they work with memory structures will then be
presented.

The original MuxTreeSR design was enhanced to offer data storage
capabilities. Whereas the original design used the configuration register for
storing the configuration bits (which are to be loaded at the beginning and then
remain fixed for the entire operation time), the new design is further advanced
by allowing parts of the configuration register to behave like memory units
under certain conditions. The previous design's impressive features such as self-
repair and self-replication were preserved, keeping the functionality while
enhancing the MuxTreeSR element with new, necessary features. Details of the
register's functions will be given but legacy features from the previous design
(such as the cellular automaton used for replication, the logic required for re-
routing the array in the presence of faulty elements or some parts inside the core
of MuxTreeSR element such as the functional part or the switch block) will not
be discussed as they were the subject of another thesis [128]; instead, we will
focus on modifications made to the configuration register, connected with
modifications operated to the functional part and the re-routing logic, to achieve
the memory capabilities.

All parts from the original design that were suited to be preserved were
kept as close as possible to their initial implementation. While conserving the
initial functionality of the design warrants the performances obtained initially, it
also helps at keeping the costs affordable for a practical implementation.

3.4.2 Short Overview

An efficient way of implementing digital machines is provided by logidules
(for logic modules), which are plastic cubes containing standard logic circuits
(gates, flip-flops, etc) [4]. The logidules are extremely versatile, they can be
connected together (not unlike a puzzle) and automatically provide the circuits'
power supply as well as the minimal connections between modules.

It is therefore not surprising that we exploited the same approach when
designing the prototype, by taking advantage of modules called Biodule 603 [16].
To implement our designs we used a Xilinx XC4013PQ240-4 FPGA with a locally
stored configuration. This allows us the opportunity of upgrading our design at a
later date with no need of physically modifying the architecture of the Biodules.

Page 38 Ph.D. Thesis Chapter 3

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

Like all logidules, the Biodules 603 can be joined together to form a two-
dimensional array with the connections implemented either through the
automatic contacts on the perimeter of the box, or through four 16-bit-wide
connectors.

As already mentioned, the RAM-MuxTreeSR molecule has several modes
of operation [55, 67, 133]. The operating mode is set when the configuration
patterns are loaded into the FPGA structure. The elements register, previously
called the configuration register because it stored the configuration for the
corresponding element, was slightly expanded, the elements’ function and
connections being now determined by a 21-bit configuration as follows:

1. Logic mode (non-memory)
i. Bit 0 (the head of the register) is always set to the logical value "1".

This indicates that the current element was loaded with the
configuration pattern;

ii. Bits 1 to 8 contain the control variables for the four multiplexers in the
switch block SB;

iii. Bits 9 to 11 select the left input of multiplexer M0;
iv. Bit 12 is unused;
v. Bits 13 to 15 select the right input of multiplexer M0;
vi. Bit 16 is unused;
vii. Bit 17 (M) is the control variable for multiplexer M1;
viii. Bit 18 (S) is the control variable for multiplexer M2;
ix. Bit 19 (I) contains the default value for the flip-flop F;
x. Bit 20 (Mem) indicates the operating mode (“0” in non-memory mode);

2. Memory mode
i. Bit 0 (the head of the register) is always set to the logical value “1”.

This indicates that the current element was loaded with the
configuration pattern;

ii. Bits 1 to 8 either contain the control variables for the four multiplexers
in the switch block SB (when operating in 8-bit memory mode) or are
used as storage bits for memory data (when operating in 16-bit memory
mode); more details are given in Section 3-5;

iii. Bits 9 to 16 are used as storage bits in both memory operating modes;
iv. Bits 17 to 19 code the role of the corresponding element as indicated in

Table 3-1 below;
v. Bit 20 (Mem) indicates the operating mode (“1” in both memory

operating modes).

The configuration register CREG was modified to allow data flowing when
in any of the several operating modes [100]. Its block schematic is presented in
Figure 3-7 and it is split into 4 parts, each of them functioning in a different
manner depending upon the initial configuration.

3.4.3 The Memory Structure

The general guidelines for a new memory structure being set, the new
design of the RAM-MuxTreeSR allows the implementation under the form of
rectangular structures. These rectangular areas have no dimensional limitations
(they can be as large as the physical implementation allows), but there is
however a constraint when we consider the smallest memory area possible: it

Chapter 3 Ph.D. Thesis Page 39

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

must have at least two molecules (suggested by Figure 3-13C). The two
molecules (as described by Table 3-1) are coded as “Bottom of a Single Column”
(BC) and "Border to the North with Data Output" (BN). These are required in
order to ensure the circular data flow for the memory. Figure 3-4 also presents
the basic signals used for routing the stored bit-stream inside a 3x3 memory
structure together. The configuration of the MuxTree elements is indicated by
acronyms that will be explained later by Table 3-2.

Figure 3-5: Configuration register as storage resource (Ø means “don’t care”): A.

No Border; B. Border to the south; C. Border to the north with data output.

The existing connections, which were originally intended for directing the
initial configuration bit stream, are being re-used for the most of the structure,
the exception being the bottom row where the so-called “short connections” were
used to enclose the circle [100, 128]. Therefore, to route the information from the
bottom-right element to the bottom-left one, the bit-stream flows through the
bottom row following the path established by east input – west output local
connections.

Page 40 Ph.D. Thesis Chapter 3

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

Since we need to specify which molecule has to be configured as bottom left
and right corners (different internal connection patterns being involved, as
shown in Figure 3-6), the minimal horizontal dimension of a macro-molecule is 2
(with the exception of the memory column), the presence of molecules configured
as “border south” not being necessary. Molecules configured as “no border” do not
have a special behavior; they just let the information entering through the south
be shifted to the north connections. The top molecules re-route moving
information to the southern output connection.

Figure 3-6: Corners of a memory structure: A. Left corner; B. Right corner.

3.4.4 Data Routing

The configuration register, together with the additional logic that controls
the data routing process, performs differently according to different
configuration patterns. Figure 3-5 provides a closer look at the configurations
necessary in order to set up a memory area. They are shown together with the
routing logic so the data path can easily be followed. In general, we distinguish
three cases:

1. The molecule has no border behavior (A). In this case, information that
enters through the south input connection is shifted through the register and
exits through the north output connection. The secondary data path is present
here, leading information coming from the north connection to the south output
connection.

2. The molecule is at the southern border (B). In this case, information
enters through the west input connection, it is shifted through the register and
exits through the north output connection. The secondary data path is present
here, leading information coming from the north connection to the east output

Chapter 3 Ph.D. Thesis Page 41

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

connection. The cases when the molecule is a corner in our memory structure are
discussed below.

3. The molecule is at the northern border (C). In this case, information that
enters through the south input connection is shifted through the register and
then exits through the south output connection. In this case the molecule also
provides a data output port, data being available to the north output connection.

Figure 3-6A presents the information flow inside the bottom left corner
molecule. In this case, information enters through the east input connection, it is
shifted through the register, and exits through the north output connection. The
secondary data path is also present here, and it is identical to that in the case of
border to the south. When the molecule is a right corner, data is taken over from
the north input connection rather from the east input connection, as shown in
Figure 3-6B.

The whole memory structure shown in Figure 3-4 should now be almost
complete; it can be seen why the bottom row, corresponding to the southern
border, has to have different configurations for the left corner, the right corner
and for the regular southern border molecules. The memory configuration bits,
as they are defined now, only cover 6 possibilities out of possible 8, so there are
two spare positions that could be later exploited. For instance, the possibility of
having memory columns, i.e. memory areas consisting of only one single column,
could be achieved with a minimum of additional logic (this modification only
requires a few more logic gates) [100].

3.4.5 Operating Modes for the Configuration Register (CREG)

The previous design used the entire register to store the configuration [128,
131]. The amount of logic used for routing the data during configuration was
smaller, as shown in Figure 3-7A. The modifications that were made in this
project enabled the more flexible use of the configuration register [100]. With the
price of adding one bit in the register and a small amount of additional logic, we
are now able to use the register in two operating modes for a total of three
different possibilities:
• non-memory register
• memory register, 16-bit-wide
• memory register, 8-bit-storage + 8-bit-configuration for the switch block

The new configuration register is shown in Figure 3-7B. It is different
from the previous implementation not only by its dimension (previously 20 bits,
now 21 bits) or by the logic involved in the connectivity, but by the manner it is
working and by the manner it treats the configuration pattern. The multiplexers
that were added allow flexibility in establishing the necessary data paths.
However, when operating as a non-memory element, the register has the very
same behavior as in the case of the previous design. Everything is preserved with
this respect, all the connections and the bits are identical with the corresponding
ones from the original design. Exception in this case is the extra bit added, bit
20, which is set to logical value “0”.

When operating in the memory mode, the extra multiplexers are used for
building two distinct ways of functioning. Bits 16 to 9 are always used exclusively
for storing purposes. Bits 8 to 1 are used depending upon which memory mode
the element is into. For the purpose of selecting the length of the storage area
when operating as a memory, the value stored in the flip-flop at configuration

Page 42 Ph.D. Thesis Chapter 3

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

time is used. This means that for a logical value of “l” stored in the flip-flop, the
molecule will behave like 16-bit-wide memory molecule and for a logical value of
“0” it will operate as an 8-bit-wide memory molecule with the capability of
driving the switching block. This way, if the possibility of re-routing the switch
block driven connections is desired, it can be achieved by using this operating
mode.

Figure 3-7: Configuration register details: A. Initial design; B. Modified design.

If the molecule is operating in 16-bit-wide mode, than bits 8 to 1 are also
used as storage bits, together with bits 16 to 9, thus providing a 16-bit-wide
storage field, from bit 16 to bit 1. If the element is in the 8-bit-wide operating
mode, bits 8 to 1 are used as configuration bits for the switching block inside the
MuxTree element, the multiplexers allowing the shifting process only for the bits
that are actually used for the memory. This means that the bits used as
configuration bits (bits 20 to 17 and, depending on the corresponding memory
mode, bits 8 to 1) are not shifted when the storage bits are. This prevents
corrupting the configuration pattern in each MuxTree molecule.

3.5 The Molecular Code

Each MuxTree molecule is loaded with a binary configuration, which forms
the molecular code (MOLCODE) [100]. This code allows the molecule to operate
in either one of the following two modes: the logic mode and the memory mode.
At configuration time, the molecular code (MOLCODE) is loaded into the
molecule. The MOLCODE MC21:0 is stored into a group of two components, one
being the flip-flop FF (Q) and the other being the configuration register

Chapter 3 Ph.D. Thesis Page 43

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

(CREG20:0), as shown in Figures 3-8 and 3-11. The operating mode is selected by
the value of bit M=CREG20:
• M=0: logic mode (all combinational logic resources are available for user);
• M=1: memory mode (no combinational logic resources are available, except

the switch block in the short memory mode).

 21 20 19 0

Figure 3-8: The molecular code (MOLCODE) MC21:0.

3.5.1 The Logic Mode (M=0)

3.5.1.1 General Description

The logic mode is defined by M=CREG20=0. In this mode, all combinational
logic resources of the MuxTree molecule are available for the user. The molecular
code corresponding to the logic mode is shown in Figure 3-9.

21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

CREG19:0

FF CREG20:0

Q M=CREG20

CREG20:0

H=1

flip-flop

mode connection block
(CB)

switch block
(SB)

memory and
test (MT)

Q=Φ M=0

FF

LEFT3:0

RIGHT3:0

S1:0

E1:0 P R EB

N1:0

W1:0

Figure 3-9: The MOLCODE (MC21:0) in logic mode.

Let us detail the meaning of each of the MOLCODE bits, from the right to
the left [67]:

• Bit H (CREG0) is always set to the logical value “1”. This indicates that the
current molecule was loaded with the MOLCODE.

• Memory and test bits (MT or CREG3-1) are special configuration bits (Figure
3-11):

– bit EB (CREG1) is the control variable for multiplexer M1;
– bit R (CREG2) is the control variable for multiplexer M2; it toggles

between sequential (R=1) and combinational (R=0) mode;
– bit P (CREG3) contains the value for the asynchronous preset of the

flip-flop FF; at the rising edge of INIT, the flip-flop will load the value of
bit P.

• Bits N1:0, S1:0, E1:0 and W1:0 (SB or CREG11:4) drive the switch block SB, as
shown in Figure 3-10. They contain the control variables for all four possible
directions: west, east, south and north. The SB provides all the combinations
of interconnections between the inputs and the outputs from the four

Page 44 Ph.D. Thesis Chapter 3

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

directions, i.e. how different signals that enter a molecule can be routed or
deviated along the desired path.

• Connection block bits (CB or CREG19:12) drive the multiplexer connection
block, as shown in Figure 3-11:

– bits LEFT3:0 (CREG19:16) select the input of multiplexer M3;
– bits RIGHT3:0 (CREG15:12) select the input of multiplexer M4.

At the moment, bits LEFT3 and RIGHT3 are not used (they are reserved for
further developments).

• Bit M=0 (CREG20) indicates the logic mode.
Bit Q (flip-flop FF) is not used when in logic mode. The Q bit is redundant
when operating in the logic mode; after charging the molecule with the
MOLCODE, bit P will override the influence of bit Q and the flip-flop will be
set according to the value of P bit.

3.5.1.2 An Example

Let us consider a simple example of artificial organism, a single cell (Figure
3-12) realizing a modulo-4 up-down counter [67] defined by the following
sequences:

• for : 0M = 1 0 00 01 10 11 00Q Q = → → → → →… (counting up);

• for 1M = : 1 0 00 11 10 01 00Q Q = → → → → →… (counting down).

It can be verified that the two ordered binary decision diagrams Q1+ and
Q0+ of Figure 3-12A and B (where each test element is represented by a diamond
with a single input, a “true” output, and a “complemented” output identified by a
small circle) represent a possible realization of the counter [52, 67]. The leaf
elements, represented as squares, define the output values of the given functions
(and in the example) computed with the following equations: 1Q+

0Q+

() ()' ' ' ' '
1 1 0 1 0 1 0 1Q M Q Q Q Q M Q Q Q Q+ = ⋅ + ⋅ + ⋅ + ⋅ 0

'
0 0Q Q+ =

The direct implementation of the ordered binary decision diagrams on
silicon follows the layout from Figure 3-12C. Each test element is implemented
with one MuxTree® molecule, keeping the same interconnection diagram and
assigning the values of the leaf elements to the appropriate multiplexer inputs.
The two state functions Q1 and Q0 are the outputs of the D flip-flops of the top
row of the MuxTree® molecules.

The cell implementing the counter has therefore 3 rows and 2 columns of
MuxTree molecules [100]. From the multiplexer diagram of Figure 3-12B and
from the description of the MuxTree molecule in logic mode (Figures 3-10 and 3-
11) we can compute the control bits of each molecular code, finally generating the
MOLCODEs of Figure 3-12C, each MOLCODE being a word of six hexadecimal
digits (00QM, CREG19:16, CREG15:12, CREG11:8, CREG7:4 and CREG3:0). The
string of MOLCODEs is defined as the ribosomic genome RG [67].

Chapter 3 Ph.D. Thesis Page 45

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

Figure 3-10: The switch block’s (SB) internal architecture

(20DEF M Q CREG Q= ⋅ = ⋅).

Figure 3-11: Overall structure of a MuxTree molecule in logic mode.

Page 46 Ph.D. Thesis Chapter 3

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

3.5.2 The Memory Mode (M=1)

3.5.2.1 General Description

The memory mode is defined by M=CREG20=1. In this mode, the operating
internal resources of the MuxTree molecule are the configuration
register(CREG), the flip-flop (FF) and, possibly, the switch block (SB). Part of the
configuration register is used as a storage memory [100]. Depending on the value
of , we have two memory sub-modes: 21Q MC=

• : short memory with switch block, the storage size being 8 bits; 0Q =
• : long memory, the storage size being 16 bits. 1Q =

 A. B.

C.

Figure 3-12: Modulo-4 up-down counter. (A) Ordered binary decision diagrams
for Q1+ and Q0+. (B) Multiplexer diagram using MuxTree® molecules. (C) 6

MuxTree® molecule cell; RG: ribosomic genome.

Chapter 3 Ph.D. Thesis Page 47

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

A MuxTree memory molecule is presented as a block schematic in Figure 3-13A.
It uses input and output connections (IO connections) in all four possible
directions. The IO connections are internally routed at configuration time and
they build the memory structure [128]. For this, each molecule has to be loaded
with a specific molecular code which will strictly determine its behavior, and
which is related to its position inside the structure. This is achieved by using bits
MEM2:0 (CREG3:1), which are special configuration bits, defining the role of the
molecule inside a memory area. They are common to both memory sub-modes
and are shown in Table 3-1. The shape of a memory structure is that of a
common rectangle (i.e. its horizontal and vertical dimensions are not fixed, they
are to be chosen by the user) and is formed by MuxTree molecules operating in
memory mode. The stored data are continuously shifted (one bit per CK period)
and the user has access to it at every molecule situated in the upper row of the
structure (output NOUT).

(C)

(A) (B)

Figure 3-13: The memory mode: (A) Block schematic of a memory-configured
molecule; (B) A macroscopic view of a 3x3 shift-memory area; (C) A 2x1 shift-

memory column.

MEM2 MEM1 MEM0 MOLECULE’S POSITION

0 0 0 Border to the south BS

0 0 1 Lower right corner RC

0 1 0 Lower left corner LC

0 1 1 Bottom of a single column BC

1 0 Φ Border to the north with data output BN

1 1 Φ No border NB

Table 3-1: The molecule’s possible positions and their respective
configuration bits.

Page 48 Ph.D. Thesis Chapter 3

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

Figure 3-13B shows the routing of the IO connections in a 3x3 shift-memory
area. The stored data are shifted as follows: from the bottom left molecule, data
serially enter the molecules situated upwards in the same column. Once the top
molecule is reached, data are routed to the bottom molecule from the next
column to the right. Data are then shifted upwards, toward the top molecule,
then go to the bottom molecule of the next column and thus the process repeats
itself. When data reach the top molecule from the rightmost column, they are
routed to the bottom molecule and from there data are crossing, from the right to
the left, every bottom molecule. When reaching the bottom leftmost molecule,
one complete shifting is completed.

Figure 3-14: Memory structures and their molecular configurations MEM2:0: (A)
The minimal shift-memory structure (2x1); (B) The general structure of a single

column shift-memory; (C) A 3x3 shift-memory structure; (D) The general
structure of a shift-memory.

We implemented the MuxTree molecule allowing a large choice for the
user when specifying the dimensions of a memory area. The minimal structure is
a single column (a 2x1 rectangle shown in Figure 3-14A), but there are no upper
limits defined for the dimensions of the memory rectangle – they are set by
simply configuring the memory molecules with the appropriate MOLCODEs. The
general structure of a single column memory is presented in Figure 3-14B and
the general memory rectangle is shown in Figure 3-14D. The memory
configuration bits (MEM2:0) for the structure presented in Figure 3-13B,
respectively Figure 3-13C, are shown in Figure 3-14C, respectively Figure 3-14A.
A memory structure cannot be implemented without using the LC, RC, BS and
BN-type molecules or BC and BN-type molecules, according to the type of
structure (single column or rectangle). Therefore these molecules appear with a
darker color in Figure 3-14.

The memory we implement with MuxTree® molecules is not an addressable
memory, i.e. ROM-like. It is a continuously shifting memory, somewhat similar
to a huge shifting register. This is a cost-effective solution that allows a sufficient
functionality while keeping the logic involved to an acceptable level of
complexity.

The memory structure has data output ports in all molecules marked as
BN. This means the user has access to the stored data only in BN-type
molecules. The bit-stream coming out through a data output port starts with the
least significant bit stored inside the corresponding molecule (CREG12 in short

BN
(10Φ)

BC
(011)

NB
(11Φ)

LC
(010)

NB
(11Φ)

BS
(000)

BN
(10Φ)

BN
(10Φ)

NB
(11Φ)

RC
(001)

BN
(10Φ) NB

BC

NB
··
·

BN BN BN … BN BN

NB NB … NB NB

LC BS … BS RC

…

NB NB … NB NB
··
·

··
·

··
·

··
·

 A. B. C. D.

Chapter 3 Ph.D. Thesis Page 49

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

memory mode or CREG4 in long memory mode) and is shifted from the left (most
significant bit) to the right (least significant bit) every CK clock cycle.

3.5.2.2 The Short Memory Mode (Q=0)

One of the two memory sub-modes is the short memory with switch block.
In this mode, each molecule can store 8 bits of genome data while keeping the
functionality of the switch block. The MOLCODE bits are shown in Figure 3-15:

• Bit H (CREG0) is always set to the logical value “1” and indicates that the
current molecule was loaded with the MOLCODE;

• Molecule’s position bits (MEM2:0=CREG3:1) were presented in Subsection
3.5.2.1 and shown in Table 3-1;

• Bits N1:0, S1:0, E1:0 and W1:0 (SB or CREG11:4) have the same attributes as in
logic mode (Subsection 3.5.1);

• Bits DATA7:0 (CREG19:12) are used for storing genetic data;
• Bit M=1 (CREG20) indicates the memory mode;
• Bit Q=0 (flip-flop FF) indicates the memory sub-mode.

21 20 19 12 11 10 9 8 7 6 5 4 3 1 0

Figure 3-15: The short memory MOLCODE (MC21:0).

The possibility of storing 8-bit-wide words of genome data, while keeping
the routing features of the switch block, provides a good functionality for the
molecule. The functional parts of the molecule in this case are the switch block
SB, the configuration register CREG and the flip-flop FF, all shown in Figure 3-
16. The parts that are not available for the user are drawn with lighter gray.

CREG20:0

DATA7:0

S1:0

E1:0

MEM2:0

N1:0

W1:0

H=1

Q=0 M=1

flip-flop

FF

mode user data switch block

(SB)
molecule’s

position

The data path is suggested in Figure 3-16. The configuration register includes
the storage part of the molecule (CREG19:12=DATA7:0). Bits are shifted each CK
clock cycle; the user data from the previous molecule enter through SIN, EIN or
WIN connections, are then shifted through CREG19:12 and then exit the molecule
through NOUT and/or SOC connections, as well as all buses via SB in order to
enter the next molecule. From a macroscopic point of view, the data flow is
shown in Figure 3-13B, depending on the molecule’s position, i.e. the value of
MEM2:0.

3.5.2.3 The Long Memory Mode (Q=1)

The other memory sub-mode is the long memory mode [100]. In this
mode, each molecule can store 16 bits of user data with the price of losing the
functionality of the switch block. The MOLCODE bits are shown in Figure 3-17:

• Bit H (CREG0) is always set to the logical value “1”; this indicates that the
current molecule was loaded with the MOLCODE;

Page 50 Ph.D. Thesis Chapter 3

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

• Molecule’s position bits (MEM2:0=CREG3:1); they were presented in
Subsection 3.5.1. and shown in Table 3-1;

• Bits DATA15:0 (CREG19:4) are used for storing the operative genome’s data;
• Bit M=1 (CREG20) indicates the memory mode;
• Bit Q=1 (flip-flop FF) indicates the memory sub-mode.

Figure 3-16: Overall structure of a MuxTree molecule in

short memory mode.

21 20 19 4 3 1 0

CREG20:0 FF

H=1

MEM2:0

DATA15:0

molecule’s
position

mode user data flip-flop

Q=1 M=1

Figure 3-17: The long memory MOLCODE (MC21:0).

Chapter 3 Ph.D. Thesis Page 51

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

The possibility of storing 16-bit-wide words of genome data provides double
storage capacity when compared to the short memory mode. There is, however, a
disadvantage: because bits CREG11:4 that normally drive the switch block are
now used for storage, the switch block is disabled. In order not to lose all the bus
routing facilities, we designed the SB to also operate in long memory mode, but
instead of actually routing the buses it simply implements a pass-through:
SIBUS is directly connected to NOBUS, NIBUS is directly connected to SOBUS,
EIBUS is directly connected to WOBUS and WIBUS is directly connected to
EOBUS.

This means greater storage capacity at the expense of flexibility. The
functional parts of the molecule in this case are the configuration register CREG
and the flip-flop FF, all shown in Figure 3-18. The parts that are not available
for the user are drawn with a light gray.

The configuration register includes the storage part of the molecule
(CREG19:4=DATA15:0). Bits are shifted each CK clock cycle; the genetic data from
the previous molecule enter through SIN, EIN or WIN connections, are then
shifted through CREG19:4 and then exit the molecule through NOUT and/or SOC
connections in order to enter the next molecule. From a macroscopic point of
view, the data flow is shown in Figure 3-13B.

Figure 3-18: Overall structure of a MuxTree molecule in

long memory mode.

Page 52 Ph.D. Thesis Chapter 3

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

3.5.2.4 An Example

A modulo-6 synchronous counter can be implemented with the
microprogram shown in Table 3-2. The microprogram was written in the
PICOPASCAL language [64].

Address DATA DATA2:0 PICOPASCAL
00 5 101 while H
01 6 110 while H’
02 2 010 if [Q2]
03 2 010 if [Q1]
04 0 000 do 0
05 0 000 do 0
06 0 000 do 0
07 3 011 else
08 2 010 if [Q0]
09 0 000 do 0
0A 0 000 do 0
0B 0 000 do 0
0C 3 011 else
0D 1 001 do 1
0E 0 000 do 0
0F 1 001 do 1
10 4 100 endif
11 4 100 endif
12 3 011 else
13 2 010 if [Q1]
14 2 010 if [Q0]
15 0 000 do 0
16 0 000 do 0
17 1 001 do 1
18 3 011 else
19 1 001 do 1
1A 1 001 do 1
1B 0 000 do 0
1C 4 100 endif
1D 3 011 else
1E 2 010 if [Q0]
1F 0 000 do 0
20 1 001 do 1
21 0 000 do 0
22 3 011 else
23 1 001 do 1
24 0 000 do 0
25 0 000 do 0
26 4 100 endif
27 4 100 endif
28 4 100 endif
29 7 111 end
2A 7 111 end
2B 7 111 end

Chapter 3 Ph.D. Thesis Page 53

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

2C 7 111 end
2D 7 111 End
2E 7 111 End
2F 7 111 End

Table 3-2: A microprogrammed modulo-6 counter.

The microprogram shown in Table 3-2 consists of 42 memory words
(addresses from 00 to 29 in hexadecimal), each word being 3 bits long (DATA in
decimal, DATA2:0 in binary). For storing this program we use the following
memory structure (Figure 3-19):
• 3 single column shift-memories, each column consisting of 3 molecules

operating in long memory mode (Figure 3-19A); each column computes one of
DATA bits (DATA2, DATA1 and DATA0);

• Each shift-memory column stores 48 bits of data, as we employ 3 molecules
per column, each molecule storing 16 bits of data; because the microprogram
needs only 42 words, the last memory entries, from address 2A to address 2F,
repeat the last instruction (DATA=7=”end”).

During the configuration phase, the string of MOLCODEs, which is defined as
the ribosomic genome RG, is entered according to Figure 3-12C. During normal
operation, due to MEM2:0 values, the actual connections are those of Figure 3-
19B; the memory data of Figure 3-19B constitute the program of a binary
decision machine and are finally defined as the operative genome OG [67].

 (A) (B)

Figure 3-19: A microprogrammed modulo-6 counter. (A) The memory
structure using 3 macro-molecules, each with a single column

configuration. (B) The molecular codes.

3.6 The HOLD Mechanism

Our approach of designing the additional memory mode led us to build a
continuously shifting memory (Section 3.5 and Figure 3-19B). It is now possible
to have a genetic program stored inside the memory and be executed for an
indefinite period of time, one instruction per clock cycle. The reasons for which

Page 54 Ph.D. Thesis Chapter 3

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

we chose to implement such a type of cyclic memory, as well as the constraints
this architecture imposes, were mentioned in Section 3.2. A possible important
limitation that was discussed was the lack of branch-type instructions, an aspect
that made us consider implementing a mechanism that, while certainly not
solving this issue, would however bring some control over program execution by
halting it when needed. Such a feature, together with the possibility of storing
parts of the same genetic program inside different macro-molecules allows
altering the initial synchronization, thus providing an form of control transfer,
simulating indirectly the effects of a jump-type instruction.

In order to stop the shifting process, some memory hold mechanism is
required. Essentially, this mechanism allows the memory to shift as long as the
HOLD signal of the memory area is low (logic “0”). As soon as this signal
becomes high (logic “1”) the memory shifting is prevented. The HOLD signal is
connected to the south input signal SIN from the bottom left molecule (the
bottom left corner) of the memory area (the SIN signal, in this particular
molecule, is not used after configuration time in any of the two memory modes:
Figure 3-13) [100]. The HOLD signal propagates itself to all memory molecules of
the area, along the path shown in Figure 3-20.

In the case where K several distinct memory areas are simultaneously used,
it is possible to define K different HOLD signals HOLD1, HOLD2,…,HOLDk.
Independently of the number of HOLD signals, it is imperative that the correct
routing of these signals be assured or the value HOLD=0 be set if there is no
need to interrupt the normal shifting process.

Figure 3-20: Propagation of the HOLD signal inside a shift-memory area.

3.7 Multiple-Level Fault-Tolerance

Biological entities are continuously put under environmental stress.
Wounds and illnesses resulting from such stress often cause incapacitating
physical modifications. Fortunately, living beings are capable of successfully
fighting the great majority of such wounds and illnesses, showing a remarkable
robustness through a process that we call healing [102].

Chapter 3 Ph.D. Thesis Page 55

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

To endow artificial organisms in Embryonics with similar features, a two-
level mechanism for self-repair is provided, stretching over the first two levels of
organization (see Figure 2-2) as reconfiguration processes, first at the molecular
level, and then at the cellular level [63]. This hierarchical approach of self-repair
allows for an effective way of tolerating faults: it has the capacity of
reconfiguring according to different severity levels (addressing the least severe
first, represented by faulty molecules, and then the most severe, represented by
faulty cells), while it inflicts minimal resource losses through reconfiguration
(replacing a “dead” molecule is certainly less expensive than replacing an entire,
albeit “killed”, cell).

The population level is inherently redundant, as the presence of several
organisms implies that the loss of an individual is not vital to the system.

3.7.1 Self-Repair at the Molecular Level

The most original features of the entire MuxTree design are the self-testing
[1, 2, 126], self-repairing [55, 56, 66, 102, 128, 131, 133] and self-replication
mechanisms [54, 55, 120, 130]. Although the literature contains many solutions
on how to design self-testing [31, 43, 45, 77] and even self-replicating structures
[8, 47] the particular approach within the Embryonics project could not be an off-
the-shelf one due to the uniformity and universality of the molecules and cells.
Therefore, the chosen approach was of a two-level self-repair process, first at the
molecular level (less expensive), and then at the cellular level (more expensive).
Furthermore, the main goal was to improve the existing design without actually
causing any losses when original capabilities were concerned; because these were
the particular subject of a previous thesis’ work, we will only provide details
when they are of use to a better understanding for the development of the project
in general and of RAM-MuxTreeSR in particular.

Implementing a self-repair procedure for a memory means additional
difficulties, after all, a memory is dynamic, it is not subject to stuck-at faults
only, it may also experience intermittent and transient faults, which are far
more difficult to detect. In fact the self-repair method used for the MuxTreeSR
design was entirely preserved after the addition of the memory operating modes.
We will go into more details to shown how this mechanism accommodates the
memory structures from RAM-MuxTreeSR.

The self-testing process takes place at initialization time when a test
pattern is sent inside all configuration registers [128]. The MuxTree molecule is
subject to stuck-at faults, which may also be externally injected by means of a
switch operated by the user. If the register is faulty, the situation is detected by
the self-testing mechanism and the molecule is replaced by a spare one, all the
connections being re-routed so as to avoid the faulty molecule, which enters the
state DEAD. If there are no spare molecules left to replace the faulty one, than
the cell itself can no longer function properly (it can no longer repair its faults)
and it will be disabled (or KILLed).

Figure 3-21 presents the principles of the repairing process in the case of
the A molecule being faulty (the bottom left molecule). The configuration of the
entire row that includes A is shifted one position to the right, taking advantage
of the spare molecule. Once the re-routing process is finished and the
configuration shift is done, the spare molecule becomes active (it enters the
ACTIVE state) and the faulty one enters the state DEAD.

Page 56 Ph.D. Thesis Chapter 3

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

Figure 3-21: The repairing process in the case of a faulty A molecule.

Figure 3-22 presents the repairing process for the D molecule being faulty
(bottom, middle). The configuration of the entire row that includes D is shifted
one position to the right – starting from the D molecule, the previous one(s)
remaining unaffected by the repair process – in order to take advantage of the
spare molecule G. When the re-routing process is finished and the configuration
was shifted, the spare molecule becomes “D” and the “original” D one enters the
state DEAD. The repair process is by no means different when taking the other
rows into account. Re-routing all the connections between the MuxTree elements
so as to preserve the functionality of the whole structure is difficult to illustrate;
we therefore present the essential connections for a 3X3 memory structure,
before and after the repairing process in Figure 3-23.

Figure 3-22: The repairing process in the case of a faulty D molecule.

Once the faulty molecule is located (E in Figure 3-23), it will be replaced by
a spare one, and the data flow will entirely avoid it. Therefore molecule E “dies”
and is replaced by the corresponding spare molecule H. The repairing process is
similar in all the other cases.

As can be seen in Figure 3-23, the repairing process means re-routing all
the connections in order to avoid the faulty molecule. This is done by activating a
group of multiplexers placed at the border of each molecule and driven by the

Chapter 3 Ph.D. Thesis Page 57

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

state of the molecule. The repairing process follows a precise scheme and after
the state of the molecule changes to DEAD, the multiplexers will re-direct all
connections going through the now faulty molecule. Since these multiplexers are
integrated in the molecules, they are not shown in our figures (more details of
the repairing process are given in [128]).

Unfortunately, there will always be situations when the repairs that are
required outnumber the available spare molecules, no matter how frequent the
spare columns are. Such an event does not have implications at the molecular
level anymore, but results in a whole cell that is potentially faulty. In this
situation a KILL signal will be generated, which will propagate throughout the
cell, marking all molecules as being “dead”. Figure 3-24 presents a possible
scenario in a cell consisting of a 3x3 molecular array, where molecules E and H
are both detected as being faulty. As the self-repair process is overcome, the
entire cell will “die” and self-repairing measures will be taken at the superior
organizational, cellular, level. An important remark is that the KILL signal is
quite expensive in terms of available resources: whenever a too large number of
repairs are necessary between two consecutive spare columns, the entire cell will
be deactivated. Subsection 3.7.3 will present the mechanism implemented in the
RAM-MuxTreeSR as online countermeasure to such situations.

Figure 3-23: Details of the repairing process for molecule E.

Figure 3-24: Death of an entire cell by activation of the KILL signal.

Page 58 Ph.D. Thesis Chapter 3

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

Thus far we presented how the self-repairing mechanism can be preserved
from the MuxTreeSR design to actually accommodate the new memory operating
modes introduced by the RAM-MuxTreeSR. We have shown that the
reconfiguration processes can operate no matter what operating mode a molecule
is operating in. However, the self-repair has to be triggered by an event
associated with fault detection strategies; again, these strategies were
successfully transferred into the new design and tested successfully.
Unfortunately, fault detection strategies that were proven to work well under
MuxTreeSR, covering a range of faults that could potentially affect either the FU
or the CREG, can only protect the RAM-MuxTreeSR when operating in logic
mode. They were originally intended to protect a molecule that was not supposed
to change its internal configuration data in a dynamically fashion, as happens
when operating in any of the memory sub-modes. A memory structure (and being
cyclic makes no difference) changes its data and it is therefore very difficult to
associate it with off-line testing strategies; therefore a different strategy must be
put in place in order to properly extend the robustness over the macro-molecular
structures. Adding fault-tolerance over the macro-molecules of the new RAM-
MuxTreeSR design seems to be a natural development that will be the subject of
the next chapter.

3.7.2 Self-Repair at the Cellular Level

The redundant storage of the entire genome in every cell is obviously
expensive in terms of additional memory. However, it has the important
advantage of making the cell universal, that is, potentially capable of executing
any one of the functions required by the organism. This property, coupled with
the coordinate-based gene selection, is a huge advantage for implementing a
multiple level self-repair process. Since our cells (and molecules) are universal,
with their expressed gene being determined by a coordinate mechanism, the
system can survive the "death" of any one cell simply by re-computing the cells'
coordinates within the array, provided of course that "spare" cells (i.e., cells
which are not necessary for the organism, but are held in reserve during normal
operation) are available [67, 128].

This particular surviving measure has to be taken once a cell cannot repair
itself anymore at the molecular level, therefore triggering the KILL signal (see
Figure 3-24). At the cellular level this actually means that the entire organism
has to reconfigure itself, by disabling the whole column containing the “killed”
cell and shifting its operational cells to the left. Of course, this is only possible at
this level if there are spare cells available for reconfiguration. Figure 3-25 (which
is quite similar to Figure 2-3) presents the repairing process for an organism
consisting of an array of 3x2 cells. If we consider that the (2,1) cell (expressing
gene C) has no more resources left for required self-repair, then at the molecular
level the KILL signal will be triggered, which will effectively disable all of its
molecules. At the cellular level this means that an entire column will be disabled
(column 2 in our case), transforming into what in nature is called a “scar”;
“healthy” cells are shifted to the right, this being the direction of self-repair. This
particular implementation differs from that presented previously in Figure 2-3
for the purpose of reducing re-routing overhead.

This is how the molecular and the cellular levels of a system in Embryonics
cooperate to assure a high degree of robustness: whenever the molecular level

Chapter 3 Ph.D. Thesis Page 59

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

cannot handle the self-repair by itself anymore, it activates the self-repair at the
cellular level so that the organism can continue to survive.

3.7.3 The UNKILL Mechanism

In digital electronic systems, the majority of hardware faults occurring in
the silicon substrate are in fact transient, that is, they disappear after a short
span of time. This observation is an important issue when designing self-
repairing hardware: the parts of the circuit that have been "killed" because of the
detection of a fault could potentially come back to "life" after a brief delay,
therefore creating incentives for avoiding the stiff penalty induced by killing an

Figure 3-25: Self-repair at the cellular level [67, 102].

Figure 3-26: The result of the UNKILL process: a disabled cell is recovered

from transient damage.

entire cell due to probably transient errors. However, detecting the
disappearance of a fault and handling the "unkilling" usually requires a
relatively complex circuit, thus preventing such an implementation at the
molecular level. On the other hand, such a feature can be implemented at the
cellular level with minimal resources [100, 102].

It is possible that a cell was “killed” due to unsuccessful repair attempts at
the molecular level and at least some of the responsible faults were transient. If
further reconfiguration of the cell is performed, then it is likely those faults

Page 60 Ph.D. Thesis Chapter 3

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

would simply disappear (i.e. not present at the self-testing stage of the
configuration, phase 2, see Figure 3-30) after reloading the molecules with their
MOLCODEs (phase 3, see Figure 3-30). Therefore, by simply trying to configure
the faulty cell with its MOLCODEs once again, gives the possibility of avoiding
the loss of one column of cells; the previously disabled cell will function normally
again, forcing therefore another process of coordinate recalculation, which will
produce an opposite shifting process than in the case of the KILL signal
activation [100].

Let us consider such a scenario over the same cell (2,1), which was disabled
due to being non-repairable (see Figure 3-25). What happened to this cell was
presented in Figure 3-24; there were two faulty molecules detected in the same
row, therefore overcoming the self-repair mechanism. If at least one faulty
molecule was affected transiently, then re-charging the MOLCODEs into the cell
will result in a fully functional cell. In Figure 3-26 we considered that out of two
faulty molecules, molecule E has permanent damage and molecule H had
transient faults.

The UNKILL process effects extend at the cellular level also, where it forces
a coordinate re-computation. As a result, the disabled column of cells, which was
due to the killing of the (2,1) cell, can be used again. The process is shown in
Figure 3-27.

Figure 3-27: The UNKILL process at the cellular level.

3.8 Testing the RAM-MuxTreeSR Prototype

3.8.1. The Space Divider

The information contained by the MOLCODE defines the logic function, the
connections, and/or the memory data of each molecule. To obtain a functional
cell, i.e. a complete assembly of MuxTree molecules, two additional pieces of
information are required: the physical position of each molecule within a cell has
to be defined, as well as the presence and position of the spare columns required
by the self-repair mechanism.

3.8.1.1. General Description

The mechanism consists of introducing a regular network of automata
(state machines) called space divider in the FPGA, which is a variety of cellular
automata [8, 47, 54, 123, 129, 130, 133, 154]. Each vertical or horizontal band of

Chapter 3 Ph.D. Thesis Page 61

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

the example of Figure 3-28 is an instance of this automaton. Using the space
divider, one can divide the entire space of the FPGA into cells of identical size
and to specify the position of the spare columns. Figure 3-28 shows an FPGA
divided into cells of height 3 and width 3, with one out of every three columns
being a spare. The information needed for the molecular configuration is called
the polymerase genome PG. It can be inferred from Figure 3-28 and consists of a
cycle of the following states:

, , , , , ,PG C V V H S C= …

where C represents a corner, V a vertical band, H an horizontal band, and S an
horizontal band associated with a spare column. More generally, let us use the
notation {X}·[k] to represent the state (or the sequence of states) X repeated k
times. Then, an organism consisting of an array of m cells horizontally and n
cells vertically, each cell of height h and width w, will be defined by the following
polymerase genome:

{ } [] { } []{ } [], 1 , 1 ,PG C V h H w m n C= ⋅ − ⋅ − ⋅ +

where the presence of spare columns will be indicated by replacing one or more
occurrences of H by S [67, 128].

We will detail the components of the space divider, which are binary coded
using 3 bits (COMP2:0) and presented in Table 3-3:
• vertical band (V): the cellular membrane grows vertically, from bottom to top;
• horizontal band (H): the cellular membrane grows horizontally, from left to

right;
• corner (C): the growing process of the cellular membrane splits in two

directions, horizontally (to the right) and vertically (upwards);
• spare (S): a special case of horizontal band, defining a column of spare

molecules.

COMP2:0 SPACE DIVIDER’S COMPONENT

100 Horizontal band H

101 Vertical band V

110 Spare horizontal band S

111 Corner C

Table 3-3: The space divider’s different components.

3.8.1.2. An Example

We will consider the case of two identical unicellular organisms (Fig. 3-29),
where the specifications of each organism are those of the modulo-4 up-down
counter [100]. In this particular case, m signifies the number of organisms along
the horizontal coordinate, and n signifies the number of organisms along the
vertical coordinate (i.e. m=2 and n=1). The ribosomic genome RG is described in
Subsection 3.5.1.2 (Fig. 3-12C). In the actual implementation, we add a spare
column at the right of each organism.

The mechanism of inferring the polymerase genome was described
previously in Subsection 3.8.1.1. In our case we have two organisms (m=2, n=1),

Page 62 Ph.D. Thesis Chapter 3

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

each being constructed with a single cell (w=3, h=3). The polymerase genome PG
has the following form:

{ } []{ } [], 2 , , 3 , PG C V H S C= ⋅ ⋅

which is exactly the example shown in Figure 3-28. After coding each component
of the polymerase genome PG as shown in Table 3-3, the binary coded PG results
as PG1:

{ } []{ } []1 111, 101 2 , 100, 110 3 , 111PG = ⋅ ⋅

The polymerase genome PG and the ribosomic genome RG configure the
array of MuxTree® molecules at configuration time. For this reason, PG and RG
are binary coded inside the EPROM memory of a state machine (the
configuration sender) whose only role is to send them toward the array. Due to
implementation reasons, the polymerase genome PG has to be expressed in
hexadecimal code. The entire process of properly coding PG is described as
follows. First, PG1 must be reversed, the result being PG2:

Figure 3-28: Example of a space divider (height=3, width=3, 1 spare column

out of 3); PG: polymerase genome: C, V, V, H, S, C, …

[]{ } []2 111, 011, 001, 101 2 , 111 3PG = ⋅ ⋅

To transform PG2 into hexadecimal EPROM-ready code, due to
implementation reasons, we have to add a zero to the rightmost position, which

Chapter 3 Ph.D. Thesis Page 63

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

is also the least significant bit. Unrolling PG2 and adding the necessary zero to
the least significant position gives us PG3:

PG3 = 111 011 001 101 101 111 011 001 101 101 111 011 001 101 101 111 0

Since the direction from the least significant bit to the most significant bit
is from right to left, the hexadecimal coded and EPROM-ready polymerase
genome (PG4) becomes:

PG4 = 0001D9B7 B36F66DE

The EPROM stores words worth 8 hexadecimal characters of data, so we
need to split PG4 in words of this length. The least significant word is stored at
the lower address inside the EPROM. In our case, the EPROM containing PG4 is
presented in Table 3-4.

EPROM ADDRESS PG DATA

0 B36F66DE

1 0001D9B7

Table 3-4: The EPROM-ready polymerase genome PG.

Figure 3-29: Two identical, unicellular organisms, each

implementing the modulo-4 up-down counter.

The way of calculating RG was presented in Subsection 3.5.1.2. The
complete EPROM for our example in Figure 3-29, containing both the
polymerase genome PG and the ribosomic genome RG, is shown in Table 3-5.

3.8.2. Prototype Configuration

Testing the RAM-MuxTreeSR prototype followed two directions: first, to
ensure that the functionality of the preserved mechanisms [128] was not affected
by the transfer and second, that the new macro-molecular structures are well
integrated within the design. The prototype consisted of 18 molecules, making up
two unicellular organisms, each using a single column of spare molecules (a

Page 64 Ph.D. Thesis Chapter 3

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

similar set-up is shown in Figure 3-29). The complete binary configuration is
given by Table 3-5.

Let us review an organism’s life cycle, starting from power-up (shown in
Figure 3-30):
1. Space dividing phase: the polymerase genome PG is passed through the area

of molecules and delimits the cells (Figure 3-28 and Table 3-5). At the
moment, the space divider is not under test. The next phase is 2.

2. CREG registers testing phase: the CREG register of each molecule is tested
using a test pattern (30000080 in Table 3-5) [128]. If no faulty registers are
detected, the next phase is 3. If yes, the next phase is 5a.

3. Configuration phase: each molecule receives its ribosomic (RG) and/or
operative (OG) genomes, the order the molecules are loaded with data being
shown in Figure 3-29 and Table 3-5. The next phase is 4.

4. Normal operating phase: cells are functioning normally. A fault-detection
mechanism will signal the errors that might occur inside each molecule.
When errors are detected, the next phase is 5b, otherwise 4.

5. One or several faulty molecules are detected. If there are enough spare
molecules, the next phase is 6 (a or b). If not, the next phase is 7 (a or b).

6. The self-repair process takes place at the molecular level as shown in Fig. 4-
28:

6a. The next phase is 3, i.e. the configuration phase.
6b. The next phase is 4, i.e. the operating phase.

7. The self-repair process takes place at the higher, cellular level. There are two
cases:

i) a faulty molecule is detected in a row and there is no spare molecule
available;

ii) a faulty molecule is detected and there is only one spare molecule left
in the row, but the spare molecule is itself faulty.

In both cases the self-repair mechanism will be outrun and the cell will die,
generating the KILL signal. This will lead to the reconfiguration at the higher,
cellular level, as previously described.

7b. The next phase is 3, i.e. the configuration phase.
7c. The next phase is 4, i.e. the operating phase.

Testing the prototype allowed us to verify the following:
• the implementation of the new, macro-molecular structures was successful,

therefore enabling a much needed, flexible storage capability. Each of the
memory sub-modes, as well as the logic modes behaved as expected;

• the HOLD mechanism was tested to be fully functional when multiple,
independent macro-molecules were employed;

• the original mechanisms of self-testing and self-repairing were preserved
with their functionality unaffected when operating in logic mode. When in
memory mode they only offer a partial functionality, due to the lack of a fault-
detection strategy for this mode;

• the KILL mechanism was preserved and extended with its reverse-
corresponding mechanism, called UNKILL; the UNKILL mechanism was
successfully tested;

Chapter 3 Ph.D. Thesis Page 65

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

EPROM
ADDRESS

DATA MEANING

0 B36F66DE

1 0001D9B7
Polymerase genome

PG (Table 4)

2 00000000 Nil pattern

3 30000080 CREG register test pattern

4 00000000 Nil pattern

5 01000300

6 00000000

7 02304100

8 00000000

9 02330D00

A 00000000

B 001C5100

C 00000000

D 02400100

E 00000000

F 06630500

Ribosomic RG
and/or operative OG
genomes interleaved

with nil patterns
(Fig. 5c)

Table 3-5: EPROM for configuring the two identical unicellular organisms.

However, there are some issues that remain to be settled at this point:
• the original self-testing mechanism preserved from the MuxTreeSR design,

cannot be just simply extended to obtain a self-testable macro-molecular
structure;

• an original fault-detection strategy has to be developed in order to expand the
robustness of the Embryonics concepts over the macro-molecules, as this may
be both an essential strength and weakness of such a system

The motivations for these issues, as well as the solutions adopted for the
implementation will be presented in the next chapter.

Page 66 Ph.D. Thesis Chapter 3

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

Figure 3-30: Block schematic of an organism’s life-cycle.

Chapter 3 Ph.D. Thesis Page 67

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

Page 68 Ph.D. Thesis Chapter 3

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

CHAPTER 4

FAULT-TOLERANT MACRO-MOLECULES

4.1. Introduction

4.1.1 Bio-Inspired Storage

As pointed out previously, a macro-molecule in Embryonics is a memory
structure, essentially a block of molecules operating in the same mode (i.e. the
memory mode) [100, 102]; they are separated from the surrounding molecules
operating in the logic mode or from other memory areas, by the so-called memory
membrane, an abstract formation coded inside the ribosomic genome under the
form of MOLCODE bits 21-20 and 3-1 [100]. The macro-molecule therefore builds
a large storage zone by effectively chaining together smaller, identical memory
units found in each molecule under the form of CREG. Thus, Embryonics allows
flexible memory configurations, not unlike modern computer systems, which use
memories built from many VLSI RAM chips. Considering the expected time of
failure for a single memory chip, whenever many such chips are assembled to
form a single, larger memory, the corresponding period of wait until at least one
chip fails becomes significantly smaller [5]. In fact, in real terms this period can
be as low as a few hours, thus making any memory protection become
mandatory. For this reason, most computer memories make use of SEC-DED
(single error correcting, double error detecting) codes [27, 37, 104], which greatly
enhance the overall reliability.

The Embryonics project focuses on building a bio-inspired computing
system that would exhibit (among others) superior, biological-like fault
tolerance. Because building blocks in Embryonics are mainly a matter of
hardware configuration, each and every basic brick is already endowed with
capabilities of hardware fault tolerance. However, in achieving a higher
complexity and flexibility, the hardware itself, which is reconfigurable, has to be
driven by a form of software, with fault tolerance techniques comprised not only
at the hardware level (functional unit) but also at the software level (memory
unit). Due to the fact that the introduction of memory modes in Embryonics is
part of its natural development, no memory protection mechanisms have yet
been implemented, other then a somewhat limited approach of doubled data
storage [101]. A reliability analysis of Embryonics structures has been made [84,
85], but it only concerns structures operating in logic mode. The newly added
operating mode for the molecules (the memory mode) affects the functionality in
Embryonics by extending it and therefore an updated reliability analysis is much
needed.

The existing two levels of self-repair were, however, preserved unaffected
by design progress, but they are essentially protecting the functionality of the

Chapter 4 Ph.D. Thesis Page 69

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

whole (that is, the ribosomic genome); they cannot protect the integrity of the
genome that governs over the system’s functionality (i.e. the operative genome
and, of course, the macro-molecule). Furthermore, while designing bio-inspired
computing machines is quite ambitious, the key aspect remains: because of
current technological limitations one cannot go above inspiration. This is to say
that fundamental, digital design techniques can only be adapted, albeit in an
original and biological-like manner, to build innovative systems, they cannot be
transferred directly from biology into digital systems.

4.1.2 Fault, Error, Failure

Computers are fine exponents of the present days’ technological wave.
Though solidly set on the road of evolution, computers experience difficulties
that arise from this road becoming manifold: some applications require speed
above anything else, while others require the highest possible reliability.
Unfortunately, computers themselves can fully fulfill none of the requests,
fueling the need for different and better-suited designs, and therefore justifying a
quest for new inspiration in both their hardware and software designs.

Since their beginning, computers were protagonists of the quest for
performance. Benefits of computing power and technological advances enabled
the coming of the space exploration era, which in turn encouraged a shifting in
priorities for achieving performance from brute computing force (which appears
to have reached somewhat sufficient levels today, for most applications) towards
the advent of dependable computers. While computers are generally designed
from the very beginning as remarkably reliable machines, they are bound to
experience various kinds of errors in their lifetime due to often neglected factors
such as atmospherics, electrical noise, component malfunctions or even design or
programming flaws [104], as illustrated in Figure 4-1.

Figure 4-1: Fault-error-failure causal model [39].

Page 70 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

There are several factors leading to inadequate operation of a computing
system; generally, these can be avoided (fault avoiding) through rigorous quality
assurance during each stage [39]:
• Specification mistakes happen in the early stages of the design process due to

vague formulations or even misconceptions related to the system objectives.
• Implementation mistakes. After the specification process reaches maturity it

is followed by the implementation, that is, the transformations from
hardware and software specifications into operating equipment and
algorithms.

• External disturbances are due to environmental or artificial factors such as
radiations, electromagnetic interferences, operator mistakes.

• Component faults arise at random during normal operating time due to age,
wear and tear.

Faults can be classified over broad criteria but their nature (hardware or
software) and time behavior (permanent, transient and intermittent) are
essential. Software faults can usually be recovered from by extensive use of error
detecting and correcting codes [104] while hardware faults usually require
system reconfiguration and/or human intervention. The techniques used to
achieve error tolerance help a system operate normally even in the presence of
errors.

In Figure 4-1 factors that are not taken into account by Embryonics are
shown in grey. This is simply a matter of particularities of the project, which is,
by all means, not a piece of software; therefore the dashed conditions simply do
not apply. Concerning hardware mistakes that can be made, those that might
appear during specification and implementation stages are avoided during the
initial testing process, thus making an operating embryonic structure vulnerable
to either component faults or external disturbances [45]. While component faults
could be ruled out because of the extensive initial test sequence employed by the
Embryonics project, followed by the two-level reconfiguration process, external
disturbances can potentially upset the normal behavior of the system for no
apparent reason.

With respect to their behavior in time, faults fall into the following
categories [27]:
• permanent faults: their effect is due to a fault affecting the normal operating

of the device constantly and over an indefinite period of time, i.e.
permanently. There exists a broad literature dedicated to coverage and
modeling of permanent faults [27, 39]. They are also considered under the
terms of solid or hard fails.

• non-permanent faults: they occur randomly and affect the system’s functional
behavior over indefinite, but finite, periods of time. Because the moments of
occurrence show variable frequency and duration, these faults are very
difficult to be modeled. There are two kinds of non-permanent faults:
transient and intermittent.

Transient faults originate as an effect of environmental conditions such as
atmospheric parameters (temperature, humidity, pressure), supply
characteristics (fluctuating power, noise, crosstalk), pollution, and cosmic rays
and particles. Because the system is affected even when no identification of
permanent faults is possible, there is no model available for such faults, often
referred to as soft fails or soft errors. Intermittent faults are caused by various
factors, other than environmental: component parameter variations, timing,

Chapter 4 Ph.D. Thesis Page 71

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

loose connections, etc; they typically affect the system over very short time
intervals, thus making any debugging process more difficult. By using
accelerated testing under stress conditions it is possible to make non-permanent
faults become permanent, which can then be modeled [45].

4.1.3 Inspiration Toward Achieving Dependability

Dependability can be defined as “the ability of a system to avoid service
failures that are more frequent or more severe than is acceptable” [3]. It is
therefore a synthetic term that involves a list of attributes including reliability,
fault tolerance, availability, and others. In real world, a dependable system
would have to operate normally over long periods of time before experiencing any
fail (reliability, availability) and to recover quickly from errors (fault tolerance).
The term “acceptable” has an essential meaning within the dependability’s
definition, setting the upper limits of the damage that can be supported by the
system while still remaining functional. It is therefore worth elaborating upon
ways to compute the threshold beyond which the damaging effects become no
longer acceptable. All of the above being considered, dependable systems are
crucial for applications that prohibit or limit human interventions, such as long-
term exposure to aggressive (even hostile) environments. The best examples are
long-term operating machines as required to manage deep-underwater/nuclear
activities and for space exploration.

The quest of building digital systems that offer superior dependability can
draw benefits from two distinct sources [97]. The first one, already mentioned, is
the oldest and most complex computing system, which has been around since the
dawn of times: Nature. Its living elements continuously demonstrate a variety of
solutions for achieving robustness in an error-prone, macro-scale environment.
There are numerous similarities and differences between artificial, digital
computing systems and living beings; although such a thorough analysis is
beyond the scope of this thesis, a synthetic view is highlighted by Table 4-1 [97].
However, it is likely that the field of digital computing could exploit some of the
mechanisms implemented by Nature and adapt them to the electronic
environment, a representative example being the Embryonics project.

Another source of inspiration may be constituted by novel computing
paradigms, whose research already considered dependability-raising techniques.
The emerging field of quantum computing relies on successful calculus in an
error-prone, micro-scale environment. Since errors are (as of yet) intrinsic to
quantum systems [149], a number of techniques were established in order to
overcome their damaging effects and deliver consistent results. However, though
a variety of methodologies for estimating dependability parameters have been
proposed, they usually remain localized within their original field and rarely
reach other architectures. Insights to the fields of quantum [148, 149] and bio-
inspired computing will be provided next in order to argue upon the benefits that
could be drawn by importing a methodology of estimating the computing
accuracy threshold from quantum computing to the Embryonics project, together
with additional means of further increasing dependability levels in Embryonics
systems.

Page 72 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

Artificial systems Natural systems
No unified strategies concerning

redundant resources
Unified strategies via hierarchical

redundancy
Capabilities empirically tested
(through functional stress and

accelerated aging) in short periods of
time

Capabilities tested in long periods
of time

Disputable maturity status, notions
not yet standardized [3]

Maturity endorsed by the variety of
species, proof for successful

biological processes

Short design periods Long design periods, not useful to
attain by human processes

Table 4-1. Comparison between types of dependable systems

4.1.4 Self-Repair in RAM-MuxTreeSR

The previous sections (4.1.1 and 4.1.2) may now be put together in order to
provide a more detailed perspective about the self-repair capabilities of our new
design. Of course, by preserving the previous self-repair strategies and
mechanisms, the robustness degree of the molecules operating in what is now
called the logic mode remains unchanged. There are several strategies that
concurrently work in order to achieve fault-tolerance [128]:
• The configuration register CREG is tested at system start-up for detecting

any stuck-at type faults that may exist (Figure 3-30, phase 2). Once the
system is up and running, there is no mechanism that would detect a change
in the binary pattern stored by CREG.

• The functional unit FU is tested through resource replication and majority
voting. Correct data is ensured by the voting mechanism, while the resource
replication strategy allows the detection of possible errors.

• The switch block SB is not tested by itself.
• Once an error is detected, the reconfiguration mechanism is triggered

hierarchically, first at the molecular level and then at the cellular level;
All of the above considered, one can say that any system in Embryonics is

well protected against permanent faults (or stuck-at type), any error detected in
either the CREG or the FU triggering the self-repairing strategies (except for the
situation when the error first affects the CREG).

However, transient and intermittent faults were not considered initially, as
too expensive to fix, since the CREG was not supposed to modify its value during
operation; from this perspective, the FU is better adapted to endure these kinds
of faults. Moreover, intermittent faults are most difficult to repair and therefore
a strategy that would include them would also involve an important (and
possibly quite complex) hardware overhead. If any strategy involving the
recovery from intermittent faults is to be implemented, one needs to establish
first the likelihood of such a scenario, which will be argued in the next section.

In order to assess the importance of the genome memory, it is worth
remembering that the genetic program is not just plain data that can be read
and written randomly; instead it is intended as a large program, ideally written
once and then read and executed for indefinite periods of time. The existence of
the macro-molecules solves the storage issue required by the genome memory;

Chapter 4 Ph.D. Thesis Page 73

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

however, for a clear understanding of the interaction between the preserved self-
repairing mechanisms and the new macro-molecular structures, we feel that
more insight into the matter is necessary.

When an error is detected at the molecular level, the reconfiguration
mechanism is triggered, the faulty molecule is marked as being “dead” and a
spare molecule takes its place; but one should not forget that, originally, all was
designed from a functional point of view.

Let us suppose the same reconfiguration process would be triggered should
an error be detected inside a molecule operating in any of the memory modes.
This would mean the “death” of the respective molecule and the transfer of its
role toward a spare one, which will then become active. But because of
transferring genetic material from the faulty molecule to a spare one, the final
result is that the faulty molecule “dies” and the spare one starts behaving the
same as the faulty molecule before being “killed”. Instead of recovering from the
fault, the final outcome is a very similar situation to the initial one, but this time
with the spare resources reduced by a molecule.

These characteristics point out an architectural vulnerability in the current
RAM-MuxTreeSR design: a potential error in the genetic program can neither be
corrected, nor even be detected. Furthermore, the areas where highly dependable
systems may be successfully used in (and Embryonics is no exception), such as
space exploration, involve potential exploiters of this particular vulnerability;
this could have most serious effects since the genome either drives actual
hardware (polymerase and ribosomic genome) or contains instructions on how
additional hardware will be driven (operative genome).

Considering all of the above arguments it can be concluded that:
• currently, Embryonics has no memory protection mechanisms implemented;
• such implementations are both desirable and feasible; with the human

expansion into space having a most upsetting potential with respect to
electronic devices, they should run on top of other (typically radiation
shielding) techniques.

4.2. Single Event Upsets: An Analysis

A convenient and effective way of fault modeling is to consider a software
error as simply affecting a binary value; then a transient fault is nothing else but
a bit that changes value for no apparent reason due to entering a variety of
possible transient regimes triggered by external disturbances. In fact, bits of
information may be regarded as small amounts of electric charge, moving inside
electronic devices. By quantifying the value of the charges one can differentiate
between them and refer to as the two symbols of information, bits 0 and 1.
Because we represent information by means of electrical charges this makes
electronic devices vulnerable to whatever conditions might interfere and modify
these charges, the result being erroneous data. A remarkable effort is made
during the design process to decrease the sensitivity electronic/semiconductor
devices may show towards such upsetting phenomena.

During their life cycle, electronic devices constantly suffer a number of
influences that manifest predominantly over transient regimes. A special case is
the category of digital electronics, which deals with transient phenomena due to

Page 74 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

changing states and logical values. Such phenomena introduce a variety of errors
unified in the literature under the name of transient faults, soft errors or single
event upsets (SEUs). The rate electronic devices are affected with is known under
the term of soft error rate or simply SER and is measured in fails per unit time
[38]. No matter the name they are referred under, these errors affect the normal
execution process and are due to electromagnetic noise and/or external
radiations rather than design or manufacturing flaws [113, 114].

A key issue concerning bits of information and their associated electric
charges is listing the conditions that might lead to such disturbances. Some may
be eliminated by carefully applied technology, but some necessitate design
changes or may even prove impossible to prevent. Many experts consider that
soft fails are mostly caused by electronic noise [127, 163]; it seems that potential
candidates generating such noise are energetic nuclear particles, which are
responsible of inducing ionization electron–hole pairs, and fall into three
categories:
• α–particles are born as part of radioactive decay processes;
• radioactive isotopes, widely used for a range of purposes, might contaminate

semiconductor materials leading to soft errors; evidence regarding this was
given in a famous paper by May and Woods of Intel [75] and confirmation
came by irradiating electronic chips [28, 29, 156];

• cosmic rays, containing a broad range of subatomic particles.
The fact that radiation can affect electronic circuits has been long known,

memory and logic upset behaviors being observed in satellite electronics. In 1978
Ziegler of IBM realized that if α–particles affect semiconductor devices causing
soft fails, then there must be a fair probability that other particles coming from
the outer space under the form of various cosmic rays might cause the same
thing. Causes were attributed to energetic heavy ions in the solar wind [166].
Since the early 1980s has been known and studied the influence and capacity of
cosmic radiation and of a broad range of particles to influence semiconductor
circuits, leading to transient faults or soft errors.

Typical modern digital devices incorporate techniques for recovering from
these errors, such as error detecting and correcting codes, various parity-check
schemes and others; however, these mechanisms focus on the devices prone to
influences from such errors, i.e. memory elements. As pointed out [113, 114]
there are several key reasons for protecting memories:
• techniques involved are well understood and relatively easy to implement,

thus being quite inexpensive;
• memory area in each computing system is proportionally significant;
• research conducted so far shows that combinational logic is much less

susceptible to soft errors than sequential logic [22, 51].
In order to model the frequency of soft errors it was necessary to further

investigate how exactly they were born and what dependencies may exist
between soft errors and various particles and beams that have either a cosmic
origin (heavy energetic ions) or are generated on earth (other particles). They
contribute to the overall SER independently and are therefore additive. The soft
error rate (SER) does not appear as constant; as technological advancement
leads to shrinkage of electronic devices, they become more vulnerable to soft
errors caused by lower energy radiation.

Chapter 4 Ph.D. Thesis Page 75

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

4.2.1 Radioactive Isotopes

Radioactive contamination inside or in the proximity of semiconductor
production facilities can cause an unusually high SER. It is worth mentioning
what is historically known as the “Hera problem”. At the beginning of 1987 LSI
memories produced by IBM were hit by anomalous behavior, which led to
erroneous data. Intriguingly, only batches produced in the United States seemed
to be affected while those produced in Europe showed no sign of similar failures.

There were reasons to believe that the packaging was responsible for all the
problems but soon this was ruled out, as exchanging packages did not affect the
incidence of reported problems, thus indicating there was a problem in the chips
themselves. After intense efforts the conclusion was the discovery of traces of
radioactivity; however, it was difficult, if not impossible, to establish where those
radioactive traces came from, but the type of the chemical trouble-producing
element was certain: polonium (Po210). This particular radioactive isotope is a
product of the uranium decay chain, but strangely, the other expected particles
were totally missing. After months of searching for the contamination source, it
was finally identified under the form of one bottle of nitric acid, used in the
process of manufacturing the chips that showed signs of contamination. This was
the successful end of the “Hera problem” [163].

Intel was also hit by problems with their 2107 series of 16Kb DRAM
memories [13], the cause being radioactive contamination. The reason was later
found to be the factory being built downstream in close vicinity of an old uranium
mine.

4.2.2 Cosmic Ray Influence

Any ionizing particle that hits an electronic device induces strong
perturbations in the electromagnetic field of component elements. Since
electronic devices rely on the properties of p-n junctions, the disturbances
created translate into electron–hole pairs, that is, a random signal. If the local
electromagnetic fields are sufficiently strong then the pairs cannot recombine;
instead, they will find a way out to the nearest appropriate device contact and
the corresponding charge collection could provoke a soft error. Disturbances are
also created when cosmic ray particles are involved in collisions with
semiconductor nuclei, the result being a wide range of secondary nuclear
fragments generated in an avalanche-type phenomena: nucleons, pions, light
ions such as deuteron (2H), triton (3H) and helium (3He and α–particles), and
heavy residual nuclei such as oxygen, carbon, and magnesium.

As particles that compose these rays come from outer space and enter the
earth’s atmosphere, there is a chance of hitting other particles, resulting in two
types of collisions: elastic and inelastic. As a result of these collisions an entire
flux of high-energy particles is born, reaching the earth’s surface. Several factors
affect the distributions of the final flux [114]:
• Altitude: Due to the filtering effect of the atmosphere, the lower the altitude,

the smaller rate of particles. For instance, the flux at an altitude of 3100m
(Leadville, CO) is approximately 13 times greater than at sea level.

• Geomagnetic region (GMR): Earth generates a magnetic field that also
has a shielding effect. Therefore cosmic rays show the smallest penetration
around the equator and the largest at the poles. The measures of this effect
range from 1.0 GV near the poles to 17 GV at the equator.

Page 76 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

• Solar cycle: The 11-year solar cycle strongly affects the particle flux, Earth
being under a constant bombardment of particles coming from the sun and
associated phenomena. Intriguingly, the sun’s activity has an opposite effect
than common belief might consider: as the activity of the sun increases a
lower rate of particles can be witnessed, even if solar flares can increase the
particle rate. In fact, periods of active sun see up to a 30% lower rate of
particles compared to periods of quiet sun [114]. The explanation lies in the
fact that the magnetic field around the earth strengthens during periods of
active sun, increasing its shielding effect and thus reducing the penetration of
cosmic rays. The combined filtering greatly affects the energetic particle flux,
particles with highest energies being least represented in the total flux
(neutron graph given in Figure 4-2).

During the 1980s a series of experiments were made by IBM as an attempt
to measure the particle flux from cosmic rays [162]. For a particular energy, this
can be expressed as the number of particles having that energy, hitting the
planet per unit surface per unit time. Obviously, not any kind of
radiation/particle would provoke a soft error, and they also have an uneven
distribution. In particular, higher energy particles are more susceptible to upset
semiconductor devices but also less likely to occur while lower energy particles
occur more frequently but do less or no damage.

Figure 4-2: Neutron flux plotted against energy [162].

The term “cosmic rays” offers a generous accommodation, since it has no
precise scientific definition; the general line is that cosmic rays come from outer
space and correspond to a broad range of energetic particles. By now there is a
separation between at least three categories [162]:
1. Primary cosmic rays are particles lurking in the universe and solar system

that eventually may hit our planet. It is common belief that they are a
product of intense reactions taking place in the universe, including those
generated by the sun under the form of the solar wind, and are composed of
three categories of particles. Protons account for as much as 92%, the rest
being α–particles (6%) and some heavy atomic nuclei [48, 121, 152]. The
dynamics of the ray composition follow that of the galaxy, meaning that the
particle movement is affected by the background magnetic field and by the
spiral spinning.
Our sun is also a major source of primary cosmic rays, releasing particles
with energies much lower that those coming from the galaxy. It also has a
cyclic activity, with an 11-year period, that drastically influences the overall

Chapter 4 Ph.D. Thesis Page 77

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

quantity of generated particles. If during periods of quiet sun the particles
from the solar wind that hit able the atmosphere are virtually not capable of
penetrating it, their numbers increase by a million times during periods of
active sun, the sun-generated flux becoming greater than that corresponding
to the intra/inter-galactic flux. The measured flux of primary cosmic rays is
about 105/m2·s.

2. Secondary cosmic rays are particles born by collisions when primary
cosmic rays enter the earth’s atmosphere. These are also known under the
term of “cascade particles” (Figure 4-3A).

3. Terrestrial cosmic rays are particles that actually reach the sea level. Of
the particles that reach the surface only an estimated maximum of 1%
originate from primary cosmic rays, the rest being cascade-generated
particles, usually from the 3rd to 7th generations. Complex phenomena
appearing during periods of active sun lead to an increase of up to 200% in
intensity of cosmic rays reaching the surface of the planet. In fact, during
high activity periods our sun generates the solar wind, carrying much more
particles (up to 106 times more). The solar wind also creates a very strong
magnetic field that acts as an effective shielding against intra-galactic cosmic
rays. Therefore, while the sun generates many times more particles, the
magnetic shield created simultaneously might actually reduce the final flux
at sea level by about 30%. Considering that the solar cycle has a periodicity of
11 years, the extremes in sea-level particle flux lag by 1-2 years.

A large number of parameters of the atmosphere change with altitude and
therefore an analysis of the presence and quantity of cosmic rays in the
atmosphere cannot be done without considering it. The atmosphere’s density is
1033g/cm2 at sea level, altitude being measured in physics the same as
barometric pressure is. The density of the atmosphere causes particles with
strong nuclear interaction, called hadrons, to suffer collisions before they hit the
surface. The number and intensity of these collisions literally create a cascade of
particle showers (Figure 4-3A), preventing the original primary particles from
reaching the surface; instead, the particles that result from the collisions
propagate the cascading effect until later generations finally reach the sea level.
The composition of the resulting flux is hadrons (nucleons and pions), leptons
(muons and electrons) and photons and is measured as about 360/m2·s.

At the time a particle enters the atmosphere it behaves differently
depending on its physical properties. Hadrons lose their energy very quickly to
atmospheric nuclei; charged particles lose energy to atmospheric electrons; the
least deflected are the heavier particles while the most deflected are the lighter
ones. Most of the particles decay spontaneously or reach thermal energies
making atmospheric absorption also play a key role. The lifetime of a certain
particle is also an important factor, pions and muons being unstable particles,
with a lifetime of a few nanoseconds and about a microsecond, respectively.
Measurements indicate that the peak of cascading density occurs at an altitude
of about 15 km, an altitude usually referred to as the Pfotzer point [162]. This is
also the altitude many commercial aircraft use, and this is where the fail rate of
electronic devices is about 100 times worse than at terrestrial altitudes.

When protons hits the earth's upper atmosphere (Figure 4-3B), most of the
resulting particle fragments decay or are absorbed by it. However, muons have a
half-life time of about 1.4 microseconds, which is just long enough that some

Page 78 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

reach the earth's surface. Table 4-2 gives a calculation of what kind of particles
the total flux is composed of. Muons, which are considered as heavy electrons,
appear to dominate the medium/high energy particle spectrum. Proton flux is
largely affected by interactions with atmospheric electrons and pions have a too
short life to reach the surface level. Finally, the particle flux reaching sea level
with energies below 100MeV is very sensitive to local environments such as
buildings [162]. The energetic levels that seem to be of most concern for SER are
between 200 and 3000MeV.

Particle type

Total flux cm2 / year

Muons 65466

Neutrons 44812

Pions 48.4

Protons 360

Table 4-2: Theoretical calculation for sea-level particle flux
at New York City [162].

 A. B.

Figure 4-3: A. Cosmic rays cascade phenomena [163] and B. showers [172].

4.2.3 Modeling Cosmic Ray Influence

A significant effort towards particle measurements has been done until
now, but it is quite difficult to count and measure the physical properties for all
particles that may be potentially involved in creating soft errors; a vast effort is
however ongoing in order to model phenomena involved. CREME96 (from Cosmic
Ray Effects on Micro Electronics Code) and NUSPA (NUclear SPAllation) are
some of the code collections used to simulate and predict the effect that cosmic
ray particles might induce over semiconductor materials.

NUSPA’s initial focus on sea-level interactions (where protons and neutrons
play the most significant role) was extended to model interactions at high
altitudes, including pion interactions. The energy exchange between particles at
the atomic level is determined by the probability of colliding (elastic or inelastic
scattering) with a target nucleus for each incoming particle. The incoming

Chapter 4 Ph.D. Thesis Page 79

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

particle only affects the target nucleus with a small amount of energy (in an
elastic scattering) while its trajectory is deflected to a small angle; the nucleus
will recoil but will not become excited, i.e. will not change its original energy
state. During inelastic scatterings large amounts of energy are exchanged,
resulting secondary particles and an excited intermediate nucleus that will
transform into a stable and lighter nucleus with additional particle emissions.
These show a greater ionization potential than the initial colliding cosmic ray
particle and are quite effective in producing soft errors [127].

Elastic and inelastic scatterings do not show the same potential of harming
semiconductors; in fact, elastic scattering induced soft errors are considered to be
negligible for the moment, until the technological advancement will decrease the
critical charge to the order of 50fC. An example of inelastic scattering is
discussed in Section 4.2.6.

4.2.4 Introduction to Particle Physics

For the clarity of SER phenomena, a deeper investigation on how particles
presented in Table 4-2 interact is necessary. All particles known to man are
made of quarks and leptons (which are believed to be point-like particles [127]).
This is why they are considered as elementary particles, i.e. the basic building
blocks of matter. The electrons, muons, tau particles, and their associated
neutrinos are all situated in this category.

Hadrons are particles that interact by the nuclear strong interaction,
composed of quarks, either as quark-antiquark pairs (mesons) or as three quarks
(baryons). This classification specifically excludes leptons, which do not interact
by the strong force. Baryons are massive particles built of three quarks in the
standard model; they include, among other particles, the protons and the
neutrons. Mesons are composed of only two quarks; they include the pions among
other particles.

At sea-level approximate 94% of the total flux of hadrons is represented by
neutrons (Table 4-4). Being uncharged particles, usually neutrons go through
electrical circuits of electronic devices without any interactions. Unless combined
into a nucleus, a free neutron follows a β-decay process with a half-life of about
10.3 minutes with a proton, an electron and its corresponding neutrino being
released, as described by equation (1):

eepn ν++→ − (1)

Statistically, only a small number of neutrons (about 1 out of 4·104)
eventually hit a silicon nucleus, but then the hit is very likely to produce a soft
fail. Considering energies above 20MeV, at sea level, about 105
neutrons/cm2·year can be counted. When estimating the probability of an
interaction between an energetic neutron and a silicon nucleus one must also
estimate a variety of parameters such as total absorption cross section, active
atoms per chip, and active thickness of the circuit. If the active thickness of the
circuit is 1um then almost every silicon-neutron collision results in a soft fail
[162, 165]. Neutron flux is exponentially influenced by altitude as in equation
(2), where II represents the cascade flux at altitude AI, L being the attenuation
factor or the absorption length.

(2112
1exp AA)
L

II −= (2)

Page 80 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

About 2% of the hadron flux is made up of protons. Being charged particles,
protons must break the shielding of the earth’s own magnetic field, which bends
their trajectory toward the planet’s surface. As a result of both collisions and
magnetic shielding, the particles from newly created cascades might end up back
into the space. The minimum energy required by a proton to start a cascade of
particles that will eventually reach the surface of the earth is called geomagnetic
rigidity, which depends on the latitude. The proton flux and the upsets it
produces are shown in Figure 4-4 a, and b, respectively.

Pions (π-mesons) are unstable particles with a mass of 135MeV, and
account for about 2% of the total hadron flux at sea-level. A pion may exist in the
form of a neutral pion (its anti-particle being itself) or a positive pion (its anti-
particle being the negative pion). The neutral pion lives for about 10-16 seconds
while positive and negative pions have longer lifetimes of about 26ns (26·10-9).
Since their number is so small compared to other nucleons, one should expect
that their SER contribution be negligible.

The neutral pion (π0) decays to an electron, positron, and gamma ray by the
electromagnetic interaction while charged pions (π+/-) behave differently,
releasing muons and corresponding neutrinos, as indicated by equation (3):

γπ ++→ +− ee0 μνμπ +→ ++
μνμπ +→ −− (3)

Charged pions can interact with matter. Low-energy positive pions are
repelled by the nucleus but when an energetic positive pion loses kinetic energy
to a nucleus, it releases a proton (4):

NpN A
Z

A
Z

1 −+ +→+π (4)

But the most important contribution to SER is brought by the interaction
between matter and negative pions, called pion capture. When a nucleus
captures a pion, its entire mass is transformed into nucleonic energy, provoking
a nuclear fission (5):

NnN A
Z

A
Z

1
1 −
−

− +→+π (5)

The effect of pion capture has been experimentally tested and it is
estimated that every negative pion capture within the active volume of an
electronic circuit leads to a soft fail. At sea-level measurements of pion capture
into silicon is about 8.5/cm3·year [162, 163]. For intermediate energies (between
100 and 250 MeV) pion contributions to SER of modern chips (16-Mb DRAMs)
appears to be about 5 times greater that SER caused by protons and may have a
quite significant impact at aircraft altitudes [166]. Studies of pion-induced soft
errors are still in progress [127].

The muons (μ-leptons) are particles with a lifetime of 2.2 microseconds.
They are produced in the upper atmosphere by the decay of pions produced by
cosmic rays (Figure 4-3) and follow a decay process releasing electrons (6):

ννμ ++→ −+−+ // e (6)

At sea-level the number of muons is about 103 times larger than of pions.
There are two effects that could lead to soft fails: the muon capture and the
electrostatic muon scattering from nuclei, which is about the same as pion
capture rate considering that the rate of inducing a charge greater than 100fC is
approximate 7/cm3·year.

Chapter 4 Ph.D. Thesis Page 81

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

A muon capture begins with a negative muon orbiting around a silicon
nucleus. By combining with a proton, a neutron and a neutrino are produced,
leaving the neutrino with most of the initial mass-energy (7):

μνμ +→+− np (7)

The resulted neutron can further interact with the nucleus causing a range
of possible interactions [127, 162]. However, quite few muon captures can cause
a charge burst capable of a SEU. The muon capture rate at sea-level is given by
equation (8):

yearcmratecaptureMuon
⋅

≈ 3
510 (8)

 A. B.

Figure 4-4: Distribution of high-energy solar proton flux (A) [175] and weekly upsets
produced by the proton flux (B) [174].

4.2.5 Ion-Induced SEUs

The earth’s atmosphere acts as a filter for many energetic particles that
would upset electronic devices. Therefore at high altitudes the number of
damaging particles increases, difficult or impossible maintenance leading to a
different need of SER-aware types of electronic device design and
implementation. Satellites are also sensitive to cosmic rays, the number of
potentially upsetting particles at satellite altitudes increasing with the
appearance of energetic heavy ions such as iron (Fe), and oxygen (O). Although
initial work on energetic heavy ion induced soft fails has not been considered due
to discrete satellite components which were highly resistant to radiations, it was
found that 100MeV iron particles carry at least part of the responsibility of
reported fails [163].

Particle distribution in space is made of 92% protons, 6% α–particles while
the remaining 2% account for heavier ions (atomic number Z ≥ 2). Early models
of SEU vulnerabilities were based on estimations and extrapolations that proved
to be unreliable; such was the case when it was believed that SEUs were
overwhelmingly dominated by protons and later proved that both protons and
heavy ions have to be considered [143].

A first attempt to investigate heavy ion induced SEUs was conducted by
Croley et al. with the conclusion that roughly two-thirds of the fails were due to
ions with Z ≥ 6 [12, 143]. Elements such as carbon (C), oxygen (O) and iron (Fe)

Page 82 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

were detected in at least six energy bins while occurrences of nitrogen (N), neon
(Ne), magnesium (Mg), silicon (Si), sulphur (S), argon (Ar) and calcium (Ca) were
detected in at least one energy bin (Figure 4-5). Measurements were conducted
with typical uncertainties in the range of 10-20%. Testing semiconductor devices
(Fairchild 93L422) at satellite altitudes (TDRS-1) confirmed the fact (also
advanced by Croley et al. [12]) that heavy energetic ions could substantially
account for SEU rates, with at least 45%, or roughly equal proportions with the
protons, of the SEUs on TDRS-1 being triggered by these particles.

It is therefore considered that, depending on application, heavy ions and
protons can show an equally important potential in leading to soft fails. Precise
measurements of ion distributions and energies were taken for particle fluxes
[142] and are now used by the CREME software for setting of what is called
“99% confidence level worst case” [141].

Figure 4-5: TDRS-1 event measurements (kinetic energy in MeV/nucleon

expressed horizontally) [143].

4.2.6 Neutron-Induced SEUs

The core of each semiconductor device is based on the principles and
properties of p-n junctions. When a high-energy neutron strikes a p-n junction,
the energetic impact dislocates atoms producing a pathway of electron–hole pairs
[113]. Some of the deposited charge will recombine by releasing a short duration
current pulse. But if the area hit by the particle is a memory cell and if the
charge that accumulates has a greater value than the minimum needed to flip
the stored value, than a soft error will result. The minimum charge that results
in a soft error is called the critical charge (QCRIT) [21]. It depends on the supply
voltage values and the effective capacitance of the drain nodes and it plays an
important role on estimating the SER. A method for estimating the SER due to
atmospheric neutrons (with energy greater than 1MeV) in CMOS SRAM circuits
[33] was empirically proven to verify equation:

S

CRIT

S

CRIT

Q
Q

Q
Q

KFAeFAeSER
−−

=∝ (9)

where:
− K is a constant independent of device technology with an empirically

determined value of 2.2⋅10-5;
− F is the neutron flux with energies greater than 1MeV, per square centimeter

per second;

Chapter 4 Ph.D. Thesis Page 83

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

− A is the area of the circuit sensitive to particle strikes, in square centimeters;
− QCRIT is the critical charge, in fC;
− QS is the charge collection efficiency of the device, in fC; it is a measure of the

magnitude of charge generated by a particle strike.
Equation (9) shows the dependency between SER and QCRIT and QS; device

scaling for memory elements affects the two parameters almost equally (smaller
transistors are upset more easily by particles but their sensitive volume is also
reduced) while SER per chip in combinational logic increases dramatically with a
nine orders of magnitude (technology scaling from 600nm to 50 nm) [33].
Memory cells show a very dependant SER upon cell technology (stacked
capacitor SC, trench with external charge TEC or internal charge TIC) as shown
in Figure 4-6:

Figure 4-6: Soft-fail cross sections for neutrons, protons, and pions [166].

Being uncharged particles, neutrons do not lose energy by electronic
ionization; instead, they interact with the target nucleus via two types of
scattering, elastic and inelastic. During an elastic scattering, phenomena taking
place is characterized by small recoil energies (the nucleon cannot excite the
nucleus, hence a minor role in the production of soft fails) follows equation 10
[127].

nucleon + target → nucleon + target (10)

Inelastic scatterings, on the other hand, involve much higher exchange
energies (on the order of MeV or even larger) while the identity of the incoming
particle is lost. The process takes place as described by equation 11, where X1,
X2, etc can be proton, neutron, deuteron, triton and helium and, if the kinetic
energy of the incoming nucleon is greater than 280MeV secondary pions may be
produced. An example of inelastic scattering would be of a 200MeV energetic
neutron hitting a silicon wafer (see equation 12):

nucleon + target → X1 + X2 + …+ Xn + residual nucleus (11)

28 25 * 25 * 122 2 3n Si p n Mg Mg n α+ → + + → + + C (12)

The secondary particles generated by the interactions taking place are
given in Table 4-3. Since elastic and inelastic scatterings involve complex nuclear
reactions, providing an accurate result for the number of induced soft errors is
quite difficult to obtain. However, with semiconductor technology scaling the

Page 84 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

case of devices with QCRIT<50fC will be reached in the future, a moment when
elastic scattering induced soft errors may not be negligible [127].

4.2.7 SEUs Induced by Alpha Particles

Another source of soft errors in semiconductor devices consists in their
capacity of being affected by stray alpha particles. The naturally occurring
decaying processes of chemical elements (such as uranium and thorium)
generate helium ions 4He (stable helium isotopes composed of two protons and
two neutrons) also known as α–particles. They are also a common product of
radioactive α-decay due to impurities in semiconductor chip materials and
packaging (such as uranium and thorium). The α-decay process may release
different energetic particles, and can be represented by equation:

α+→ −
−
− 2

4
2 N

A
ZN

A
Z YX (13)

where X and Y are known as the mother and daughter nuclides.

Secondary
particle

Kinetic
energy

Electron-hole
pairs / μm

Particle
range (μm)

p 5.224 13.51 225
p 4.195 15.91 155
n 65.478 0 ∞
n 22.958 0 ∞
n 6.815 0 ∞
α 12.218 79.91 90.5
Α 12.025 80.83 88.1
Α 7.881 108.84 43.6
12C 4.138 1253.34 3

Table 4-3: Reaction between 200MeV neutrons and silicon nuclei [127].

These particles have typical kinetic energies of the order of 2-9MeV [13,
127] and proved to be most upsetting with respect to semiconductor devices; in
comparison with others, α–particles have a very large mass and charge, and they
can produce an inside sudden burst of a million electrons over a narrow, few-
microns-wide path length. The burst may result in altering the quantum of a
memory cell, thus producing a SEU [14, 75, 110]. The decaying elements
previously mentioned as uranium and thorium can be traced as impurities
present in chip and packaging materials [113, 114]. As technological progress
was made, SER due to α–particles lost momentum through careful supervision of
the quality of materials used.

In semiconductor industry, the trends of shrinking technology to sub-
0.25μm, decreasing supply voltage and node capacitances, make the SER due to
alpha particles a potentially major reliability concern to logic processes because
of the quadratically decreasing critical charge [14, 15, 114]. Package designs,
such as lid coat or flip chip, strongly influence the SER induced by alpha
particles, increasing more rapidly with decreasing critical charge than neutron
induced SER [138, 139]. Experiments and simulations conducted [110] conclude
that over the last technological processes the sensitivity of logic circuits to alpha
particles has decreased, while due to device scaling and higher flux of lower

Chapter 4 Ph.D. Thesis Page 85

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

energy neutrons they are more vulnerable to SEUs induced by these particles
[161].

Another cause that could generate α–particles is a class of unstable,
charged subatomic particles called leptons. One particular lepton, the μ-lepton
called simply a muon, can emit such particles when captured by an electronic
device. Varying with geographical position it was measured that α–particles are
also emitted by at most 3% of captured muons (see equation 14) [161]:

yearcmparticlesinducedMuon
⋅

≈−− 3
15 α (14)

4.2.8 Proton-Induced SEUs

The cosmic rays reach their highest intensity at high altitudes, all elevated-
altitude tests proving the existence of soft fails in electronic equipment [175]. In
fact, military aircraft featuring high performance computing material and large
memories have experienced SEUs on almost every flight and it seems that at
airplane altitudes the SER is at least 100 times worse than at terrestrial
altitudes [42, 83, 162]. Particle distribution also changes with altitude, as shown
in Table 4-4:

Hadrons
 Altitude

Neutrons

Pions

Protons

Sea Level 94% 3% 3%
10kms 52% 36% 12%

Table 4-4: Variation of particle distribution with altitude, from sea level to
10.000 meters [166].

 A. B.

Figure 4-7: A. Observed SEU rates (SEUs per chip) compares with calculations of
proton-, alpha-, and heavy ions-induced rates [143]; B. GOES-10 proton flux

measurements (thresholds at10, 50, and 100MeV) [173].

Figure 4-7 shows an actual measurement of high energy proton flux by
NOAA’s satellites. At these energies, protons are quite similar with neutrons in
their potential of affecting electronic circuits. An example of inelastic scattering
involving protons and a silicon wafer is given by equation:

AlSip 2528 +→+ α (15)

Page 86 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

Calculations between proton-induced SEU rate and actual measurements
performed on board of TDRS-1 satellite given in Fig. 2-9 reflect existing
uncertainties concerning the cross-sections, pointing out the difficulties that
arise when assessing proton influences over semiconductor materials.

4.2.9. Conclusions

In order to evaluate SER induced by cosmic particles a number of models
were developed, such as CREME96 (Cosmic Ray Effects on Micro-Electronics)
and NUSPA (Nuclear SPAllation model). Significant progress has been made
over the years for a thorough understanding of how various particles interact
with semiconductors developed, doubled by extensive testing [12, 42, 83, 165]. As
a result, key aspects about particle influence have been determined quite
precisely: their flux can be measured and the existing dependencies are mostly
settled, as are relative SER contributions (Figure 4-8). We know neutrons
constitute the main problem; fail rates for computer memory chips can be
estimated even if there still are some problems when computing absolute
neutron fluxes. Cosmic rays are filtered by a variety of natural (geo-magnetic
field, atmosphere) and artificial factors (such as concrete shielding) [162].
However, more research needs to be carried on precise particle flux estimation
[20].

Figure 4-8: Comparison between measured SEU reported by TDRS-1 and

calculated rates for proton-induced soft fails [143].

In present days, the sensitivity of electronic devices is investigated using
irradiation techniques in some of the world’s most advanced facilities, such as
the CERN particle physics laboratory; as a result, new physical layouts emerge,
more resistant to particle influences [17]. Technology testing in irradiated
environments does not exclude commercial products, one of the goals being the
adaptation of commercial off-the-shelf (COTS) supercomputer hardware to space
applications; moreover, technology itself shows different behaviors as the most
resistant to nuclear induced soft fails appear to be circuits built in CMOS or
nMOS, while the most sensitive devices are built using the bipolar process. By
constantly checking the overall quality of semiconductor devices it is possible to
achieve SER variations between identical circuits no more than 1.5 times (in case
of IBM) though commercial LSI circuits were reported to differ by as much as
200 times [163]. The sensitivity of PC microprocessors such as Intel Pentium III

Chapter 4 Ph.D. Thesis Page 87

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

and AMD K7 was evaluated based on proton exposure, confirming the presence
of SEUs and functional interrupts, but also the possibility of space operation by
applying mitigation techniques and some functional constraints [36]. Its is
however clear that COTS hardware cannot pass space operating requirements
and dedicated technological processes must be employed in order to release
radiation tolerant hardware (Space Environment Modular Design SEMDTM,
RAD-PAK® package shielding and others); SEMDTM technique alone claims to
improve device resistance to SEU flip-flop errors by as much as 3000 times (from
3x10-7 without to 10-10 errors/bit·day with the technique) [18].

Much work has been done over studying how atomic or subatomic particles,
many of which are created by ways of cosmic radiation, affect electronic devices:
computer memories were tested and found susceptible to heavy ion and proton
SEUs (see Table 4-5), with periods between events ranging from years to
fractions of hours [28, 34, 83, 164, 166]; computer logic is also affected [51, 113,
114, 110, 143] (though combinational logic is less prone to soft errors than
sequential logic, for a number of reasons [23, 113]) and new semiconductor
designs such as FPGAs are already integrating radiation tolerant techniques [9,
10, 27]. This chapter’s main task is not to bring a complete coverage of the work
carried out in the SER area, but to complete the Embryonics’ picture with the
soft fails landscape and the need to overcome such phenomena, not by
technological steps but by harmoniously embedding fault tolerance with its
native capabilities.

Chip type

Observed SER

Typical application

4Kb bipolar 1.340 Cache memory
288 Kb DRAM 126.000 Main memory
1Mb DRAM 3.000 Main memory
144Kb CMOS 210 Secondary cache
9Kb bipolar 998 I/O channels

Table 4-5: SER data for a variety of IBM memory chips [165].

4.3. A Reliability Analysis

The vast majority of soft errors are actually affecting single bits. As has
been stated in [5], laboratory observations of computer memories show that “by
far the most common type of chip failure is a soft error of a single cell on a chip”.
Independent memory testing revealed that there is also a small percentage of
multiple bit flips. These events account for 1-7% of the total soft fails recorded,
but simultaneous high bit flip events are far less frequent (only 2 cases of
quadruple bit flip events witnessed with a predicted rate of about one such event
in 65 years per device) [34]; other measurements show that double bit-flips
account for under 5% of the total events [166]. Unfortunately, the anomalous,
fluctuating behavior of particle spectra prevents an exact estimation of the soft
fails type probabilities (i.e. affecting single, double, or multiple bits) and typical
uncertainties allowed by current particle interaction models (usually about 20-
30% or more) allow only for a range of calculations.

Page 88 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

4.3.1. Datapath Model for Embryonic Memory Structures

In order to perform a reliability analysis over the Embryonics memory
architecture, a formal model of its functions may lead to a better understanding
of fault characteristics and suggest choices in implementing fault tolerance.

Let it be considered a memory structure of size MxN, which is actually a
rectangular array of molecules, each operating in the same memory mode; we
call it a macro-molecule, since it actually has a kind of membrane coded in the
operative genome that groups molecules from the same memory area together. A
memory molecule has a storage capacity of F bits of data given by a chain of flip-
flops from the configuration register CREG, where F can be either 8 or 16,
depending of the memory sub-mode the molecule operates in. Given the fact that
Embryonics uses a programmable number of spare molecules for self-repairing
purposes (see Chapter 3, Section 3.7), we will consider our memory structure –
without affecting the generality – as including s columns of such spares.

Such a structure would be seen mathematically as a tri-dimensional matrix,
composed of M rows and N columns of physically identical storage molecules,
each implemented as a chain of F elementary 1-bit memory cells (flip-flops) as
described by equation 16:

1 2

21 22 2

11 12 1

N N NM

M

M

L L L

MMol
L L L
L L L

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

…
#

…
…

, where each ()1 2 F
ij ij ij ijL c c c= … (16)

The memory molecules operate together by synchronously cycling the
contained information from one element to another (see equation 17), the data
inside any given molecule being offset by one bit with each clock period. This
process allows us to define for each ,i jL a vicinity (),i jV L , denoted by , , , x y i j z wL L L ,

indices x, y, z, and w being defined by equation 18.

1 2

21 22 2

11 12 1

M M MN

N

N

L L L

MMol
L L L

L L L

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

#

 (17)

()
-1, , 1,

, ,

, 1,1 2,

1 , 1 ,
1, 1 ,

1,

i j i j i j

i j M j j i j

M N

i M j N L L L
V L i j L L L

i j L L L

+

−

⎧ < < < <
⎪= = <⎨
⎪ = =⎩

1 1, 1,

1

+ (18)

(), ,i j i jL V L M ∗= ×� , (19)
()

()

1

1

0

0

F F

F

F F

M I
− ×

∗

+ ×

⎛ ⎞
⎜ ⎟

= ⎜
⎜ ⎟
⎝ ⎠

⎟

Under the above considerations, we denote the data content of the molecule

,i jL after a clock period as . Using these notations the mathematical process ,i jL�

Chapter 4 Ph.D. Thesis Page 89

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

,i jL� of circling data could be seen as a matrix operation between the vicinity of

,i jL and a matrix M* (see equation 19).

Soft errors can be modeled by altering the contents of the vicinity matrix
 in the appropriate manner, a flip-type error (that is, a bit changing its

state from 0 to 1 or from 1 to 0) appearing formally as an exclusive-or operation
between the vicinity matrix and the error-injecting matrix for the same
bitstream, which we will call

(,i jV L)

(),i jE L . The data transfer is then defined in the

general case as indicated in equation 20.

()()

() ()()

,
,

, , ,

1, if bit in is erroneous
0, otherwise

i j
i j

i j i j i j

k L
E L k

L V L E L M ∗

⎧
= ⎨
⎩

= ⊕ ×�
 (20)

For instance, if the molecular storage array has 6 lines and 9 columns and
if the molecule affected by a soft error is considered to be L14, then the vicinity
matrix contains three molecules, L63 [L14] L24. Furthermore, if a molecule has a
storage capacity of 8 bits and the affected bits are bit 4 of L63 and bit 6 of L14,
then the data transfer takes place according to equation 21:

() ()
() ()

() ()()

1,4 6,3 1,4 2,4

1,4

1,4 1,4 1,4

00010000 00000100 00000000

V L L L L

E L

L V L E L M ∗

=

=

= ⊕ ×�

 (21)

4.3.2. Preliminaries

As indicated by the datapath model introduced previously, there are no
functional dependencies between data bits inside a macro-molecule. We will
therefore make the assumption that, for individual flip-flops inside a molecule,
failures are exponentially distributed. Similar assumptions have been found to
work well for classic computer memories and even for Embryonics [5, 84, 85, 86].
Therefore the reliability of a single memory element RFF(t), that is, the
probability that after t hours of normal operating that particular component has
still not failed, can be considered to be equal to e-λt, where λ is a constant found
experimentally [73]. Since in our case the memory element is a flip-flop, we have:

t
FF etR λ−=)((22)

The mean time to failure (MTTF) for the flip-flop is defined as follows:

λ
λ 1)(

00

=== ∫∫
∞

−
∞

dtedttRMTTF t
FFFF (23)

A molecule operating in memory mode uses a number of F memory
elements chain together to allow serial data shifting. Assuming that the flip-flops
are failing independently, the reliability of a memory molecule RMMol(t) is given
by the probability that after t hours of normal operating none of the memory
elements have failed:

Page 90 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

() ()
1

() () ()
F

F
Mol FF FFi

i

FtR t R t R t e λ−

=

= =∏ = (24)

The corresponding mean time to failure for the whole memory molecule is
given by equation 25:

0 0

1() Ft
Mol MMolMTTF R t dt e dt

F
λ

λ

∞ ∞
−= =∫ ∫ = (25)

As pointed previously, our considered memory structure is a rectangular
array, composed of M interconnected rows. It is safe to say that rows are
assumed to fail independently, therefore the reliability function for the macro-
molecule (the entire memory structure) is given by equation 26:

() ()
1

() () ()
M

M
MMol Row Rowi

i

R t R t R
=

= =∏ t (26)

Each row is composed of a number of N interconnected memory molecules,
which are also assumed to fail independently, the reliability and mean time to
failure functions for an entire memory row being given by equation 27:

()

()

0

() () ()

1
()

N s F N s t
Row Mol

F N s t
Row

R t R t e

MTTF e dt
F N s

λ

λ

λ

− − −

∞
− −

= =

= =
−∫

 (27)

Combining equations 26 and 27 we can now compute the reliability function for a
whole memory structure as being:

()() (()) ()N s M FM N s t
MMol MolR t R t e λ− −= = − (28)

Considering equations 22–28 the mean time to failure for the entire memory
structure is given by the following:

()

0 0

1()
()

FM N s t
MMol MMolMTTF R t dt e dt

FM N s
λ

λ

∞ ∞
− −= = =

−∫ ∫ (29)

Equation 29 points out a common sense consequence: if a component has a
given reliability then a system composed of a number of such identical
components will have a corresponding reliability exponentially decreasing. As
the memory structures grow larger, the radiation sensitive cross-section
increases also, making the memory more vulnerable to particle capture and the
associated side effects. Therefore, the overall reliability and MTTF of the
memory structure are affected. The λ parameter, which is determined empirically
and supposed to be constant (further considerations are given in Section 4.3.6),
can potentially modify its value due to variations between the testing laboratory
environment and changing, harsh environments such as space or high-altitude,
thus offsetting the resulting reliability figures.

The Embryonics project has Nature as its primary source of inspiration. It
was born to attempt a transfer of nature’s proven mechanisms to electronic,
digital systems. The robustness found in biological systems would translate into
reliable electronic systems and is already part of Embryonics implementations of
functional logic; therefore extending bio-inspiration to implement reliable
memories comes as a natural next step.

Chapter 4 Ph.D. Thesis Page 91

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

4.3.3. Strategies for Macro-Molecular Fault-Tolerance

There are numerous coding techniques to ensure that computer memories
tolerate some faults that might appear. Since the most common error affects only
a single memory element, i.e. a single bit, the most used code class is that
capable of SEC–DED (Single Error Correcting – Double Error Detecting codes).
A memory using such a form of coding is capable of tolerating only single errors;
burst or multiple errors cannot be tolerated, but some cases of multiple errors
may be however detected successfully.

Embryonics could take advantage of SEC–DED codes, particularly
considering that for building reliable memory structures there is an obvious need
for a form of error coding. Furthermore, a coding process also allowing multiple
error detection/correction is desirable, since the robustness in Embryonics is
ensured by a self-repairing process distributed over two levels: molecular and
cellular. The reliability analysis made previously is affected by the capacity of
recovering from a single error and of detecting multiple errors. From now on, we
will consider that failures inside memory molecules are exponentially
distributed, they occur independently from each other and one can distinguish
between the following situations:
A. Single failure; the core of a molecule is affected by a single error only. This

situation can be recovered using parity-based coding schemes.
B. Double failure; the core of a molecule is affected by at least one error, but

there are at most two errors on the same row of molecules. The relative
distance between the errors is random. In this case the use of more
sophisticated, Hamming-like codes is required.

C. Multiple failure; similar to case B but the likelihood of such an event was
found to be minimal [34].

D. Terminal failure; there are too many fault occurences either in one molecule
or in a whole row. This situation cannot be recovered.

E. No failures detected. Either the molecules operate normally or an
undetectable combination of errors has occurred. This situation does not
require or there cannot be established any measures to be taken.

In case of failure, the conditional probabilities that the failure will be of
type A, B, C, or D, will be a, b, c, and d, respectively. Given all these
assumptions, any reliability function concerning the entire memory structure is
defined as follows:

R(t) = Prob an unrecoverable combination of errors has not yet occurred at time t { }
Given the characteristic features of the Embryonics project, we may

consider multiple strategies of tolerating faults, divided into two categories:
– Fault tolerance at the molecular level. The main advantage of this strategy

might lie in the possibility of isolating the faulty molecule and make use of
the transparent reconfiguration process after the “death” of the respective
memory molecule. On the disadvantage side it should be noted that a
considerable portion of the molecular core has to be affected for redundant
coding, as well for the additional logic such a configuration would involve.

– Fault tolerance at the macro-molecule level. This strategy would use
separate macro-molecules for redundant coding and additional logic not
implemented inside, but by molecules themselves, thus reducing the space
required (in terms of molecules). As a disadvantage, the use of the
reconfiguration process would become quite difficult due to the lack of an

Page 92 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

addressing mechanism: one cannot localize where a faulty molecule is
located and even then, a “kill” signal would have to be sent to that molecule
from outside. None of the two aspects are implemented in the current
design.
In order to make an accurate assessment of the reliability capabilities and

potential of memory structures in Embryonics, we will consider and compare two
cases of fault tolerance strategies: single error correcting (SEC) and double error
correcting (DEC).

4.3.4. Fault-Tolerance at the Macro-Molecular Level

Estimating the overall reliability of an entire macro-molecule can be
regarded both from a classic perspective and from a different approach using
approximating Poisson processes [5]. The former is based only on the empirically
estimated parameter λ, while the latter relies on superimposing faults occuring
in the same row onto a single device called a protochip. In our case, such a
protochip is defined as the entire collection of memory molecules that make up a
row of the corresponding macro-molecule. Given the fact that soft failures appear
to be uniformly distributed and independent from each other, the Poisson
assumption can be used: in each protochip, failure types form independent
Poisson processes.

Our macro-molecule is a rectangular array made of M rows and N columns
(out of which s are spares) of memory molecules, each containing F flip-flops as
storage units. Then the macro-molecule can be assimilated to a single protochip
composed of N individual chips (including s as spares), each chip being composed
of MxF storage units.

4.3.4.1. SEC Strategy

If the occurring failure events were only of type A, then the reliability of one
memory molecule could be written as equation 30:

() { } { }Prob no flip flop fails Prob single flip flop failRowR t = − + − (30)

If λ is the failure rate for a storage flip-flop from inside a molecule, it can
now be computed that:

() () () () ()()11 F N s tF N s t t
RowR t e F N s e e λλ λ − − −− − −= + − − (31)

which is represented in Figure 4-9 for λ=0.02, and different values of F, N, and s.
Then the mean time to failure for a memory row becomes:

() () () ()()1

0

1 F N s tF N s t t
RowMTTF e F N s e e dtλλ λ

∞
− − −− − −= + − −∫

()() ()() ()

() ()

1

0

1 1 1
1

1F N s t F N s t
Row

F N s F N s

0

MTTF e dt F N s e dtλ λ

λ

∞ ∞
− − − − −

− − −

= − − −

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
+

∫ ∫
 (32)

Chapter 4 Ph.D. Thesis Page 93

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

F=8, N=3, s=0
F=8, N=5, s=0
F=8, N=12, s=3
F=8, N=16, s=4
F=16, N=3, s=0
F=16, N=5, s=0
F=16, N=12, s=3
F=16, N=16, s=4

Time (million hours)

R
ow

 R
el

ia
bi

lit
y

Figure 4-9: Row reliability for different macro-molecular configurations.

Considering that a macro-molecule consists of M rows, the reliability function
can be extended to an entire macro-molecule (equation 34) and represented in
Figure 4-10:

() () ()M
MMol RowR t R t= (33)

Using the notation ()A F N s= − we have:

() ()()()
()

() ()

1

(1)

0

1

1

M
A tAt At

MMol

MAMt t

M
i M A i tM i

i

R t e A e e

e A Ae

M
A A e

i

λλ λ

λ λ

λ

− −− −

−

− − +−

=

= + −

= − +

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑

 (34)

and the mean time to failure for a macro-molecule is given by equations 35–36:

() ()()1

0 0

1
M

i M A i tM i
MMol

i

M
MTTF A A e dt

i
λ

∞
− − +−

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∫ (35)

() ()1
1

0

1 1
M

i M i
MMol M A i

i

M
MTTF A A

iλ
−

− +
=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ (36)

Using the Poisson assumption, we now focus on a protochip component.
Since each component (or chip) contains MxF storage units and is vulnerable
only to single failures, then these form a Poisson process of intensity

()a N s t
FM

λ− , where a is the conditional probability for a failure of type A.

Page 94 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

Therefore, the probability that each chip experienced at most one single error at
time t is:

()
() ()1

a N s t
FM

Row

a N s t
R t e

FM

λ λ−
− −⎛ ⎞

= +⎜
⎝ ⎠

⎟ (37)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.2

0.4

0.6

0.8

1

F=8, N=3, s=0, M=3
F=8, N=5, s=0, M=5
F=8, N=12, s=3, M=7
F=8, N=16, s=4, M=10
F=16, N=3, s=0, M=3
F=16, N=5, s=0, M=5
F=16, N=12, s=3, M=7
F=16, N=16, s=4, M=10

Time (million hours)

M
ac

ro
-M

ol
ec

ul
ar

 R
el

ia
bi

lit
y

Figure 4-10: Overall reliability for different macro-molecular configurations.

Because the protochip consists of M rows, the protochip reliability can then be
derived as equation 38, which is represented in Figure 4-11.

()
() ()1

Ma N s t
F

MMol

a N s t
R t e

FM

λ λ−
− −⎛ ⎞

= +⎜
⎝ ⎠

⎟ (38)

4.3.4.2. DEC Strategy

We consider here failures of type A and B only; due to their reported
rareness, failures of type C will not be considered. The macro-molecule layout in
Embryonics could be seen as an association of rows of molecules, a stored
instruction consisting of assembled bits from the same row. Therefore it appears
quite similar to the definition of a protochip supporting the Poisson assumption,
asserting that failure types form independent Poisson processes [5]. If the
probability of a type A failure occurrence is a, and the probability that a given
molecule has not yet failed at time t is te λ− , then the reliability of one memory
molecule can then be written as:

Chapter 4 Ph.D. Thesis Page 95

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

() { } { }
{ } { } {

Prob no flip flop fails Prob flip flop fails

Prob flip flop fails Prob single fails only Prob double fails
RowR t = − + −

− = + }
 (39)

Because we considered a macro-molecule of M rows and N columns of
molecules with a storage capacity of F, also containing s columns of spares, and
each molecule the probability that at time t no fails or at most one single fail

have been traced in a row is a Poisson process of intensity ()a N s
FM

λ−
. Then

for a certain row we have the probabilities P0 that there have been no failures
traced in a row, and P1 that there has been exactly one failure traced in a row
(case A):

()
()

0

a N s t
FMP t e

λ−
−

= (40)

0 5 .105 1 .106 1.5 .106 2 .106 2.5 .106 3 .106 3.5 .106
0

0.2

0.4

0.6

0.8

1

A=0.001, L=0.02, F=8, N=3, M=3, s=0
A=0.001, L=0.02, F=8, N=6, M=5, s=2
A=0.001, L=0.02, F=8, N=16, M=10, s=4
A=0.001, L=0.02, F=16, N=3, M=3, s=0
A=0.001, L=0.02, F=16, N=6, M=5, s=2
A=0.001, L=0.02, F=16, N=16, M=10, s=4
A=0.0003, L=0.02, F=8, N=3, M=3, s=0
A=0.0002, L=0.02, F=8, N=3, M=3, s=0

Time (million hours)

M
ac

ro
-M

ol
ec

ul
ar

 R
el

ia
bi

lit
y

Figure 4-11: Macro-molecular reliability for different SEC configurations

using Poisson assumptions.

() () ()

1

a N s t
FM

a N s t
P t e

FM

λλ −
−−

= (41)

The probability of a double failure P2 (case B) can be regarded as the conditional
probability P11 of a single fail, given the fact that another single fail already

Page 96 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

occurred in the same row. Because our macro-molecule’s architecture prevents
the existence of “nested” or “hierarchical” failure types, all failures being
independent and exponentially distributed, we have:

() () () () () ()2 22 2 2
2

2 11 1 2 2

a N s t
FM

a N s t
P t P t P t e

F M

λλ −
−−

= =� (42)

Then the probability PRow that at time t a certain row did experience at most a
double failure, which is actually its reliability value, will be the sum of
probabilities P0, P1, and P2 (equation 43, Figure 4-12), and gives the reliability
function for an entire row:

() ()()
() () () ()

0 1 2

22 2 2

2 21

Row

a N s t a N s t
FM FM

R t P P P t

a N s t a N s t
e e

FM F M

λ λλ λ− −
− −

= + +

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

− −
+ +�

 (43)

Using the notation
()a N s

B
FM

λ−
= the mean time to failure for a memory row

becomes:

()()

() ()

2 2 2

0

2 2
0 02

1

1 1 1 11
8 2

Bt Bt
Row

Bt Bt

MTTF e Bt B t e dt

Bt e t Bt e
B B B

∞
− −

− ∞ −

= + +

= + − + + −

∫
∞

 (44)

Given our previous assumption concerning failure distribution, the reliability
and MTTF of an entire macro-molecule are then given by equations 45 and 46,
respectively, while reliability graphs are represented in Figure 4-12 for different
configurations:

() () ()
() () () ()22 2 2

2 21

M
MMol Row

M
a N s t a N s t

F F

R t R t

a N s t a N s t
e e

FM F M

λ λλ λ− −
−

=

⎛ ⎞− −
+ +⎜ ⎟

⎜ ⎟
⎝ ⎠

� M
− (45)

and the mean time to failure for the macro-molecule:

() () ()

() () () ()

0 0

22 2 2

2 2
0

1

M
MMol Mem Row

M
a N s t a N s t

F F

MTTF R t dt R t dt

a N s t a N s t
e e

FM F M

λ λλ λ

∞ ∞

− −∞
− −

= =

⎛ ⎞− −
+ +⎜ ⎟

⎜ ⎟
⎝ ⎠

∫ ∫

∫� M dt

 (46)

4.3.5. Fault-Tolerance at the Molecular Level

In this case all occurring failures are tolerated locally (i.e. inside the
molecule) and therefore the size of the protochip shrinks to the size of one
molecule. In order to compute the reliability function of an entire macro-molecule
(which will result quite complex) it is necessary to evaluate the failure rate for
its basic brick, which is the flip-flop. The reliability of a molecule is already

Chapter 4 Ph.D. Thesis Page 97

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

known and can be alternatively written as the corresponding product of flip-flop
reliabilities (see equation 47):

() () ()
() ()

1
, FF

F
Mol FF

FFtt
Mol FF

R t R t
FR t e R t e λλ

λ λ
−−

⎫= ⎪ ⇒ =⎬
= = ⎪⎭

 (47)

4.3.5.1. SEC Strategy

If each molecule can tolerate at most one single error, then its reliability is
defined as:

() { } { }Prob no flip flop fails Prob single flip flop failMolR t = − + −

0 1 .106 2 .106 3 .106 4 .106 5 .106 6 .106 7 .106 8 .106
0

0.2

0.4

0.6

0.8

1

A=0.001, L=0.02, F=8, N=3, M=3, s=0
A=0.001, L=0.02, F=8, N=6, M=5, s=2
A=0.001, L=0.02, F=8, N=16, M=10, s=4
A=0.001, L=0.02, F=16, N=3, M=3, s=0
A=0.001, L=0.02, F=16, N=6, M=5, s=2
A=0.001, L=0.02, F=16, N=16, M=10, s=4
A=0.0003, L=0.02, F=8, N=3, M=3, s=0
A=0.0002, L=0.02, F=8, N=3, M=3, s=0

Time (million hours)

R
ow

 R
el

ia
bi

lit
y

Figure 4-12: Row reliability for different configurations.

()
11

1
t t

t FF
MolR t e F e e

λ λ
λ

⎛ ⎞− −− ⎜ ⎟− ⎝ ⎠
⎛ ⎞

= + −⎜ ⎟
⎝ ⎠

 (48)

Page 98 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

4.3.5.2. DEC Strategy

If each molecule can tolerate at most two errors, then its reliability is
defined as:

() { } { } { }Prob no fails Prob single fail Prob double failMolR t = + +

() ()
1 21 1

1 1 1 1
t tt t

t FF
MolR t e F e e F e e

λ λλ λ
λ

⎛ ⎞ ⎛ ⎞− − − −− ⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞

= + − + − −⎜⎜ ⎟ ⎜ ⎟⎜⎝ ⎠ ⎝ ⎠⎝ ⎠

FF
−

⎟⎟ (49)

Macro-molecular reliability when DEC strategy is employed is presented in
Figure 4-13 while both SEC and DEC strategies are comparatively shown in
Figure 4-14; due to the better fault tolerance, the graphs for DEC strategy give
better values than those for the SEC strategy. Comparing the graphs
corresponding to λ=0.02 and F=8, the memory macro-molecule keeps its
reliability value over 90% for a period of 28.4 million hours (SEC) and 63.3
million hours (DEC); the threshold of 50% reliability is reached in our example
after 89.8 million hours in the case of SEC strategy, while DEC strategy requires
154.5 million hours of operation time. Extending equations presented in
SubSection 4.3.2, the row reliability in case of SEC and DEC strategies, and the
macro-molecular reliability, respectively, can be computed as

() () () () () (), N s M
Row MMol Mem RowR t R t R t R t−= = , given by equations 50–53.

()
()

11

1 21 1

: 1

: 1 1 1 1

N s
t t

t FF

Row N s
t tt t

t F FF F

SEC e F e e

R t

DEC e F e e F e e

λ λ
λ

λ λλ λ
λ

−
⎛ ⎞− −− ⎜ ⎟− ⎝ ⎠

−
⎛ ⎞ ⎛ ⎞− − − −− −⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠

⎧ ⎛ ⎞⎛ ⎞⎪ + −⎜ ⎟⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎝ ⎠⎪= ⎨
⎛ ⎞⎛ ⎞⎪ ⎛ ⎞ ⎛ ⎞
⎜ ⎟+ − + − −⎜ ⎟⎪ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎪ ⎝ ⎠⎝ ⎠⎩

 (50)

()

()

()
()

11

1 21 1

: 1

: 1 1 1 1

M N s
t t

t FF

MMol M N s
t tt t

t F FF F

SEC e F e e

R t

DEC e F e e F e e

λ λ
λ

λ λλ λ
λ

−
⎛ ⎞− −− ⎜ ⎟− ⎝ ⎠

−
⎛ ⎞ ⎛ ⎞− − − −− −⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠

⎧ ⎛ ⎞⎛ ⎞⎪ + −⎜ ⎟⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎝ ⎠⎪= ⎨
⎛ ⎞⎪ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟+ − + − −⎜ ⎟⎪ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠⎩

 (51)

Overall macro-molecule reliability is represented in Figure 4-15 for an
example of memory area dimensions M=5, N=6, and s=2 (these dimensions were
chosen for illustrative purpose only and have no particular impact on the
reliability functions). The case when no fault tolerance is employed performs
worst, while the reliability shows a significant improvement when SEC and DEC
strategies are present (values are better for the last case). Differences between
F=8 and F=16 configurations also show significant increase when changing from
SEC to DEC fault tolerance strategy.

Due to the fact that the simplifying assumptions when using the protochip
concept are no longer used, the equation describing the row reliability results
quite complicated and difficult to analyze. Therefore the mean time to failure
expression will also result under a complex form (equation 46).

Chapter 4 Ph.D. Thesis Page 99

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

()

11

0

1 21 1

0

: 1

: 1 1 1 1

N s
t t

t FF

Row N s
t tt t

t F FF F

SEC e F e e dt

MTTF

DEC e F e e F e e dt

λ λ
λ

λ λλ λ
λ

−
⎛ ⎞∞ − −− ⎜ ⎟− ⎝ ⎠

−
⎛ ⎞ ⎛ ⎞∞ − − − −− −⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠

⎧ ⎛ ⎞⎛ ⎞⎪ + −⎜ ⎟⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎝ ⎠⎪= ⎨
⎛ ⎞⎛ ⎞⎪ ⎛ ⎞ ⎛ ⎞
⎜ ⎟+ − + − −⎜ ⎟⎪ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎪ ⎝ ⎠⎝ ⎠⎩

∫

∫

 (52)

()

()
()

11

0

1 21 1

0

: 1

: 1 1 1 1

M N s
t t

t FF

MMol M N s
t tt t

t F FF F

SEC e F e e dt

MTTF

DEC e F e e F e e dt

λ λ
λ

λ λλ λ
λ

−
⎛ ⎞∞ − −− ⎜ ⎟− ⎝ ⎠

−
⎛ ⎞ ⎛ ⎞∞ − − − −− −⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠

⎧ ⎛ ⎞⎛ ⎞⎪ + −⎜ ⎟⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎝ ⎠⎪= ⎨
⎛ ⎞⎪ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟+ − + − −⎜ ⎟⎪ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠⎩

∫

∫

(53)

0 5 .105 1 .106 1.5 .106 2 .106 2.5 .106 3 .106 3.5 .106
0

0.2

0.4

0.6

0.8

1

A=0.001, L=0.02, F=8, N=3, M=3, s=0
A=0.001, L=0.02, F=8, N=6, M=5, s=2
A=0.001, L=0.02, F=8, N=16, M=10, s=4
A=0.001, L=0.02, F=16, N=3, M=3, s=0
A=0.001, L=0.02, F=16, N=6, M=5, s=2
A=0.001, L=0.02, F=16, N=16, M=10, s=4
A=0.0003, L=0.02, F=8, N=3, M=3, s=0
A=0.0002, L=0.02, F=8, N=3, M=3, s=0

Time (million hours)

M
ac

ro
-M

ol
ec

ul
ar

 R
el

ia
bi

lit
y

Figure 4-13: Macro-molecule reliability for different configurations.

Page 100 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

L=0.02
L=0.03
L=0.05
L=0.1
L=0.25

Time (million hours)

M
ac

ro
-M

ol
ec

ul
ar

 R
el

ia
bi

lit
y

(S
EC

)

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

L=0.02
L=0.03
L=0.05
L=0.1
L=0.25

Time (million hours)

M
ac

ro
-M

ol
ec

ul
ar

 R
el

ia
bi

lit
y

(D
EC

)

Figure 4-14: Macro-molecular reliability graphs for SEC (left)

and DEC (right) strategies.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.2

0.4

0.6

0.8

1

No fault tolerance
SEC strategy, F=8
SEC strategy, F=16
DEC strategy, F=8
DEC strategy, F=16

Time (million hours)

M
ac

ro
ce

ll
R

el
ia

bi
lit

y

Figure 4-15: Reliability of memory macro-molecule in case when no fault

tolerance is in place, and when SEC and DEC strategies are implemented.

4.3.6. Cosmic Ray Influence On Reliability

Equations presented in subsections 4.3.4 and 4.3.5 represent the final
expressions of the mean time between failures (MTTF) for a row and for a macro-
molecule. While they all look quite complicated, there are some key aspects that
may benefit from further insight.

The failure rate λ is an essentially empirical parameter, which can only be
determined by extensive measurements. However, exposure to aggressive
environments such as cosmic space may reveal that radiation levels affect the
values of λ, transforming it from a constant parameter (at sea-level and during
standard environment conditions), into a variable (at high altitudes or in outer
space and during non-standard conditions). Furthermore, during its entire
development period, Embryonics experimented with various implementations, on

Chapter 4 Ph.D. Thesis Page 101

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

different platforms, thus making a reliability analysis based on λ alone seem not
very useful.

Considering the issues discussed in SubSection 4.4.1, where λ represents
the failure rate for a storage flip-flop from inside a molecule, the molecular
reliability is () Ft

MolR t e λ−= and a single row of a macro-molecule has a reliability

function of () ()F N s t
RowR t e λ− −= . Because a macro-molecule is assembled by M

identical such columns, the overall reliability is () () ()FM N s tM
MMol RowR t R t e λ− −= = . The

mean time to repair (derived as equation 25) is based on the macro-molecular
reliability, but one should also take into account the influence of upsetting
particles [98]:

()
0

min , M
MMol Row medMTTF R t dt

∞⎛ ⎞
= ⎜

⎝ ⎠
∫ ΔΤ ⎟ (54)

where is the mean period between two consequent upset events inside the
macro-molecular area. This interval is of yet difficult to be determined as it
depends on a number of parameters such as the particle flux, energy levels and
others [

medΔΤ

162].
Subsequently, if the same meaning for parameter λ is preserved and

considering SubSection 4.4.4.1, which provides an analysis of macro-molecular
reliability when single errors are tolerated, the reliability function for a macro-
molecular row becomes:

() () () () ()()11 F N s tF N s t t
RowR t e F N s e e λλ λ − − −− − −= + − − (55)

Then, the reliability of the entire memory structure (which is composed of M
identical rows) results as:

() () () () () ()()()11
Mt F N sF N sM

MMol RowR t R t e F N s e e λλ λ − − −− − −= = + − − t (56)

The influence of upsetting particles over the mean time to failure for a macro-
molecule can then be expressed as:

()
0

min , 2M
MMol Row medMTTF R t dt

∞
∗⎛ ⎞

= ⎜
⎝ ⎠
∫ ΔΤ ⎟ (57)

If we consider the particle flux as being isotropic, then it is directly proportional
with the macro-molecule’s storage surface FM(N-s) and the interval between two
upsetting events happening on the same macro-molecular row () is larger
than the same interval on the entire macro-molecule (

med
∗ΔΤ

medΔΤ) by a factor of M [98]:

med medM∗ΔΤ = ΔΤ (58)

Examples presented previously have taken into account different macro-
molecule configurations; while the dimensions considered appear to have
reasonable values, they may prove to be far too small for real-life genetic
applications. It would therefore be more difficult to estimate accurately the
parameters involved, and therefore the overall reliability for such a large macro-
molecule, even by employing the protochip concept [5].

Page 102 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

A reliability analysis should also take into consideration a model of error
appearance inside an embryonic memory structure, and, if possible, suggest
means of implementing fault tolerance without any disturbing side effects with
respect to mechanisms already implemented by Embryonics. Numerous
techniques of achieving fault tolerance, covering a broad range of specific
applications, are readily available in the literature; however, attempting to bring
improvements to an existing project (and Embryonics is such a case) greatly
affects the existing choices due to critical effort or costs required.

Unfortunately, when considering soft fails, there is no such model available
(or at least, not yet), as understanding the causes and modeling the soft fails
(which were argued upon in SubSection 4.2.) is a hot field of research.
Phenomena involved in affecting memory cells seem to have a stochastic
appearance and therefore an accurate model should involve specific
probability/likelihood estimations.

4.4. FTRAM-MuxTreeSR: Fault Tolerant Macro-Molecules

The self-repair mechanisms present in Embryonics stretch over the first
two base levels of organization (see Figure 2-2), with the first as a
reconfiguration process at the molecular level and the second as a
reconfiguration at the cellular level. This hierarchical approach of self-repair
allows a flexible and efficient way of tolerating faults: its flexibility lies in the
capacity of reconfiguring according to different severity levels (first addressed
being the least severe faults, represented by faulty molecules, followed by
addressing those most severe, represented by faulty cells), while its efficiency
comes from inflicting minimal resource loss through reconfiguration (it is less
expensive to replace just one faulty molecule than the entire cell to which it
belongs).

If functional stress proves harmful to electronic devices in time, memories
are in fact in no way an exception [34, 162]. Even if the nature of the information
stored in a memory chip is static, i.e. the binary configuration from inside the
memory does not change over a reasonably long period of time, this does not
mean it cannot be distorted. As argued in subsection 4.2, studies over how
radiations affect semiconductor devices in general (including memory devices)
have dramatically grown since their beginning in the 1980s and constitute a hot
field of research today. Electronic devices shrinking coupled with human
expansion into space, the exploration and manipulation of hazardous
environments, are bound to experience important doses of radiation, thus
requiring protective techniques in order to maintain good functionality of devices
and data integrity. Since bio-inspiration aims at endowing artificial machines
with the highest degrees of robustness, as encountered in nature, Embryonics
should not face potential applications with incomplete self-repairing
mechanisms. Therefore, a form of fault tolerance should complement its memory
mode features [98].

Increased reliability (and therefore dependability) may be achieved by using
two fundamental techniques. Fault prevention (also known as fault intolerance)
acts towards eliminating all possible faults at the initial moment and is already
present in Embryonics: the initial self-testing phase [128] (see Figure 3-30, phase

Chapter 4 Ph.D. Thesis Page 103

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

2) reconfigures the system so that both ribosomic and operative genomes be
charged into a fully operational structure. Fault tolerance, on the other hand,
allows valid computations, even in the presence of faults, by employing
redundancy.

Although covering a large area of possible faults, the self-testing and
repairing mechanisms of the RAM-MuxTreeSR design expand only over the
functional unit (FU) of each molecule, thus leaving the part used for the storage
of the operative genome (CREG) with virtually no data protection (both resources
are shown at the molecular level in Figure 2-2). Since the genome governs over
functionality, any error at this level would ultimately manifest as a functional
failure. Should an error be detected inside a memory molecule – though such a
detection alone represents a separate issue – by triggering the same
reconfiguration process described in SubSection 3.7, the respective molecule
“dies” and its stored data is transferred by using spares. Because in this case the
transfer involves erroneous genetic data (as opposed to functional attributes), the
final result is an activated spare molecule behaving exactly as the faulty one it
replaces. Instead of fault recovery, the final outcome only wastes molecular
resources.

It is hardly surprising the presently-employed self-repairing mechanism
cannot cope with memory structures since fault tolerance techniques are
different for memories, which require special coding in order to localize and
correct occurring errors. We will present an implementation of such techniques
in order to extend the robustness degree in Embryonics by adding self-repairing
capabilities to its memory arrays. Though a less than accurate description, we
will call these macro-molecules fault tolerant, simply because bringing self-
repairing features makes them become tolerant towards soft fails.

4.4.1. Error Correcting Coding Techniques

When considering adding a degree of fault tolerance to a memory area one
has to choose between recovering after an upset event occurred or just detecting
it; limiting the process to detection of errors only is of course less costly than
further steps required by the correction, which includes pinpointing the place
where the error appeared. In some cases the correction may even not be possible,
because of various limitations such as operating speed, space constraints, or even
the lack of a mechanism of localizing the error.

However, due to special features present in the Embryonics design, some
more insight into the matter is necessary. When an error is detected than the
reconfiguration mechanism is triggered, the faulty molecule is marked as being
“dead” and a spare molecule takes its place; one should not forget that for the
moment all is happening from a functional point of view. But should an error be
detected inside a molecule operating in any of the memory modes, let us suppose
the same reconfiguration process would, somehow, be triggered. Similarly, this
would mean the “death” of the respective molecule and the transfer of its role by
using spares. But because of the transfer of the CREG contents from the faulty
molecule to a spare one, the final result is the faulty molecule “dies” and the
spare one starts behaving exactly like the faulty molecule before being “killed”.
Instead of obtaining some positive results, the final outcome is a very similar
situation but this time with resources down a molecule. Obviously, error
correcting is a must if fault tolerance for the memory is to be achieved. In order

Page 104 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

to do so, triggering of the reconfiguration mechanism is no more necessary; each
error affecting the memory being of the soft type (as argued in Section 4.2), it can
be corrected merely by inverting the respective binary value in the process of
memory shifting (see SubSection 4.3.1).

The process of detecting and localizing a fault can be done with relative
ease by using Hamming-class codes [46, 104]. As argued in subsection 4.3, the
predominant type of error affecting semiconductor memories is that affecting a
single binary unit, with an estimated at least 93% out of the total soft errors
experienced. Such a percentage leads to the conclusion that a most suited code
for endowing the Embryonics memory with fault tolerance is a Hamming type
Single Error Correcting, Double Error Detecting code (or simply SEC-DED) [46,
104]. Such a code has a Hamming distance equal to 3 and requires a number of
additional check bits determined from relationship 2 , which is
equivalent to:

1

)t ⎤⎥

k k t≥ + +

(2log 1k k= + +⎡⎢ (59)

where k is the number of check bits and t is the number of data bits.

Figure 4-16: Block schematic for a fault tolerant memory in Embryonics.

Adapting Hamming codes to Embryonics would require a structure similar
to that presented in Figure 4-16. Molecules operating in memory mode form two
structures denoted as Storage Data (user data bits 0 NU U÷) and Check Data

(redundant bits 0 Kc c÷) while molecules operating in logic mode are grouped
inside a structure called Error Correcting Logic. The basic operation of the whole
could be described as follows: the user data and the check bits are synchronously
shifted (that is, when user data is shifted one step, the check bits are also shifted
one step) and at each step a new set of check bits is generated based on the
current user data output. The newly generated check bits are then compared
with the output from the check data memory, any resulting difference indicating
an error. An error syndrome is then derived by applying a XOR operation to both
sets of check bits, which will in turn localize the place where the error was
detected. The Error Correcting Logic structure also generates the required
signals in order to recover from a detected fault.

A number of 4 bits of data gives 4t = in Equation (59), leading to 3k = ,
which means that each set of data will be bound to a set of 3 check bits. This
ensures that a single or double fault that may occur is successfully detected, and

Chapter 4 Ph.D. Thesis Page 105

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

every single fault can also be corrected. The check bits are generated by a k-
grade primitive polynomial:

() 3 1G x x x= + + (60)

There are several ways of implementing such a code [46, 104]. Figure 4-17 shows
a block diagram for a code generator based on this polynomial, using a Multiple
Input Shift Register (MISR). This special purpose register is serially fed with
bits from the data codeword (marked as U(x) in Figure 4-17) that is to be
protected. After a number of clock cycles (3 for our example), the register will
compute the redundant bits that are part of the Hamming-type code, as specified
by the temporal Equation (61):

Figure 4-17: MISR Hamming code generator.

() () ()1 01RD RD RD2τ τ+ = + τ (61)

From Equation (61) the Hamming matrix can be derived as follows:

0

1

2

0 1 2 0 1 2 3

1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 c c c u u u u

RD

RD

RD

H

↑ ↑ ↑ ↑ ↑ ↑ ↑

→

→

→

⎡ ⎤
⎢ ⎥= ⎢
⎢⎣ ⎦

⎥
⎥

2

3

2

3

′

0

2

 (62)

where columns from the left to right represent addresses that can be attributed
to (check bits) and (data bits). Therefore we have: 0 1, , c c c 0 1 2 3, , , u u u u

0 0 2

1 0 1

2 1 2

c u u u
c u u u
c u u u

= ⊕ ⊕⎧
⎪ = ⊕ ⊕⎨
⎪ = ⊕ ⊕⎩

 (63)

At each clock the syndrome generator will calculate the check bits and

will compare them to already stored by the Check Data memory (see

0 1 2, , c c c

0 1 2, , c c c′ ′

Figure 4-16). Then the syndrome is computed from the differences between the
newly computed and the stored check bits (see Equation (63)) and corresponds to
a column from the Hamming matrix, thus giving the exact address of the faulty
bit.

0 0

1 1 1

2 2

s c c
s c c
s c c

′= ⊕⎧
⎪ ′= ⊕⎨
⎪ ′= ⊕⎩

 (64)

The data correction process requires the exact address be decoded. This is
done by employing Equation (64):

Page 106 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

0 0 2

1 0 1

2 1 2

c u u u
c u u u
c u u u

′ = ⊕ ⊕⎧
⎪ ′ = ⊕ ⊕⎨
⎪ ′ = ⊕ ⊕⎩

3

2

3

 ,

0 0 0 1

1 1 0 1 2

2 2 0 1

3 3 0 1

u u s s s
u u s s s
u u s s s
u u s s s

′ 2

2

2

= ⊕ ⋅ ⋅⎧
⎪ ′ = ⊕ ⋅ ⋅⎪
⎨ ′ = ⊕ ⋅ ⋅⎪
⎪ ′ = ⊕ ⋅ ⋅⎩

 (65)

Let us consider the following example of a data word .

Using Equation (62) the corresponding check bits result
0 1 2 3 1101U u u u u= =

0 1 2 000C c c c= = . If an

error affects the useful bits, transforming U in 1001U =′ , then the newly
computed check bits will result as 011C =′ . Any non-zero syndrome indicates the
presence of an error. In this case the result is 0 1 2 011S s s s= = , which constitutes an

address in the Hamming matrix showing that the affected position corresponds
to . If the error appears in the check bits zone, for instance , then the
corresponding syndrome will indicate that the erroneous bit corresponds to .
Correcting an error is done by simply inverting the value of the erroneous bit, as
shown in

1u 010C =′

1c

Figure 4-18.
The Hamming code presented in this example works well for single errors;

however, the situation when two or more binary positions are affected is also
possible. In this case the existence of an error will be successfully indicated, but
an attempt to correct the error will mistakenly correct a single binary position,
instead of the two erroneous bits. Let us assume the same data word is affected
by a double error, transforming U in 1000U =′ . Then the resulting syndrome will
be , mistakenly leading to the “correction” of the binary position
corresponding to (

110S =

0u Figure 4-19), which was not even affected by the error! A

similar case is induced by the situation when bits and are affected by error,
the resulting syndrome will successfully indicate the presence of an error, but
will mistakenly indicate the “correction” of bit !

1u 1c

2c

Figure 4-18: Single error detection and correction using Hamming codes.

From those mentioned above one can note as a downside that the code
presented as an example cannot correct double errors. Control bits in this case
occupy almost 43% of the total memory space, which may perhaps be considered
too high a percentage to justify the existence of the code; however, as the number
of data bits increases, the proportions change in the favor of data (for instance,
16 bits of data require 5 check bits which means less than 32%).

Integrating a code capable of detecting and correcting single errors into the
Embryonics project, although justified by their frequency (see subsection 4.3),
may be considered only as a strategy of self-repair at the molecular level. The

Chapter 4 Ph.D. Thesis Page 107

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

reason is errors that affect single data bits can be recovered from at the
molecular level, but there are no actions to be taken should a multiple error
affect the protected data. Such an event would typically trigger the self-repair
process at the superior level (the cellular level), however, the triggering decision
lies beyond this code’s capabilities.

 (A) (B)

Figure 4-19: Double error detection but dummy correction of u0 (A) and c2 (B).

4.4.2. Single Error Correction Codes with Double Error Detection

In general, the situation when two or more binary positions are affected is
also possible, although it is far less probable [5, 34]. If such is the case, there are
two scenarios that have to be taken into consideration:
− if the error produces a syndrome that is recognizable as an address (a column)

in the Hamming matrix, then the presence of the error will be successfully
detected and corrective measures may be allowed;

− if the error produces a syndrome that is not recognizable as a column in the
Hamming matrix, then the presence of the error is shown by the non-zero
syndrome, but corrective measures cannot be taken.

The successful detection of a multiple fault assumes that the resulting syndrome
does not fall over a matrix column such as it would falsely indicate a single error
of a data or check bit. It is possible that a certain double error produces a
syndrome typical to a single error; though the error’s presence is promptly
reported, there are no corrective measures to be taken.

Integrating a code capable of correcting single errors and also detecting the
presence of double errors into the Embryonics project may be preferred, since the
decision of triggering the self-repair at the cellular level can be actually
assimilated to the successful detection of a multiple error. Therefore, if the
macro-molecular fault tolerance levels are exceeded at the molecular level, that
is, an unrecoverable (multiple) error has occurred, the detection of such a
scenario ensures the activation of the KILL signal (see subsection 3.7), which
will then trigger reconfiguration processes at the cellular level.

The previous Hamming code, capable of successfully detecting and
correcting any single error, had a codeword distance (that is, the
difference between any two codewords lies in at least 3 bits). Detecting any
double fault that may affect the data requires

min 3d =

min 4d = , which modifies the
Hamming matrix as follows [44, 46, 104]:

Page 108 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

0

1

2

0 1 2 3 0 1 2 3

1 0 0 0 1 0 1 1
0 1 0 0 1 1 1 0
0 0 1 0 0 1 1 1
1 1 1 1 1 1 1 1

 c c c c u u u u

RD

RD

RD
H

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

→

→

→

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢
⎢
⎢ ⎥⎣ ⎦

⎥
⎥ (66)

As can be seen from Equation (65), the original Hamming matrix received an
additional column (marked as c3, between the dashed lines) and an additional
line, therefore bringing the code generated to a minimal codeword distance equal
to 4. The equations used in order to compute the syndrome and to decode the
error’s address change as follows [104]:

0 0 0

1 1 1

0 1 2 32 2 2
3 3

3
0 0

 ,

i j
i j

s c c
s c c

DDE s s s ss c c

s u c⊕

= =

′= ⊕⎧
⎪ ′= ⊕⎪⎪ ′ = += ⊕⎨
⎪
⎪ ′= ⊕
⎪⎩

∑ ∑

 (67)

0 0 2 3

1 0 1 2

2 1 2 3
3 2

3
0 0

i j
i j

c u u u
c u u u
c u u u

c u⊕

= =

′ = ⊕ ⊕⎧
⎪ ′ = ⊕ ⊕⎪⎪ ′ = ⊕ ⊕⎨
⎪
⎪ ′ = ⊕
⎪⎩

∑ ∑c

 ,

0 0 0 1 2

1 1 0 1 2 3

2 2 0 1 2

3 3 0 1 2

u u s s s s
u u s s s s
u u s s s s
u u s s s s

′ 3

3

3

= ⊕ ⋅ ⋅ ⋅⎧
⎪ ′ = ⊕ ⋅ ⋅ ⋅⎪
⎨ ′ = ⊕ ⋅ ⋅ ⋅⎪
⎪ ′ = ⊕ ⋅ ⋅ ⋅⎩

 (68)

Let us consider the example from Figure 4-19, where the lack of a dedicated
parameter used for indicating the presence of a double error led to a dummy
correction. For the same data bits 0 1 2 3 1101U u u u u= = , the redundant code bits

result as (the only difference from the case from 0 1 2 3 0001C c c c c= = Figure 4-19

being the existence of an additional check bit c3). The final codeword will
therefore be . The situation when the codeword is affected by a
single error will not be discussed since the modified Hamming matrix does not
affect the recovery process described in the previous subsection. Therefore, let it
be considered a double error affecting this codeword through bits u1 and u3 as

. At each clock cycle, the redundant bits are re-computed and
compared to those from within the codeword; in this case the redundant bits
compute as , with the resulting syndrome being .

While the non-zero syndrome indicates the presence of an error, Equation (67)
computes DDE (for Detection of a Double Error) as:

11010001UC =

10000001UC =′

0 1 2 3 1101C c c c c= = 0 1 2 3 1100S s s s s= =

0 1 2 3 1 1 0 0 1DDE s s s s= ⋅ ⋅ + = ⋅ ⋅ + = (69)

therefore pointing to the double error scenario (see Figure 4-20).
ECC codes constitute a standalone direction of research. While the scope of

this thesis focuses on expanding upon the Embryonics project rather than
proposing an incursion into the field of codes, techniques of correcting single
errors and detecting double errors can be successfully implemented within the
Embryonics platform. However, the discussed example may be considered less

Chapter 4 Ph.D. Thesis Page 109

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

than usual, because it makes use of all columns from the Hamming matrix. In
real world applications, if single error correction is the main target, then the size
of the codeword will not require a full use of the Hamming matrix; on the other
hand, if the detection of all double faults is desired, this will perhaps prohibit a
reasonable implementation. Therefore, a reasonable goal (in terms of complexity
and necessary resources for implementation within Embryonics) would be not
only to correct any single error, but to also detect the maximum number of
double faults possible.

Figure 4-20: Double error detection using modified Hamming codes.

4.4.3 Possible Error Scenarios in a Macro-Molecule

Because the macro-molecular architecture consists of both logic- and
memory-operating molecules, there exists a range of error situations that may
occur.

First, it is possible that a number of errors affect only logic-operating
molecules situated outside the macro-molecular structures, therefore exerting no
influence over the storage data. Such a situation requires the activation of self-
repairing mechanisms implemented in logic molecules [128], where both off-line
and on-line self-testing strategies are employed [45]. The configuration register
CREG is self-tested at run-time (therefore making it an off-line testing strategy),
any stuck-at-type error triggering the reconfiguration at the molecular level,
thus the faulty molecule being eliminated from the array, as described previously
in Section 3.7. Since the CREG’s role (when in logic mode) is to store the binary
configuration for the switch block SB and some additional connections
concerning the functional unit FU [100, 128], this off-line strategy was chosen to
be implemented, based on the assumption that the probability of damage to the
CREG data is minimized by its property of being static. The functional unit FU
uses resource replication and majority voting in order to implement an on-line
self-testing strategy; any error that occurs dynamically can therefore be
corrected.

Second, it is possible that errors occur only inside de storage area of a
macro-molecule. In this case, information stored by the memory molecules inside
the configuration register CREG is shifted every clock cycle, requiring an on-line
self-testing and repairing technique be implemented in order to recover from
faults. As long as the fault does not overcome the capacity of the ECC code of
recovering damaged data (that is, each row can sustain and recover from a single
error), the result is a successful correction of the damaged data bit. If the ECC
code cannot handle the occurring errors, the macro-molecule’s data cannot be

Page 110 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

recovered and this results in the failure of the entire cell. Therefore the
reconfiguration process is triggered at the higher, cellular level (see Figure 3-25).

Another possible scenario affecting a macro-molecules takes place when the
presence of an unrecoverable error is by itself reported erroneously; this is to say
that no error is physically present inside the memory array, but the Error
Correcting Logic mistakenly reports the existence of an error and tries to initiate
corrective measures. This scenario is made possible by the fact that
combinational logic is not completely resilient to the damaging effects of soft
fails, which are not covered by the self-testing procedures employed by molecules
operating in logic mode.

Taking into consideration the example from subsection 4.4, the
implementation of the ECC code requires an Error Correcting Logic structure
that may seem too large in comparison with the macro-molecule’s overall size
(the storage data macro-molecule and the three redundant data macro-
molecules), and therefore more prone to errors. It is therefore possible that the
larger structure (the Error Correcting Logic) would “detect” the presence of an
error inside the macro-molecular ensemble, even if there is no actual physical
error. Whenever a couple of checker structure-checked structure exists, the case
of the checker becoming faulty is always possible, even if the purpose is to have it
much less error-prone than the checked structures. If such a situation arises,
regardless of corrective measures, it is the result of an error, even if that
particular error was not detected successfully. There are two ways out of this
scenario, after corrective measures are initiated:
– Because there was no physical error inside the memory area, at least one bit

worth of data will be altered. When the corrective process is finished, the
result is a macro-molecule that contains altered data, but the cell retains a
certain level of overall functionality.

– The “detected” error is perceived as non-recoverable and therefore the KILL
process is initiated. One way of dealing with such a situation would be to
have the Error Correcting Logic effectively stop the data shifting process
inside all of the macro-molecule’s components; since the data content has
been compromised, there is no reason an external entity should continue the
execution of the stored genetic program. This strategy would allow for a strict
containment of an error-affected memory while preserving the logic
functionality of the cell (and of any other macro-molecules not having been
affected by the error). The other way (which we chose for implementation)
would be to have the Error Correcting Logic trigger the KILL mechanism,
and thus deactivate an entire cell column. In this case, there are no active
entities “crippled” by errors and the use of the second level of reconfiguration
in Embryonics is preserved (as opposed to the first scenario, which does not
benefit from the hierarchical architecture in Embryonics). The result is the
death of the entire cell.

Whether the first or the second way is a better choice if such an erroneous
situation occurs may constitute a subject of debate, since it is difficult to say if
having a functional, but crippled, cell has any advantages over not having that
cell at all. Nature itself encounters a similar problem, since cellular mutation
does not necessarily mean the organism becomes non-viable; however, altered
cellular information often leads to damaging effects and illnesses, such as cancer.

In order to ensure the possibility of cellular self-repair in case of memory
structures also, we decided to implement the second strategy, thus extending the

Chapter 4 Ph.D. Thesis Page 111

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

original trigger of cellular self-repair from logic molecules to also work with
macro-molecules. The UNKILL mechanism remains virtually the same. Its role
is to re-initialize the entire cellular structure bottom-up with the original
genome, meaning that the initial configuration is again loaded into each
molecule. Both the macro-molecular structure (including storage data) and the
logic ensemble that implements (but is not limited to) the Error Correcting Logic
are coded within the genome. If a majority of soft fails accumulated and
triggered the reconfiguration at the cellular level, the result of the UNKILLing
process is an architecture free of errors, and with a minimum of resources
deactivated (those affected by permanent faults).

4.4.4. Architecture of a FTRAM-MuxTreeSR Molecule

Based on the notions introduced by previous sections, we present the
architecture of a complete fault tolerant memory structure; for this purpose, we
will consider the theoretical approach from subsection 4.4.1 where the data word
to be protected is 4-bit-wide. One of the possible scenarios is for the data bits
being provided by a single macro-molecule built of 4 columns of memory
molecules. Another plausible scenario assumes that data bits are independently
provided by 4 separate macro-molecules. Choosing the first scenario over the
second one for our example should have virtually no influence on the
architectural complexity, while giving the same perspective on the technique
used to manipulate the resulting structure. Of course, when larger memory
structures are needed, several macro-molecules may be protected by the same
code, therefore the second scenario should be preferred in this case.

4.4.4.1 Architecture of a SEC Macro-Molecule

Applying a single error correcting code requires for every 4 data bits 3
additional check bits at each clock cycle. This actually imposes the existence of 3
additional memory macro-molecules built as independent single columns, each
providing one check bit. If we consider the storage capacity of the data macro-
molecule as 48 words, which means a structure of 3x4 molecules operating in the
long memory mode (see SubSection 3.5.2.3) then each check column will contain
3 molecules operating in the same (long memory) mode. Summarizing, the final
structure will consist of 3 blocks (pointed out in Fig. 4-23) [98]:

– One macro-molecule for genome data storage, denoted as Genome Memory.
For this example it is a single 3x4 macro-molecule.

– A second memory structure, denoted as Control Memory, delivering the
control data used by the ECC coding. For this example it is made of 3
columns, each composed of 3 memory molecules.

– The syndrome generation and error correction logic, a structure built of
molecules operating in logic mode, which is also responsible with feeding the
memory structures with the necessary control signals.

Moreover, the 3 blocks necessary for building a fault tolerant memory structure
may not be the only components of the cell, therefore other molecules, operating
in any mode may lie inside the cellular area.

The implementation of the Hamming code requires a decision with respect
to the structure of the Control Memory, which could either make up for a second
macro-molecule or could leave each control memory column operate
independently. The first situation unifies the control memory into a single

Page 112 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

structure that requires a detailed analysis of a macro-molecule’s data path
specifics [98] in order to operate correctly (see Figure 4-21). It is important the
two memories maintain synchrony even after data permutation, in order to
preserve the consistency of between Equation (70) and Equation (71), situation
settled by the theorem enounced next [95].

The second situation relies on using separate data macro-molecules, each
delivering one bit worth of data. Regardless of their horizontal and vertical
dimensions, data macro-molecules need to match their storage capacity, while
control data will be delivered by independent memory columns, properly
dimensioned so as to match the storage space of the genome data to be protected.
An example will be presented in Subsection 4.4.5.

Figure 4-21: Data shifting inside Genome and Control Memory for a (7,3)
Hamming code implementation.

Theorem:

A (7, 3) Hamming-type SEC code can be implemented by two macro-
molecules composed of 4 and, respectively, 3 columns, as data provided will
remain in synchrony through shifting processes as described in Section 4.3.1.

Proof:

Control data is computed at time t according to Equation (70), where are
the redundant bits output by the Control Memory and required for error
correction:

2:0c

0 0 2 3

1 0 1 2

2 1 2 3 t

c u u u
c u u u
c u u u

⎧ = ⊕ ⊕
⎪ = ⊕ ⊕⎨
⎪ = ⊕ ⊕⎩

 (70)

The word (0 1 2 3 0 1 2u u u u c c c Figure 4-21), which was read at time t by the Error

Correcting Logic (or ECL), will shift into at time t+1. If the data
macro-molecule has a vertical dimension of M lines (each molecule storing F data
bits), then at time (which is necessary for the data to travel from

the bottom to the output ports situated at the top of the macro-molecule [

3 0 1 2 2 0 1u u u u c c c

(1t F M+ + −)1
98,

102]) the ECL will read . Computing the control data for this new
configuration is done by Equation (71), the identity with Equation (70)
confirming the two macro-molecules (data and control) remain in synchrony for a
(7,3) Hamming code [

3 0 1 2 2 0 1u u u u c c c

95].

2 3 1 2

0 3 0 2

1 0 1 2 1 1t F M

c u u u
c u u u
c u u u ⎛ ⎞

⎜ ⎟
⎝ ⎠

+ + −

⎧ = ⊕ ⊕
⎪ = ⊕ ⊕⎨
⎪ = ⊕ ⊕⎩

 (71)

Chapter 4 Ph.D. Thesis Page 113

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

The situation however changes when a (15,4) Hamming code is employed
(Figure 4-22). The Hamming matrix produced by the polynomial

is given by Equation (72) while the codewords at time t and are

given by Equations (73) and (74), respectively.

() 4 1G x x x= + +

(1 1t F M+ + −)

Figure 4-22: Data shifting inside Genome and Control Memory for a (15,4)

Hamming code.

The synchrony between Genome and Control Memories is lost as shown by the
comparison between Equation (73) and Equation (74): the equations for 0 tc and

(0 1t F Mc
+ + −)1

 reveal differences. However, it may be possible that synchrony be

maintained by choosing a different coding or by using data words that are less
than 11-bits wide.

 (72)

0

1

2

3

5 70 1 2 3 0 1 2 3 4 6 8 9 10

1 0 0 0 1 0 0 1 1 0 1 0 1 1 1
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

 c c c c u u u u u u u u u u u

RD

RD

RD

RD

H

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

→

→

→

→

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

0 0 3 4 6 8 9 10

1 0 1 3 5 6 7 8

2 1 2 4 6 7 8 9

3 2 3 5 7 8 9 10 t

c u u u u u u u
c u u u u u u u
c u u u u u u u
c u u u u u u u

⎧ = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
⎪ = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕⎪
⎨ = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕⎪
⎪ = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕⎩

 (73)

3 10 2 3 5 7 8 9

0 10 0 2 4 5 6 7

1 0 1 3 5 6 7 8

2 1 2 4 6 7 8 9 1 1t F M

c u u u u u u u
c u u u u u u u
c u u u u u u u
c u u u u u u u ⎛ ⎞

⎜ ⎟
⎝ ⎠

+ + −

⎧ = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
⎪ = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕⎪
⎨ = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕⎪
⎪ = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕⎩

 (74)

In case of implementing a SEC-DED Hamming code, the necessary
structures are those indicated by the ennounced lemma [95].

Lemma:

A (7, 3) Hamming-type SEC-DED code can be implemented by three macro-
molecules composed of 4, 3 and, respectively, 1 columns, as data provided will
remain in synchrony through shifting processes as described in Section 4.3.1.

Page 114 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

Proof:

Similar to the proof of theorem, the codeword read by the Error Correcting
Logic block at time t is . The first macro-molecule provides data bits

, while the second macro-molecule provides control bits , the third

macro-molecule providing only control bit . Therefore, the codeword transforms

at time into . As proven by the theorem, the

synchrony is maintained between macro-molecules delivering data bits

and control bits . Because the third macro-molecule, delivering control bit

, is actually a memory column, at time

0 1 2 3 0 1 2 3u u u u c c c c

0 1 2 3u u u u 0 1 2c c c

3c

(1t F M+ + −)1 3 0 1 2 2 0 1 3u u u u c c c c

0 1 2 3u u u u

0 1 2c c c

3c ()1t F M 1+ + − it will deliver the same

bit , therefore maintaining the synchrony between all macro-molecules [3c 95].

4.4.4.2 Architecture of a SEC-DED Macro-Molecule

The dotted rectangles (Figure 4-23) represent the confinement area for data
pertaining to the same memory structure and also indicate the existence of data
access ports (the data memory has four data access ports while each check
memory column has one data access port), while the black arrows mark the
presence of control signals for each memory structure. Essentially, the memory
control signals are divided in two categories:
– the HOLD signal enables the data shifting process; commanding this signal

assumes that the molecule from the west of the left corner (LC) of a macro-
molecule drive the required value from its SIN entry to its EOUT output port;
active on logic 0, was described in Section 3.6. Each memory has its own
HOLD signal, denoted as MHi, where { }2:0 3, , i D C C∈ in Figure 4-23.

– the INVi (from INVert, { }0 3 0 3, i D D C C∈ − −) signals are distributed on the

entire south border of each macro-molecule and each affects the
corresponding southernmost molecule; when on logic 0, data entering that
molecule is complemented for as long as the signal retains its value.

A more detailed look upon a memory macro-molecule reveals the way
control signals are routed (Figure 4-24). The internal datapath and HOLD signal
spreading across the macro-molecules (which were presented in Sections 3.4.4
and 3.6) are shown as differently dotted lines. The INV signals are to be used in
conjunction with the corresponding memory HOLD, as they govern any macro-
molecule’s operation. The main difference between macro-molecules without and
with ECC codes corresponds to the presence of the INV signal, which is routed
directly to the input data port of the configuration register CREG.

Table 4-6 presents possible use of these signals on the Genome Data
macro-molecule. When the HOLD signal is on logic “1”, the data shifting for the
entire macro-molecule is disabled. Such an operation may be of use when there is
a need to attain a certain bias between several macro-molecules in order to
execute a NOP (NO Operation) or jump instruction. The execution of the genetic
program in living creatures takes place ceaselessly, until the end of the
organism’s life, as what programmers call an infinite loop. That is the reason we
conceived the macro-molecule as a cyclic memory that keeps shifting its data;
because our memory stores a genetic program (or part of it), its continuous
execution is essential for its “electronic life”. However, as engineers, it is
desirable to have access to some sort of control of the program execution, despite

Chapter 4 Ph.D. Thesis Page 115

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

not having the proper mechanisms that ensure the existence of the conditional
branches. Therefore the memory shifting can be stopped by setting the memory
HOLD signal, a feature that may be of use when several genetic programs,
stored by different macro-molecules, are running. At the beginning, they all run
in synchrony; that is to say that all macro-molecular data are shifted at the same
pace, given by the functional clock’s frequency. If, for some reason, one program
should wait until another reaches a certain state, then the synchrony may be
altered through using the provided access to the HOLD signal.

Figure 4-23: Block shematic of a complete cell with a fault tolerant SEC-DED

memory structure.
When the HOLD signal is active (on logic “0”), the data is shifted inside

the macro-molecule at each clock cycle. Depending on the value of the INVi
signals (also active on logic “0”), data content can be altered for as long as they
remain active. This feature can be used effectively to correct damaged data; since
the presence of an error requires measuring the data output from the northern
border of each macro-molecule, the inversion process may begin one clock cycle
later, when erroneous data will have reached the southern border of the macro-
molecule. Data entering the memory molecule affected by error reaches the
corresponding storage register (CREG) after first passing through a XOR gate
activated by applying the required INV signal (see Figure 4-25); therefore, the
recovery process consists of obtaining a valid data bit through the controlled
inversion of a damaged one.

Signals used in order to implement a fault tolerant macro-molecule are
shown in Figure 4-23; however, their proper implementation requires logic
molecules to drive them from the originating source to their final destination.
Therefore the structure of a cell containing a fault tolerant memory structure
consists of the following:
– one (or several) macro-molecules storing the operative genome (or parts of it)

denoted as Genome Memory;

Page 116 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

– the corresponding number of macro-molecules storing the redundant data
used for genetic data protection and error recovery, denoted as CMi (Control
Memory)

– the necessary number of logic molecules that implement the Error Correcting
Logic structure

– the necessary number of logic molecules that drive the control signals to and
from the Error Correcting Logic

– any additional molecules, external to fault tolerant memory structures.

MHD INVD0:3 Operation
0 1111 Normal memory shifting enabled
0 0111 Memory shifting with column 0 inverted
0 1011 Memory shifting with column 1 inverted

0 1101 Memory shifting with column n-1 inverted
0 1110 Memory shifting with column n inverted

1 ..0.. Memory shifting disabled, memory global kill
signal set

Table 4-6: Control signals for operating the memory

Figure 4-24: Internal routing of memory control signals.

Error recovery is possible through flipping erroneous bits; this process takes
place at each molecule from the bottom of a memory structure, where data enters
the CREG after being driven through a XOR gate together with the
corresponding INV signal. Figure 4-25 depicts the datapath for a molecule

Chapter 4 Ph.D. Thesis Page 117

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

situated at the south border of a memory column used for storing redundant
data: molecule M operates as a bottom of memory column (BC) and therefore
data that enters through the north input connection (NIC) can be modified by the
INV signal by using a XOR gate (depicted as ⊕ in Figure 4-25), this feature
being used during the error correction process. The configuration register
(CREG) can then store corrected (or correct) data.

Figure 4-25: Damaged data can be recovered through controlled inversion

before entering the configuration register CREG.

An essential part that gives a memory structure its fault tolerance
attributes is the Error Correcting Logic block (see Figure 4-23), which computes
Equation (66) and Equation (67) and consists of molecules operating in logic
mode. Figure 4-26 describes the internal logic of the Error Correction Block, the
input signals being (genome data), 0:3u 0:3c′ (newly computed redundant code bits)

and being the syndrome. 0:3s

Figure 4-26: Internal schematic of the Syndrome Generation and Error

Correction block.

Page 118 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

The outputs are the 0:3DINV signals (required for correcting the genome

data), 0:3CINV (required for correcting the redundant data) and the MH signals
(which may be used for synchronizing different memory structures or macro-
molecules). Due to the fine graininess of the molecular level in Embryonics, the
layout of a XOR gate consists of 6 molecules, the bus level and logic level
representations being shown in Figure 4-27.

 (a) (b)

Figure 4-27: Layout of a XOR gate using logic mode operating molecules.
(a) Logic level. (b) Bus level.

4.4.5. Fault-Tolerant Memory Arrays: An Example

In order to illustrate how memory fault tolerance is achieved by ECC codes
implemented onto memory structures in Embryonics, we will go into more details
by considering an example (based on the architecture shown in Figure 4-23) of a
4-column genome memory. The initial content of this memory is structured as
follows:
– three columns describe the modulo-6 counter presented in section 3.5.2.4 and

shown in Figure 3-19;
– whenever the microprogram executes a “do” instruction, an active signal is

provided by the fourth column.
The content of both the Genome Memory and the Control Memories at time

 (when there are no errors present) is presented in 0t = Figure 4-28. All control
signals are inactive, that is data shifting is enabled for all macro-molecules

{ }0 1 2 30, , , , , iMH i D C C C C= ∈ and there are no inversion signals set

{ }0 1 2 3 0 1 2 30, , , , , , , , iINV i D D D D C C C C= ∈ . Data output is shown for each north

molecule (), and values for data entering each south molecule are shown
below the configuration register.

0:3 0:3, U C

Normal operation of the memory implies circling the data through
continuous shifting, the situation at time t+1 being shown in Figure 4-29. The
next moment, a soft error affects molecule E by flipping data bit E4, therefore
transforming its data content into 308F, as indicated in Figure 4-30. The error
position is marked in Figure 4-30 with a darker background. The fact that an
error has occurred cannot be detected (and, by consequence, no correction
measures can be taken) until the erroneous bit reaches the nearest data output

Chapter 4 Ph.D. Thesis Page 119

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

Figure 4-28: Snapshot of memory structures in a fault tolerant macro-

molecule. No errors at time t.

Figure 4-29: Snapshot of a fault tolerant macro-molecule. No errors at time t+1.

Figure 4-30: Snapshot of a fault tolerant macro-molecule immediately after time

t+1. A single error has occurred inside molecule E.

port; in this case, it corresponds to that of molecule F, which will be reached after
another 16 clock cycles.

At time t+17, the erroneous bit has reached the data output port of molecule
F, with the memory configuration shown in Figure 4-31. At this moment, the
Error Correcting Logic reads its inputs as 0 1 2 3 1100U u u u u= = and computes the

new check bits 0 1 2 3 1010C c c c c= =′ , which are different than the stored check bits

. This makes up for a non-zero error syndrome ,

indicating that a single error occurred (since
0 1 2 3 1101C c c c c= = 0 1 2 3 0111S s s s s= =

0 1 2 3 0 1 1 1 0DDE s s s s= ⋅ ⋅ + = ⋅ ⋅ + =),

Page 120 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

and the error affected bit (see Equation (67)). Therefore, the Error Correcting
Logic will activate signal

1U

1DINV (see Figure 4-31), the next clock cycle leading to
the successful correction of the error. The situation at time t+18 is shown in
Figure 4-32.

Let us suppose now that immediately after moment t+18 a double error will
affect the content of the memory by flipping bits I5 and U5. The memory content
at t+19 will therefore allow the error to be put into evidence by the Error
Correcting Logic and is presented in Figure 4-33. Before the error occurred, the
data content at the output ports was 0 1 2 3 0100U u u u u= = , with the corresponding

check data being 0 1 2 3 0111C c c c c= = . The double error affects the memory content

by transforming both data and check readings as * * * * *
0 1 2 3 0110U u u u u= = and

. The Error Correcting Logic computes the new check bits,

which result in

* * * * *
0 1 2 3 0101C c c c c= =

0 1 2 3 1000C c c c c= =′ ′ ′ ′ ′ , which are different than the stored (and

erroneous) check bits . This makes up for a non-zero error

syndrome that indicates a double error occurred since

* * * * *
0 1 2 3 0101C c c c c= =

0 1 2 3 1101S s s s s= =

0 1 2 3 1 1 0 0 1DDE s s s s= ⋅ ⋅ + = ⋅ ⋅ + = . The situation when a double error affects the
memory content cannot be recovered and therefore the recovery procedures must
be triggered at the higher, cellular, level; this is done by activating the KILL
signal.

Figure 4-31: Snapshot of a fault tolerant macro-molecule at time t+17. The

erroneous bit has reached the data output port of molecule F.

Figure 4-32: Snapshot of a fault tolerant macro-molecule at time t+18. The

error has now been corrected.

Chapter 4 Ph.D. Thesis Page 121

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

Figure 4-33: Snapshot of a fault tolerant macro-molecule at time t+19. There is a

double error affecting bits I4 and U4.

Figure 4-34: KILL at the molecular level, triggered by the

Error Correcting Logic.

One way of dealing with an unrecoverable situation inside a fault-tolerant
macro-molecule would be to have the Error Correcting Logic activate all MH
signals. This measure would effectively stop the data shifting process inside all
of the macro-molecule’s components; since its data content has been
compromised, there is no reason an external entity (another cell or organism)
should continue the execution of the stored genetic program. This strategy allows
for a strict containment of an error-affected memory while preserving the logic
functionality of the cell. However, there are no benefits from the hierarchical

Page 122 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

architecture in Embryonics, which is also shared by its self-repairing
mechanisms.

As presented in Section 3.7, the KILL signal is triggered whenever an
unrecoverable situation occurs at molecular level, i.e. there is an error that
cannot be corrected by employing the self-repairing strategies at this level. The
KILL signal disables the entire cell, therefore triggering the self-repair at the
higher level, which is the cellular level. The same strategy can also be used when
macro-molecules are used within a cell: when an unrecoverable situation occurs
inside a macro-molecule, the Error Correcting Logic will trigger the KILL signal,
thus forcing the self-repair at the higher, cellular level. Table 4-6 indicates the
combination of signals that has to be set by the Error Correcting Logic in order to
initiate a KILL process. Whenever a southern border memory molecule receives
from the Error Correcting Logic the combination of signals meaning that an
inversion is required while the memory no longer shifts its data (1MH = and

), that molecule will activate the KILL signal, which will spread and
deactivate all molecules from within the cell. The situation is shown in

0INV =
Figure 4-

34, with the marked molecule being the point where the KILL is trigerred from.

4.5. Macro-Molecular Accuracy Threshold

As mentioned in Section 4.1.3, techniques for estimating dependability
attributes have been already been considered within the field of quantum
computing, therefore giving it the potential of being a source of inspiration for
the Embryonics project. Before analyzing the particularities of dependability in
Embryonics, the accuracy threshold estimation in quantum computing will be
discussed.

4.5.1 Quantum Dependability

An essential promise of quantum computing is solving in polynomial time
problems that otherwise (in classical computing) have only exponential known
solutions. Dealing with dependability issues constitutes a priority in quantum
computing because of its inner erroneous nature: faults are native to the
quantum environment. In order to attain reliable quantum computation, one has
to deal with errors induced by the constant influence of the external environment
upon computational processes. For this purpose, the following assumptions were
made: errors appear randomly, are uncorrelated (either in space, or in time),
there are no storage errors, and there are no leakage phenomena involved [94].

In order to recover from errors, redundant coding presents a choice of
strategies for achieving fault tolerance. However, the recovery process is by itself
a computational one, and therefore vulnerable to errors: as information is
restored through the use of additional, redundant information, new errors may
occur and affect data during the very recovery process. In order to ensure a
sufficient level of fault tolerance, the following questions have to be raised: what
is the accuracy threshold that still warrants valid computation? Or, what is the
upper bound of the error frequency that would still allow a successful recovery?
These questions were answered in the quantum context [94, 160]; we will
however revisit the proposed qualitative assessment since we believe the same

Chapter 4 Ph.D. Thesis Page 123

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

reasoning may also be applied to bio-inspired computing systems (Embryonics)
and fault-tolerant digital systems in general.

If the redundant coding allows the correction of t errors, then an
uncorrectable error occurs if at least t+1 errors occur before the recovery process
can be finalized. Therefore, if the probability of an error affecting the macro-
molecular information is ξ , then an uncorrectable error will happen with a

probability of the order 1tξ + [94, 160]. Apparently, choosing a reasonably high
value for t can make the probability of an unrecoverable error as small as
desired; however, the complexity of the code shows a steep rise with the value of
t, with a polynomial function of the form tb, eventually leading to the situation
when correcting the data takes so long that the appearance of an unrecoverable
event becomes most likely. Then, the block error probability (BEP) of t+1 errors
accumulating in a codeword before the recovery is complete (thus producing an
unrecoverable event) will have the form [94]:

 () () 1tbBEP t t ξ
+

∼ (75)

Minimizing the BEP function after parameter t yields:

() 0 () 0

dBEP t
BEP t

dt
′= ⇔ = (76)

which results in:

11 11 1ln ln 1 0 tt te

b t
ξ be ξ

−−+ + + = ⇔ = (77)

Solving equation (77) and assuming that t is large [94] gives:

11 bt e ξ

−−∼ (78)

Substituting this result into equation (75), the minimum block error
probability MBEP then becomes of the form:

 ()
11exp bMBEP e bξ

−−⎛ ⎞
−⎜
⎝ ⎠

∼ ξ ⎟ (79)

The result for ()MBEP ξ is important with respect to estimating the required
accuracy for a reliable computation. If we consider T as the time interval without
any unrecoverable error occurring, then:

 () () ()
1

 exp bT MBEP Tξ ξ ξ ξ
−⎛

⇒ ⎜
⎝ ⎠

∼ ∼ ⎞
⎟ (80)

From this equation, ξ can then be extracted under the form:

 (81) ()ln bTξ −∼
For the situation when no codes are used at all, the accuracy decreases as

the computation becomes longer and therefore gives:
 (82) 1

NoCodes Tξ −∼
Equation (81) provides a qualitative assessment of the computational

accuracy threshold with error protecting codes that is clearly superior to the case
when no codes are used at all (equation (82)). Due to the lack of standardization
when dependability measures are concerned [3], establishing precise values is
difficult. However, this qualitative assessment delivers the necessary criteria for

Page 124 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

a dependability comparison between two functionally identical systems, before
and after applying fault tolerance measures.

4.5.2 Quantum-Inspired Dependability in Embryonics

Strategies enumerated for achieving fault tolerance at the macro-molecular
level rely on special coding in order to recover from errors affecting stored data.
But as user information is restored through the use of additional, redundant
information, errors may affect this newly added piece of information during the
recovery process, thus raising the following question: what is the accuracy level
required for the macro-molecule in order to warrant its correct operation?

If the redundant coding allows the correction of t errors, then an
uncorrectable error occurs if at least t+1 errors occur before the recovery process
is finalized. Therefore, if the probability of an error affecting the macro-
molecular information is ξ , then an uncorrectable error will happen with a

probability of the order 1tξ + [94]. Apparently, choosing a reasonably high value
for t can make the probability of an unrecoverable error as small as desired;
however, the complexity of the code shows a steep rise with the value of t, with a
polynomial function of the form tb, eventually leading to the situation when
correcting the data takes so long that makes the appearance of an unrecoverable
event most likely. Then, the probability of t+1 errors accumulating in a codeword
before the recovery is complete (thus producing an unrecoverable event) will
have the form:

Block Error Probability = () () 1tbBEP t t ξ
+

∼ (83)

Minimizing the Block Error Probability function after parameter t yields
() 0 () 0

dBEP t
BEP t

dt
′= ⇔ = , which results in:

1 11 1ln ln 1 0 tt te
b t

1
beξ ξ −−+ + + = ⇔ = (84)

Solving this equation [94] and assuming that t is large gives:
11 bt e ξ −−∼ (85)

Substituting the result from Equation (75) into Equation (73), the Minimum
Block Error Probability then becomes of the form:

Minimum Block Error Probability = () ()11exp bMBEP e bξ −−−∼ ξ (86)

The result for ()MBEP ξ is important with respect to estimating the required

accuracy for a reliable computation. If we consider T as the time interval without
any unrecoverable error occurring, then

() () () ()1
 exp bT MBEP Tξ ξ ξ −⇒∼ ∼ ξ (87)

From the last equation ξ can be extracted under the form

()ln bTξ −∼ (88)

Chapter 4 Ph.D. Thesis Page 125

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

Of course, as long as a macro-molecule is concerned, T represents the time
frame required for an error to be corrected, the worst case being a fault
occurrence placed furthest from its corresponding data output port; at the same
time, T is quite similar to parameters and med

∗ΔΤ medΔΤ introduced in subsection
4.3.6 and whose values can be estimated empirically. Such a situation occurs
when the flipped data bit is positioned as the first bit from a bottom row
molecule, the shifting path until it may be put into evidence and corrected being
of length , where F is the storage dimension of the memory molecule and M
is the vertical dimension of the macro-molecule (or the number of rows); thus

.

F M⋅

T F M= ⋅
Of course, when no techniques ensuring fault tolerance are implemented, T

is proportional with the size of the data and therefore

() 11, T FM N sξ ξ
−− −⎡⎣∼ ∼ ⎤⎦ (89)

As for parameter b, it depends on the size of the code as an expression of
the gain in complexity with its dimension. In our case the size of the dataword to
be protected results as t N bits, where N represents the horizontal
dimension of the macro-molecule (or the total number of columns) and s
represents the number of spare columns. Therefore, the total size of the
codeword, including the redundant bits results (as per Equation (59)) t

s= −

k+ ,
where , with the Hamming matrix being of dimensions

. As a result, any fault detection/correction process needs at most a number
of computational steps that is given by the dimensions of the Hamming matrix,
which is of the order . Parameter b can be estimated as the power of t

that approximates best the number of necessary detection/correction steps,
leading to the following equation:

(2log 1k k N= + + −⎡⎢)s ⎤⎥

t

2kk ×

()2logt ⋅

()2logbt c t t⋅ ⋅∼ , where c is a constant. (90)

Because there are several algorithms performing the detection/correction
process, we will choose the value covering the worst case scenario; following
Equation (90) this value results as 2b = , the macro-molecular accuracy in case of
integrated fault tolerance measures being

() 2
ln FMξ

−
⎡⎣∼ ⎤⎦ (91)

Parameter N does not appear directly in Equation (91) since its influence is
quantified by the gain in the code’s complexity defined by parameter b (N
signifies the number of data bits that are to be protected, which in turn imposes
the number of redundant code bits and the total length of the codeword) The
final equations (90) and (91) show how the macro-molecular accuracy scales for
situations with and without error correction techniques. Plots for the accuracy
trends are given in Figure 4-35, showing superior scaling as opposed to that
when no codes are used at all.

For a macro-molecule with no data error protection mechanisms, the graph
from Figure 4-35 (left) shows an accuracy decrease when the overall storage
capacity increases. This is consistent with the fact that the probability of an
incurring error is directly proportional with the area of the macro-molecule. The
situation changes when ECC codes are used. If each row can recover from a

Page 126 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

single error, then the accuracy dependencies show an increased efficiency with
the increase of storage area; however, the graph from Figure 4-35 (right) does not
contain parameters involved in an exhaustive manner, which probably leads to
the final results for the macro-molecular reliability being less optimistic but, at
the same time, superior to the case when no fault tolerant measures are taken
into account.

The plots given in Figure 4-35 and the fact that they are in complete
agreement with the classical reliability analysis for both situations (without and
with ECC codes implemented) demonstrate that the accuracy threshold
estimation technique has been successfully taken from quantum computing and
imported in bio-inspired computing, namely the Embryonics project.

2 4 6 8 10
0

0.005

0.01

0.015

0.02

F=8, N=4
F=16, N=6

Vertical dimension

M
ac

ro
-m

ol
ec

ul
ar

 a
cc

ur
ac

y
w

ith
 n

o
co

de
s

2 4 6 8 10
0.02

0.04

0.06

0.08

0.1

0.12

F=8
F=16

Vertical dimension

M
ac

ro
-m

ol
ec

ul
ar

 a
cc

ur
ac

y
w

ith
 c

od
es

Figure 4-35: Macro-molecular accuracy variation when no codes are used (top),

and when codes are in place (bottom).

Chapter 4 Ph.D. Thesis Page 127

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

4.6. Fault Tolerance Assessment in Embryonics

The key figure in Embryonics is the hierarchy within the general
organization (see Figure 2-2), which in turn enables a hierarchical approach to
tolerating faults. There are two different strategies of fault recovery, depending
on the corresponding level of organization: at the molecular level, the
reconfiguration strategy is based on the individual elimination of faulty units (in
this case, molecules), whereas at the superior, cellular level a different strategy
is employed, based on the elimination of the entire column containing the faulty
unit (in this case, cell). Therefore an Embryonics machine may be regarded as a
multi-resolution system, in which faults are tolerated through reconfiguration at
two different levels of granularity. While such an approach of hierarchical self-
repair certainly offers more in terms of robustness, it also makes estimating its
programmable parameters a more difficult task [97].

The main issue here is to establish the requirements in terms of spare
resources (the frequency of columns of spare molecules at the molecular level and
the frequency of columns of spare cells at the cellular level) so that the overall
reliability of a complete Embryonics machine does not drop below an acceptable
level ε . Therefore, if the implementation of a complete computing machine in
Embryonics may be assimilated to an organism (a regular cell structure), then its
reliability function at time T has to verify the following inequality:

 ()Org TR t ε≥ (92)

In order to assess the requirements implied by inequality (92), it is
necessary to decide on the fault tolerance strategy employed by macro-molecular
memory structures; from now on, we will consider the SEC strategy at the
macro-molecular level, described in Subsection 4.3.4.1.

4.6.1 Reliability at the Molecular Level

When regarded at molecular scale, an entire cell consists of two parts. First,
there is the cellular membrane, which is also called space divider (see Chapter 3,
Subsection 3.8.1); it has no functional role whatsoever (that is, does not
participate actively to any logical machine implementation), its only purpose
being that of specifying the borders of a cell. The second, and most important,
part of a cell consists of its molecules, their functionality being dictated by the
mode they operate in. There are no restrictions over the proportions in which
molecules may operate in a certain mode, being possible for a cell to be made
either of molecules operating in logic mode only, or molecules operating in any of
the memory modes, or any mixture between logic and memory modes.

Therefore, estimating the reliability of a cell is not a trivial task, since it
depends on the reliability of its components, which may operate differently.
Furthermore, the reliability analysis has to be carried out separately for logic
molecules and memory molecules, due to their different strategies in case of
incurring faults. On one hand, a faulty logic molecule will be eliminated through
reconfiguration, a spare one being activated in order to take its place, whereas a
fault detected inside a macro-molecule does not trigger any reconfiguration
measures.

Figure 4-36 and Figure 4-37 illustrate the case when a cell suffers a double
fault, a single fault affecting one of its logic molecules and another single fault

Page 128 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

affecting a memory element within a macro-molecule; faults are detected at time
t and fault recovery finishes at time t t+ Δ through reconfiguration (for the case
of the logic molecule) and data correction (for the case of the memory molecule).
The cell consists of a 6x6 array of molecules and contains a 3x3 macro-molecule;
there are also two columns of spare molecules (columns 3 and 6). Figure 4-36
shows the molecular configurations, where faulty molecules are considered to be
logic molecule (2,1) and memory molecule (4,2).

Figure 4-36: A 6x6 cell affected by two faults: one over a logic molecule and

another over a memory molecule.

At time t, the built-in self-testing mechanism present in each molecule
detects a fault affecting molecule (2,1), which operates in logic mode. At the same
time, a fault is detected inside the macro-molecule (the mechanism responsible
for fault detection and correction was described in SubSection 4.4.2), affecting
the data stored at that particular moment by molecule (4,2), which operates in
one of the two possible memory sub-modes. The faulty logic molecule will next
enter the state “dead”, all molecular configurations between itself and the first
spare molecule in the row being shifted one position to the right. At the same
time, the closest spare molecule in the row will become active in order to be
loaded with the configuration data from its left, active neighbor. All
communications are being rerouted so as to bypass the faulty molecule, the final
situation being shown in Figure 4-37.

The situation inside the macro-molecule is very different. There was a
single fault detected inside molecule (4,2) but since the fault is not permanent
(all molecules are tested at run-time against permanent faults and, if such is the
case, repaired [128]) it is likely that a non-permanent, soft fail has occurred.
Such a fault is non-destructive and may be repaired by re-writing the correct
value of the flipped data bit. Since there is no reconfiguration involved as
recovery measure, the situation of the macro-molecule remains unchanged,
unless the reconfiguration triggered by the self-repairing mechanism in the case
of logic molecules affects the general layout. The final state of the fully recovered
cell is shown in Figure 4-37.

Chapter 4 Ph.D. Thesis Page 129

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

Figure 4-37: A 6x6 cell recovers from a double fault by two faults: one over a

logic molecule and another over a memory molecule.

After analyzing the possibilities for a cell to be affected by faults and
recover from them, it is now possible to formalize the cellular reliability function
by stating its general defining relation:

RCell(t) = Prob{ an unrecoverable combination of errors has not yet occurred at time t }
where the parameter to be estimated is a fatal event with two aspects:
i. in the case of memory macro-molecules, a single error can be recovered

from, therefore the structure’s reliability is the probability that no multiple
errors have occurred on the same row at time t;

ii. in the case of logic molecules, no more than S errors may occur in the same
row.

4.6.1.1 Reliability of a Macro-Molecule

We will start our analysis by considering a general macro-molecule
consisting of a memory array of M lines and N columns (of which S are spares) of
molecules, each storing F bits worth of data and with no fault tolerance in place.
As argued by subsection 4.3.2, considering that λ is the failure rate for a single
flip-flop, the reliability of the entire macro-molecule is then given by Equation
(28):

()() FM N S t
MMolR t e λ− −=

On the other hand, adding single fault tolerance capabilities to this macro-
molecule leads to the employment of k additional columns or arrays of Mx1
memory molecules, required by storing redundant data. Parameter k represents
the smallest integer that satisfies the following relation:

(2log 1k N S= + − +⎡⎢)k ⎤⎥ (93)

Page 130 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

Then the reliability function for a macro-molecular row can be redefined as
follows:

RRow(t) = Prob{ no FF fails + Prob} { single FF fail }

() () () 1() 1() 1 F N S k tF N S k t t
Row F N S kR t e C e e λλ λ − − + −⎡ ⎤− − + − ⎣ ⎦

− += + − (94)

which gives the overall reliability function of

[] () () () 1() 1() () 1
MM F N S k tF N S k t t

MMol Row F N S kR t R t e C e e λλ λ − − + −⎡ ⎤− − + − ⎣ ⎦
− +

⎡ ⎤= = + −⎣ ⎦ (95)

4.6.1.2 Reliability of an Ensemble of Logic Molecules

The reliability analysis of embryonic structures made entirely by logic
molecules has been done already [84, 85, 86]. We will, however, reconsider such
an analysis as the molecular internal architecture has been changed with the
addition of the memory-operating mode (see Chapter 3). Let us consider that the
logic molecules make up a rectangular structure of *M lines and columns, of
which are spares. Parameters

*N
*S *M , and are generally different than

parameters M, N and S considered in subsection 4.5.1.1 since they characterize
completely different entities. Furthermore, the failure rate λ considered for the
elementary memory unit (the flip-flop) may prove to be different than the failure
rate λ* used in case of a logic molecule (which typically employs other resources
than a memory one), in which situation flip-flops may be used under different
operating conditions or may not be used at all.

*N *S

Such a logic structure was analyzed as being based on the k-out-of-m
reliability model, that is, the proper function of the system as a whole is ensured
as long as at least k units out of a total of m are operating normally [84]. In our
case, considering that any detected fault inside a molecule triggers a
reconfiguration strategy that leads to the “death” of the respective molecule, this
means that no more than errors (or faulty molecules) can be tolerated in a
single row. Therefore the reliability of a single row becomes:

*S

()
*

*
* *

*
* *

() 1
N iN

i i t t
Row N

i N S

R t C e eλ λ
−

− −

= −

= −∑ (96)

Because the logic ensemble is built of *M rows, its overall reliability can now be
estimated as:

[] ()
*

*
*

* * *

*
* *

() () 1

M
N iN

M i i t t
LogicEnsemble Row N

i N S

R t R t C e eλ λ
−

− −

= −

⎡ ⎤
⎢= = −
⎢ ⎥⎣ ⎦
∑ ⎥ (97)

4.6.2 Reliability at the Cellular Level

Any cell within the Embryonics project is made of molecules operating
either in logic mode or in any of the memory modes. A full reliability analysis at
the cellular level requires estimating the individual reliabilities of the two
component structures, macro-molecules and logic ensemble, which are given by
Equations (95) and (97), respectively. All component structures are required to

Chapter 4 Ph.D. Thesis Page 131

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

perform properly in order to ensure the normal operations of the cell; therefore
the cell can be considered as a series system in which each subsystem (be it
macro-molecule or logic ensemble) has to function if the system as a whole is to
function [44]. Therefore the cellular reliability function may be derived as the
product of the reliability functions of its component subsystems as follows:

()
1

() () ()
n

Cell LogicEnsemble MMol i
i

R t R t R t
=

= ∏ (98)

where n is the number of macro-molecules present in the cell. Assembling the
terms from Equation (98) gives the final result for the cellular reliability
function:

() () () ()

*
*

*
* *

*
* *

1() 1

1

() 1 1

M
N i nN MF N S k ti i t t F N S k t t

Cell iF N S kN
ii N S

R t C e e e C e e λλ λ λ λ
−

− − + −⎡ ⎤− − − − + − ⎣ ⎦
− +

== −

⎡ ⎤
⎡ ⎤⎢ ⎥= − + −⎣ ⎦⎢ ⎥⎣ ⎦

∑ ∏

 (99)

4.6.3 Reliability at the Organismic Level

Let us consider an array of cells that make up an organism, with
dimensions of cM lines and columns, including Sc columns of spare cells.
Such an organism plays in Embryonics the role of a general computing system,
its various functions being performed by the internal components, which are the
cells. The central problem that initiated the previous reliability analyses was to
provide some sort of formalism in order to assess the requirements that ensure a
certain reliability level for the computing system, or in our case, the organism.
For this purpose it is necessary to investigate first the situations that lead to a
cell becoming faulty and the reconfiguration strategy at this level.

cN

It is worth reconsidering the aspects that might lead to the “death” of an
entire cell. As discussed in subsection 3.7.1, when there are more faults affecting
the logic molecules of a cell than available spares in a single row, then a special
signal named KILL becomes active, which spreads across the cell, effectively
disabling all the molecules. The same situation occurs when a macro-molecule is
affected by a multiple error in a single row [98]; if such is the case, the Error
Correcting Logic activates the KILL signal, thus killing the entire cell.
At the cellular level, the catastrophic event of more faults affecting a cell than
available possibilities of repairing is perceived as a cell becoming faulty,
situation that activates a reconfiguration process, which will eliminate the entire
column of cells (including the faulty cell). Ongoing cellular processes from the
marked column will be taken over by a spare column by shifting them to the
right. In order to illustrate the reconfiguration process, Figure 4-38 presents a
cellular structure that will be affected by faults at this (cellular) level, the cells
being affected being (2,3) and (4,7). Since any fault detected at the cellular level
triggers a column-elimination strategy, Figure 4-39 shows the organism’s layout
after the reconfiguration. Because cell (2,3) was faulty, this means the entire 3rd
column will be disabled, its role being transferred to the closest spare column to
the right, which will become active (4th column in Figure 4-39). A similar
situation occurs with faulty cell (4,7), the 7th column being killed; the closest
spare column to the right will become active and functional processes will be
transferred from column 8 to 9 and from column 7 to 8.

Page 132 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

Figure 4-38: A complete organism may also be affected by faults; cells (2,3) and

(4,7) will soon die, forcing a reconfiguration at the cellular level.

Figure 4-39: The organism remains functional after the reconfiguration; the
functions of faulty cells (2,3) and (4,7) were taken over by (2,4) and (4,8),

respectively.

The above considerations justify a reliability analysis of an organism as
being also based on the k-out-of-m model, where the successful operation of the
organism is ensured by the proper function of at least k columns out of a total of
m. Let us consider the organism’s dimensions as being of cM lines and

columns, including spares. Therefore, the reliability of the organism is given

by the fact that, at any moment, at least

cN

cS

cN Sc− columns are operational:

(() 1
cc

c

c c

N iN
i i

Org N Column Column
i N S

R t C R R)
−

= −

= −∑ (100)

Since a column is fully operational if all cM component cells are functional, the
reliability function for a column results as:

()() cM
Column CellR t R= t (101)

Therefore, the final expression for the reliability function of an organism (or of
any cellular structure) is given by:

Chapter 4 Ph.D. Thesis Page 133

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

()() 1
cc

c c

c

c c

N iN
iM Mi

Org N Cell Cell
i N S

R t C R R
−

= −

= −∑ (102)

4.7. Bridging Quantum and Bio-Inspired Computing

At a first glance, the boundaries between bio-inspired computing and
quantum computing seem to discourage unveiling any common ground between
the two fields. Though technology may be essentially different [82], they both
share the same error model and employ techniques for achieving fault tolerance
from classic computing [95, 96]. Moreover, the accuracy threshold ξ in the
quantum computing context and the failure rate λ in the bio-inspired computing
context are not dissimilar: while λ gives the error probability, ξ gives the upper
bound for the error probability so as the computation still remains valid.
Therefore, we have:
 ()max λ ξ∼ (103)

As long as the error rate λ is below the accuracy threshold, valid
computations can be recovered from the damaging effects of occurring errors.
However, these estimations only cover the time frame between an error
occurrence and the end of the recovery process, that is, the period between data
damage and data restoration. While a reasonable accuracy can be obtained by
using error-correcting codes, the occurrence of errors becomes more likely as the
length of the computation increases [94]. Since machines based on the
Embryonics platform are intended to operate over long periods of time (therefore
involving long computations), this primarily affects the memory structures in
Embryonics, since its logic structures already have protective measures
implemented [67]; therefore measures for extending the valid computation
length have to be taken, and, once again, quantum computing offers a source of
inspiration.

4.7.1 From Multiple-Level Self-Repairing to Multiple-Level Coding

The computation length limit in fault tolerant quantum computing [94, 96,
97] can be overcome by employing concatenated codes; when viewed at a higher
resolution, each quantum bit is encoded by a block of quantum bits. Such a
hierarchical encoding appears to be particularly well suited for the Embryonics
project since its architecture offers an intrinsic hierarchy, one level (molecular)
corresponding to a higher resolution view of the next superior level (cellular).
With information being encoded at each level, Embryonics seems natively
endowed for implementing concatenated codes, the principles being presented in
Figure 4-40; a first idea of information coding in Embryonics for error detection
purposes was presented in [101].

Instead of storing binary words worth of data, fault-tolerant macro-
molecules can store binary words that would in turn assemble to provide data for
the next hierarchical level as an encoded binary digit [97]. At the cellular level,
genetic information may also be protected using similar Hamming codes as
implemented at the molecular level. If such is the case, and we accept the error
rate at the macro-molecular level as being ε , then an unrecoverable error will

Page 134 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

occur with a probability of 2ε . A concatenated code [94] in which each bit at the
cellular level is encoded by 7 bits at the molecular level stored by fault-tolerant

macro-molecules will give the probability of an unrecoverable error as
22 4ε ε=

(assuming errors are of stochastic nature and uncorrelated). This is where error
coding and concatenation can work together against error influences: while error
coding lowers the probability of an unrecoverable error, concatenation brings the
possibility of making it arbitrarily small by adding sufficient levels of
concatenation.

Figure 4-40: Two-level concatenated coding in Embryonics [97].

In Figure 4-40 the following scenario is being considered: at the molecular
level, genetic information is divided and stored by fault-tolerant macro-molecules
using a (7,3) single error correcting Hamming code [46]. Essentially, 4 bits worth
of genetic data (stored by the GENOME MEMORY in Figure 4-41) are encoded into
a 7-bit codeword, which makes up the elementary piece of information at this
level. The redundant check bits, stored by the CONTROL MEMORY (CM0-2 in
Figure 4-41) are derived from Equation (70) [104].

At the cellular level, each 7-bit code word from the molecular level make up
for a single higher-order bit of actual data, which will be called Bit from this
moment; its value can be derived, for instance, as the parity value from Equation
(104):

 (104) 0 1 2 3 0 1 2, for 0 3i i i i i i i iU u u u u c c c i= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ = ÷

The same single error correcting, Hamming coding, from the molecular
level (see Equation 22) can now be applied to the 4 Bits U0:3 in order to generate
the redundant check Bits C0:2:

 (105)

0 0 2

1 0 1

2 1 2

C U U U

C U U U

C U U U

⎧ = ⊕ ⊕
⎪⎪ = ⊕ ⊕⎨
⎪ = ⊕ ⊕⎪⎩

3

2

3

At this point, a structure that encodes genetic information in a hierarchical
manner by using concatenated codes has been established [96]. At the molecular
level, the basic units (the memory molecules) are assembled to build a fault
tolerant macro-molecule (FTMM), which is shown in Figure 4-42 [98]. The

Chapter 4 Ph.D. Thesis Page 135

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

Figure 4-41: Block schematic of a complete cell with a fault tolerant

SEC memory structure.

Figure 4-42: The first level in concatenated coding is the FTMM (Fault-Tolerant

Macro-Molecule) [96].

FTMM computes the value of the corresponding Bit by implementing Equation
(105), while the ECL keeps the code word accurate by implementing Equation
(104).

At the cellular level a similar structure is assembled (see Figure 4-43), with
the basic units being the FTMMs. Each FTMM computes a Bit, with 7 such Bits
making up a (7,3) Hamming code. The correction mechanism at the cellular level
is identical to that present at the molecular level [98]: whenever a single error
affects a 7-Bit word, the error is located and the corresponding value inverted.

The check Bits provide vital information for recovering a code word from a
single error at the cellular level. Their value is computed directly from the Bits
that carry genetic information (U0-3) and do not come from actual data from the
molecular level. Therefore, there seems to be no real need for further encoding
the check Bits. However, if the advantages of concatenated codes are to be
preserved, the check Bits also require coding; if this process implies the
derivation of a new value (the code) from several values known in advance
(source data), in this case a reverse process is required: the value of the encoded

Page 136 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

data is known in advance at the cellular level (that is, the value of the check Bit)
and the values from the molecular level (source data) need to be computed.

As it is implemented, the code word resulting from Equation (105) is also
able to recover from an error affecting a single Bit. An unrecoverable situation
occurs when a double error affects a code word at the cellular level. However,
this can only happen if two sub-blocks fail simultaneously, which, in turn, means
that each of the two (7,3) Hamming code words from the molecular level have to
experience a double error. Because each Bit is encoded as suggested by Equation
(105) (shown in Figure 4-42), such a concatenated code offers superior protection.
Considering Equation (94) and substituting with 7 the length of a code word
implemented by a macro-molecule with single fault-tolerance, its reliability
becomes:
 ()7

_ () 7 1t t
bit wordR t e e e 6 tλ λ− −= + − λ−

t

 (106)

Because the length of the code word and the fault-tolerance are similar at
the cellular level, the reliability of the code word at this level is:

 (107) 7 7 6
_ _ _ _() () 7 1 () ()Bit word bit word bit word bit wordR t R t R t R⎡ ⎤= + −

⎣ ⎦
A direct comparison between Equations (106) and (107), which define the

reliability function for the basic information unit at each level, confirms the
superior protection offered by a second level of concatenated coding.

Figure 4-43: The second level in concatenated coding is made-up by Hamming-

coded Bits.

4.7.2 Conclusions

Attaining superior dependability in environments inducing frequent faults
constitutes a common problem in both bio-inspired and quantum computing. We
have shown that the accuracy threshold estimation (inspired from quantum
computing) can be linked to the reliability analysis of bio-inspired computing,
both techniques producing similar qualitative results. Because applications
targeted by both quantum computing [145, 146, 147] and bio-inspired computing
(Embryonics included) [95, 96, 97, 98] share the same high dependability
requirements, the accuracy threshold estimation is relevant for both fields.
Therefore, concatenated coding also represents a possible solution for
Embryonics. Its hierarchical architecture is structurally similar to that of
concatenated coding, thus facilitating its implementation.

Chapter 4 Ph.D. Thesis Page 137

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

Page 138 Ph.D. Thesis Chapter 4

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

CHAPTER 5

CONCLUSIONS

In this chapter we will try to consider and argue upon the extent the
architecture we have presented fulfills the initial goals (Section 5.1), outlined in
Chapter 1, and specify the original contributions added on top of the state-of-the-
art. We will attempt to give a two-fold perspective over the present of the
Embryonics memory structures: one from an engineering standpoint (SubSection
5.2.1) and one that, while certainly being less technical, reaches the land of
philosophy (SubSection 5.2.2). We will conclude by presenting possible future
developments for Embryonics, as we see them.

5.1 Analysis of the Results

The main goal of this thesis was to integrate the operative genome concept
(see SubSection 2.2.3.2) within the hardware implementation of the current
Embryonics state-of-the-art. This meant that a new memory design had to be
elaborated so that it would fit at the end into an already robust and powerful
architecture.

In the first place, a memory structure had to be created without severely
affecting the hardware overhead. Therefore we introduced the second operating
mode (with two operating sub-modes) for each of MuxTree molecules, thus
making better use of a resource (the configuration register CREG) that appeared
to be suitable for this purpose. The memory had to exhibit certain less-than-
usual features:
a. preserve bio-inspiration in its design and functionality;
b. at each clock cycle, it had to deliver the next data, thus rendering any

addressing mechanism futile;
c. it had to integrate the existing self-repairing mechanisms at the molecular

level: on one hand, the memory shouldn’t present any negative impact onto
the repairing process of a faulty logic molecule, and, on the other hand, it
should also provide its own self-repairing capabilities;

d. it had to integrate the hierarchical self-repairing mechanism;
e. it had to integrate the self-replicating mechanism.

a. Bio-Inspired Design and Functionality
Since the whole Embryonics project was conceived so as to follow the path

of bio-inspiration as closely as possible, the memory also had to be designed in its
spirit. The biological DNA is a strand of chemically-bonded molecules: it consists
of molecules that store complex genetic information, but it is not a cell by itself.
Therefore we called our memory structures macro-molecules, because they rely

Chapter 5 Ph.D. Thesis Page 139

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

on molecules to store genetic information but do not constitute cells by
themselves.

A particular challenging task was to settle for the most appropriate
architecture that was to provide flexibility of use, while making the best out of
the available resources. These were both demands and constraints, since the
final MuxTree design was physically implemented and tested in a hardware
prototype. Therefore we chose to implement the memory unit by employing the
most suitable molecular resource: the configuration register (CREG). In order to
assemble useful data words, several macro-molecules have to be used
synchronously. However, if different memory timings are required, there is a
mechanism (which we called HOLD) that inhibits information shifting in a
particular macro-molecule for as long as desired. Functionality levels at the
molecular level are kept to a maximum: if routing resources are needed along
with data storage, the macro-molecule should be made of memory molecules
operating in the short memory mode (SubSection 3.5.2.2); if, on the other hand,
storage data space needs to be maximized, then the macro-molecule should be
made of memory molecules operating in the long memory mode (SubSection
3.5.2.3).

b. Memory Addressing
Being the carrier of genetic information, which is executed continuously and

sequentially in living creatures, we also designed our macro-molecule to provide
data in a similar manner: it shifts its data indefinitely at each clock cycle.

Such an approach prevents the implementation of jump-type instructions.
However, this engineering limitation can be, at least partially, compensated by
using the HOLD feature (SubSection 3.6) to de-synchronize macro-molecules
from each other, therefore simulating this kind of instructions (for instance, if a
jump instruction could be seen as transfering the control to a procedure residing
in a different macro-molecule, then this macro-molecule will only begin to shift
its data at that particular moment).

c. Self-Repair at the Molecular Level
As far as self-repair at the molecular level is concerned, the design of the

new macro-molecule had to deal with two aspects:
– integration of the existing self-repairing mechanisms, protecting the

molecules operating in logic mode;
– implementation of a self-repairing mechanism specific to memory macro-

molecules in order to provide protection for the stored genetic information.
The self-repairing mechanism for logic molecules relies on spare resources

that are activated in case of faulty molecule detection in order to allow the
functionality transfer. The particular features of this process inspired the
mechanism of setting up a macro-molecule: the memory molecules are chained
together in a similar way the initial configuration enters the electronic organism
at set-up time. Repairing a logic molecule therefore results as transparent for
any macro-molecule, thus ensuring a perfect integration with the existing self-
repairing mechanisms for molecules operating in logic mode (SubSection 3.7).

Unfortunately, protecting functionality is essentially different than
protecting information, therefore imposing a new self-repair mechanism be
implemented in order to protect genetic data stored by macro-molecules. Such a
mechanism had to operate transparently and in parallel with the existing self-
repair mechanisms for molecules operating in logic mode. If functionality can be

Page 140 Ph.D. Thesis Chapter 5

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

protected by employing redundant resources and majority voting, information
recovery requires redundant information. For this purpose, we designed a fault-
tolerant macro-molecule, implementing Hamming-type codes (SubSection 4.4).

d. Hierarchical Self-Repair
Living beings exhibit hierarchical strategies of fault-tolerance: at the

molecular level (DNA is considered to be highly redundant), at the cellular level
(faulty cells die and are replaced by newly grown ones), and even at higher levels
(there are redundant organs, brain hemispheres are known to be able to transfer
some functionalities in case of damage).

Embryonics implements a two-level self-repairing strategy; however, with
the introduction of macro-molecular structures this strategy became only
partially efficient, not being suited for memory data protection (SubSection
4.1.4). In order to provide similar self-repairing capabilities as in logic mode,
fault-tolerance has been added to macro-molecular structures by implementing
Hamming codes. A considerable research effort was spent for investigating the
causes that lead to the appearance of soft errors and for providing a formal
model of their impact over the reliability characteristics. The analysis over the
frequency of error types (Section 4.3) suggested as most suited codes those
capable of single error correction. Memory data protection was achieved at
molecular level: design principles were discussed (SubSections 4.4.3 and 4.4.1)
together with an architectural example of a fault-tolerant macro-molecules
implementing single error correction and double error detection (SubSection
4.4.5).

The hierarchical self-repair required additional measures in case of failure
of self-repair at the molecular level. Such measures were taken in order to
ensure that self-repair at the cellular level is triggered whenever there is a
shortage of spare molecules left for repair of logic, by employing the KILL signal.
The same signal is also set by the Error Correcting Logic (ECL) block whenever
more than one error is detected in a macro-molecular data word. As it was
previously implemented [128] the self-repairing at the cellular level also had to
be modified in order to provide memory data protection. Our solution
(SubSection 4.7) proposes multiple-level information coding under the form of
concatenated coding.

Assessing the efficiency of the fault recovery processes has also constituted
a challenging task, unifying particular aspects from bio-inspired and quantum
computing. A thorough reliability analysis was provided, together with a
methodology of further increasing the robustness of computational processes in a
MuxTree machine.

e. Self-Replication
Self-replication in Embryonics was entirely unaffected by the introduction of
macro-molecules. They operate completely transparently with respect to self-
replication and therefore their integration in the Embryonics original design is
complete.

Chapter 5 Ph.D. Thesis Page 141

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

5.2 Original Contributions

This thesis represents an individual contribution to the effort carried by the
Embryonics team, resulting from a rather unique privilege of working closely
with the initiators of the project and assisting to the birth of a new kind of
artificial, bio-inspired life form, called MUXTREE. As such, describing a research
effort integrated within a larger project encounters difficulties when it comes to
pointing out the original contributions of the author.

Chapter 2 was intended to provide essential background to the state-of-the-
art concerning the Embryonics project. As the inception of the project predates
my arrival in the Logic Systems Laboratory (LSL) at the Swiss Federal Institute
of Technology at Lausanne (EPFL), I cannot claim authorship for any of the
concepts presented in this chapter. My contribution was therefore centered on
providing an investigative top view over the project’s state-of-the-art particular
features in order to assess directions where the Embryonics architecture could
further benefit from bio-inspiration.

Chapter 3 contains research results that are entirely original: the design of
a bio-inspired memory architecture for Embryonics. When I first approached this
task, the only memory resource of a molecule was part of the Functional Unit
(FU), under the form of a flip-flop. Despite implementing the triple modular
redundancy technique in order to achieve fault-tolerance, this resource alone was
considered as insufficient for storing large pieces of genetic programs. I therefore
had to look for alternative ways of providing data storage while keeping in mind
the constraints represented by their successful integration within the
Embryonics’ architecture. The features that had to be exhibited by the new
memory were concluded through the collective effort of a research team, which I
was member of. The design and implementation of macro-molecules, together
with the second operating mode (the memory mode) constitute the original
results of my research done at the LSL. Implementing the hardware design of
the new memory onto actual pieces of hardware constitutes another original
result. This achievement followed what was already a tradition at the LSL:
validating a hardware design not just by simulation, but also through hands-on
experiments carried over a physical implementation.

Chapter 4 contains results of the research carried out at the “Politehnica”
University of Timisoara (UPT), Romania and assembles two main parts. Since
biological processes are essentially different than those taking place in digital
devices, it appeared that building a fault tolerant bio-inspired memory has to
also find justifications that go above bio-inspiration; therefore, the first part of
this chapter (Sections 4.1 and 4.2) justifies the need for building fault-tolerant
memories from an engineering point of view: soft fails are a constant menace for
digital machines that have to exhibit extreme dependability levels, which also
constitute the target of the Embryonics project. Although this part is not
original, it provides solid arguments for the second part of the chapter. The
second part of the chapter contains original results toward achieving a
dependable macro-molecule. It begins with a formal model describing the normal
operation of a macro-molecule but also allowing for error injection. A reliability
analysis is provided here in order to investigate different strategies for tolerating
faults. Section 4.4 is dedicated to designing a single-fault-tolerant memory
structure and to settling all issues that arose with respect to integrating the new

Page 142 Ph.D. Thesis Chapter 5

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

architecture within the Embryonics platform. The design issues for
implementing single error-correcting without or with double error detecting
Hamming codes, the provided example, and the integration of macro-molecular
self-repair into the self-repairing hierarchy present in Embryonics, are all
original contributions. An original contribution is finding common ground
between two emerging fields in modern computing, the bio-inspired and the
quantum computing, by proving that techniques already established in one field
need not necessarily remain confined within that respective field but bring
benefit to other fields also. The introduction of the accuracy threshold estimation
technique to Embryonics, together with a complete reliability analysis and
further increasing data integrity at higher levels through concatenated coding
are entirely original contributions.

Beyond the realms of bio-inspired computing, the research involved over
this thesis also point to an original contribution that I believe to be also valuable.
Though it is almost non-technical, it argues upon similarities between
Embryonics and biology that go beyond bio-inspiration [99] and therefore we felt
it deserved a dedicated section, following next.

5.3 Electronic Stem Cells

Quote: “What makes stem cells special is that they're
immortal, and they can become anything they want to
be.” – Dr. James Thomson, University of Wisconsin.

The incredibly huge number of some 60 trillion ()1260 10× cells make up a

human being, with as many as 10 billion ()1010 cells with 100 trillion ()1410

interconnections concentrated in each of our brains [67]. Yet this entire structure
emerges from a single cell, the zygote, giving birth to a completely functional
organism that will, together with environmental influences, continue to develop
and enhance its features throughout its entire life. However, there are some key
questions that arise, driving biologists and not only [99]:
– how can a single cell divide for such a large number of times even us humans

find difficult to imagine?
– what mechanisms direct the division process so perfectly that when it ends

the result is a healthy organism?

Stem Cells. A special type of cell appears to answer some of the previous
questions, a cell that can give birth to other identical cells, and all being able to
become specialized cells themselves, such as muscular or nerve cells. After years
of hard work, scientists succeeded in growing and replicating these mother cells.
Called “stem cells”, these basic units ultimately mature and differentiate to
become the building material of all types of body tissue [99].

At its very beginning, each organism originates from a single cell, the
zygote. Its development process takes place through successive cellular divisions
and differentiations, proof for the existence of a very special cell, capable of
differentiating into any kind of needed, specialized cell [137]. Christened stem
cell, its unique transforming capacity could provide a solution for an organism's

Chapter 5 Ph.D. Thesis Page 143

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

survival to extreme stress, such as the loss of a vital organ, giving it a huge
potential in biology and medicine [74, 167, 170]. The zygote has the potential to
form an entire organism as it has the remarkable feature of being totipotent,
meaning that its potential is total. Immediately following the fertilization, it
starts to divide into identical totipotent cells that begin to specialize after several
cycles of cell division, forming a hollow sphere of cells, called a blastocyst [99].
Research conducted at Stanford reveals that in fact there are some stem cell
“guardians”, surrounding areas composed of stem cells, that determine which
type of ordinary cell they will specialize in [150]. As far as we know, the most
interesting characteristics of the stem cells are the following:
– they can give rise to specialized cells;
– undifferentiated, they seem to have the ability to divide for apparently

indefinite periods in culture;
– any of these cells can potentially develop into a fetus.

Not all the genetic program (the genome), which is carried by all cells, is
executed by any cell; instead, portions of the genome are selected and executed
through gene selection. In Embryonics, the process of a cell deciding which gene
to execute based on the coordinates from within its local environment, i.e. the
surrounding cells, determines its functionality, not unlike cellular specialization
in biological organisms. Furthermore, the access to the whole genetic program
provides our electronic cell with universality, much as biological stem cells have
the potential of becoming any type of specialized cell. There are no limits on how
large Embryonics cells can be. The universality of the cell then becomes actually
the capacity of executing variable tasks – the more computationally complex the
task, the more molecules required for the cell structure. Furthermore, by
carefully selecting which portion of the code is to be executed by molecules, their
universality is also assured – a molecule can effectively replace any other one by
simply adapting its internal code.

The Membrane. Every living cell's inner mass is delimited from the
surrounding environment by the cellular membrane, which also acts as an
interface with the exterior, allowing a limited exchange of substances. If the
biological world allows and depends on exchanging substances, the world of
silicon has more restrictive rules: the material replacing substances, but
nonetheless allowed and dependent on its exchange, is information. Much as in
nature, where substances entertain life by carrying energy and information, in
the world of silicon electronic signals carry in a similar way the same
ingredients, entertaining artificial life.

The artificial membrane (also called the space divider) has a triple role [99]:
– It acts like a spatial barrier, logically separating resources (molecules)

belonging to different cells and ensuring an individual identity with respect to
the environment.

– It acts as a guide for the entering configuration, which contains the operative
part of the genome. All molecules pertaining to a cell are configured with the
corresponding gene in a chain-like process, which does not allow information
to get outside the cell and be wasted; in a similar manner, the existence of the
cellular membrane in biological cells restricts the access of the environment
to their inner part both ways, thus preventing any unwanted loss of
substances or possible intrusions to or from the environment.

Page 144 Ph.D. Thesis Chapter 5

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

– Its presence triggers a mechanism determining which gene is to be executed
by each molecule. This can be seen as a specialization at the molecular level,
the surrounding membrane directing the whole process in a similar way the
stem cells’ “guardians” control cell specialization in biology.

Hierarchical Self-Testing and Self-Repairing. As in nature, where multiple
self-testing happens in each and every living being, Embryonics also relies on
more than one such mechanism [99]. The very first self-testing procedure
employs test vectors and applies to the core of the molecule. Both off-line and on-
line testing procedures are used at molecular level, thus allowing for successful
recovery, or healing [128].

Nature does a similar process at the lowest level possible, contained by the
very intimate structure of the DNA itself. The two strands that make up the
DNA continuously test each other by subtle chemical bonds, preventing and
detecting a majority of possible errors. During operation, the molecular core can
act as an active memory, much as the DNA does. The self-testing is ensured by
“breaking” its internal register into two halves storing complementary data and
acting in a similar way the two DNA strands do [99, 101].

Due to the vast complexity of biological organisms, healing (self-repairing)
mechanisms can only be effective if the task is hierarchically decomposed and
dealt with accordingly. The healing processes that take place in nature assume
the cell is capable of fabricating the resources required. This is, of course,
impossible with current technology, the only way of providing additional
resources at the molecular level being as spares. Embryonics uses a hierarchy
composed of two self-repairing mechanisms, described in detail throughout the
thesis. Whenever the self-repair at the molecular level is overcome, there is a
second self-repair attempt, at the cellular level. This is again inspired by nature,
where foreign bodies (objects or mutating cells) are isolated and eventually
eliminated.

5.4 Embryonics: Present and Future

This thesis represents a step forward in the development of the Embryonics
project and contains the concepts and implementation of its most recent design
concerning the electronic molecule. From the first explorations with phylogenetic
processes in hardware with the FireFly machine [26], milestones for Embryonics
were set by the implementation of the MicTree electronic cell [62, 66] and then
by the MuxTree electronic molecules [67, 100, 128]. Adding extended means for
memory storage has been set as a future target in [128], which was accomplished
by the present work under the form of RAM-MuxTree [100, 102]. The
Embryonics landscape includes a range of applications that have demonstrated
the hardware implementations (Figure 5-1):
– MicTree: Von Neumann universal computer [56], BioWatch;
– MuxTreeSR: Von Neumann universal constructor, BioWatch [124, 125];
– RAM-MuxTreeSR: BioWall [134, 135], POEtic tissues [76, 136];
– BioCube (Figure 5-2), which explores self-replication processes in a 3D space

[168].

Chapter 5 Ph.D. Thesis Page 145

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

Figure 5-1: The current Embryonics landscape.

Figure 5-1 presents the current Embryonics landscape from an
architectural point of view. Though not designed for implementing phylogenetic
processes, the MuxTreeSR molecules offer a finer granularity for encoding the
genome than the MicTree cell; the same comparison stands between MuxTreeSR
and the RAM-MuxTreeSR, which introduces specialized memory structures.
Over the ontogenetic axis, one can discover the maturing stages of the
architectural concepts and hierarchy in Embryonics: the cellular level, with the
architecture of the MicTree cell, was soon followed by the molecular level, with
the MuxTreeSR molecules. With the RAM-MuxTreeSR molecule the ontogenetic
processes now have a complete hardware platform that offers efficient ways of
implementing both logic and memory.

Figure 5-2: The BioCube [Photo by André Badertscher].

The FTRAM-MuxTreeSR architecture brings new robustness to the
Embryonics architecture, which we believe to be of prime relevance for the
Embryonics future. As space exploration is set to regain the strong momentum it
reached in the last decades of the XXth century, dependable computing machines

Page 146 Ph.D. Thesis Chapter 5

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

seek alternative inspiration both in their design and computing paradigms.
Though the existence of common field between seemingly so-different fields such
as bio-inspired computing and quantum computing would appear unlikely,
dependability requirements offer insights that bring these fields together:
certain techniques evolved in one field may be well used by the other.

The future of Embryonics also appears to be manifold. Conceptually, there
is still research to be done over fault-tolerance strategies at the cellular level;
there has been little simulation and experimentation with reconfiguration at this
level and the addition of the memory structures requires new strategies for error
coding. Furthermore, there is room to improvement concerning the automatic
assessment of fault-tolerance levels, from both qualitative and quantitative
perspectives. Architecturally, complex computing systems (including quantum
computers) should benefit from embryonic implementations; research efforts are
already on their way toward building embryonic tissues, a considerable boost
also coming from the acknowledgement of the field by the ITRS report [169].
From a physical point of view, implementations should go from the 2D to the 3D
space, a first attempt being made by the BioCube [168].

Chapter 5 Ph.D. Thesis Page 147

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

Page 148 Ph.D. Thesis Chapter 5

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

APPENDIX

A HARDWARE IMPLEMENTATION

The research throughout this thesis was conducted in two places, the Logic
Systems Laboratory (LSL) at the Swiss Federal Institute of Technology in
Lausanne and the Advanced Computing Systems and Architectures (ACSA) at
the “Politehnica” University of Timisoara. As an important part of the work
carried out for this thesis, the birth of memory structures in Embryonics took
place in the LSL, where it has become a tradition to have the designs
implemented as actual hardware instead of limiting to software simulations
only. Such an approach allows hands-on experimentation with physical devices,
and often reveals aspects that could not be put into evidence in the software
simulation phase and may benefit from further improvements.

This section presents the hardware implementation for the latest MuxTree
design and some of the hardware configurations we employed in order to
experiment with the macro-molecules.

A.1 RAM-MuxTreeSR

In this section, we will describe the technical details concerning the
implementation of memory structures (the macro-molecules) over the FPGA
prototype developed for the Embryonics project. Rather than providing a
complete, top-down view of the new electronic molecule, which we called RAM-
MuxTreeSR, we will present the routing process involved at the molecular core
and the hardware additions made in order to allow the existence of memory
structures. We will give details concerning the existent mechanisms of self-
repairing and self-replicating only insofar they are useful for a clearer
understanding of the subject matter.

A.1.1 Overview

Given the hierarchical structure of the hardware entities in Embryonics,
one has to start with a molecular assembly in order to implement and
experiment with any design. For this purpose, the platform of the Biodule 603
(from bio-inspired module) was employed. Each such device is based on a Xilinx
4000 series FPGA and implements a single electronic molecule in a specially
conceived package in order to offer the possibility of a puzzle-like assembly of
many units (Figure A-1).

As described in Chapter 3, the Biodule 603 has been modified in order to
offer a choice of two operating modes: the logic mode and the new memory
operating mode, allowing two sub-modes (see SubSection 3.4.5):

Appendix Ph.D. Thesis Page 149

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

• the short memory mode configures the molecule as an 8-bit storage space
with switching capabilities;

• the long memory mode configures the molecule as a 16-bit storage space.

Figure A-1: The experimental platform, an array of 6x3 Biodules 603.

[Photo by André Badertscher]

A.1.2 Molecular Resources

The most important resource for implementing a memory structure is the
configuration register (CREG); denoted as SR20RE in Figure A-2, it is
implemented by a chain of 21 SR-type flipflops (SR0 being the least significant
and SR20 being the most significant). The operating mode of the molecule is
specified by the binary value stored by the SR20 flip-flop (denoted M in Section
3.5):
• if SR20 contains a logic “0” then the molecule operates in logic mode; the

functional resources, the switching block (SB) and the functional unit (FU)
are both available to the user through the configuration loaded into the
CREG;

• if SR20 contains a logic “1” then the molecule operates in memory mode; the
FU (denoted Q in Section 3.5) now has the role of configuring the memory
operating sub-mode.

In order to enable any of the 8 or 16 bits choices of storage space, the
original CREG design [128] was modified to use two groups of flip-flops, denoted
as SR19-12 and SR 11-4 (shown in Figure A-3): they provide maximum storage
together in the long memory mode (see SubSection 3.5.2.3) whereas in the short
memory mode (see SubSection 3.5.2.2) only SR19-12 is used.

In Figure A-3 signal MEM enables normal memory operation, data shifting
being allowed only for SR19-12 and SR11-4 according to the respective memory
sub-mode. Multiplexers are used to route incoming data stream to SR19-12
through signal TO_FF, while output data stream is routed through signal
OUT_REG. The outputs of SR19-12 and SR11-4 are selected for OUT_REG
according to the memory sub-mode by using the content of the FU, provided by
signal FROM_FF.

Page 150 Ph.D. Thesis Appendix

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

Several signals are necessary for enabling the memory mode. First, it is
necessary to differentiate between the logic mode and the memory mode, since
the nature of CREG information is operating mode dependent. In logic mode the
information stored by the CREG is static, each bit of the MOLCODE being used
in order to specify the logic configuration for the molecule (through the FU) and
the interactions with its neighbors (through the SB). When in memory mode
(regardless of the sub-mode), some of the information stored by the CREG
become of dynamic nature, being shifted from one molecule to the next inside the
macro-molecule, while some information remain static:
• in short memory mode, MOLCODE bits MC21:20 and MC11:0 are static (see

SubSection 3.5.2.2);
• in long memory mode, MOLCODE bits MC21:20 and MC3:0 are static (see

SubSection 3.5.2.3).
Second, there are functional requirements that have to be settled in order

to ensure a proper molecular assembly that will make up for a complete macro-
molecule. The data shifting process is synchronous to the functional clock FCK,
selected by an active L_EN signal (L_EN=”1”) and enabled by an active MEM
signal (MEM=”1”). The data path is determined by the relative position of each
molecule inside the macro-molecule; MOLCODE bits MC3:1 are used in order to
determine whether a certain molecule is positioned at the north or south border,
or if it is a corner at the south border. Signals locating the molecule’s position are
provided by the CONF_BITS block, presented in Figure A-4 and also shown in
Figure 3-14 (active on logic “1”):
• BS is active when the molecule is located at the south border of a macro-

molecule containing at least two columns, but it is not a corner;
• RC is active when the molecule is located at the right corner to the south of a

macro-molecule containing at least two columns;
• LC is active when the molecule is located at the left corner to the south of a

macro-molecule containing at least two columns;
• BC is active when the molecule is located at the bottom of a macro-molecule

containing one column only, also called a memory column;
• BN is active when the molecule is located at the at the north border of a

macro-molecule;
• BSX is active when the molecule is part of the bottom row of any macro-

molecule;
• NB is active when the molecule is located neither at the north border, nor at

the south border of the macro-molecule;
• BSRC is active when the molecule is located either at the south border, or it

is the right corner of a macro-molecule containing at least two columns.
The propagation of data is ensured through a group of multiplexers driven

by signals provided by the CONF_BITS logic block. Because the reconfiguration
mechanism that ensures the self-repair at the molecular level also uses
multiplexers, the memory data propagation process was required to be settled
first. Therefore, whenever a memory molecule is situated in the bottom of a
macro-molecule, information will be shifting in from the C_I_W signal (WIC in
Figure 3.5B) and whenever a memory molecule is situated at the north border of
a macro-molecule, information will be shifted out through the C_O_S signal
(SOC in Figure 3.5C).

Appendix Ph.D. Thesis Page 151

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

Figure A-2: Top view of the configuration register CREG.

Page 152 Ph.D. Thesis Appendix

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

Figure A-3: Internal schematic for the configuration register CREG.

In Figure A-5 the coordinates of data shifting when a memory molecule is
part of the bottom of a macro-molecule are shown. When the molecule is the
bottom of a memory column, the information will be shifted inside the molecule

Appendix Ph.D. Thesis Page 153

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

Figure A-4: Internal schematic for the configuration bits block CONF_BITS.

through signal I_C_NI (north input). If the molecule is a left corner, the
information will enter through signal EI (east input) also shown in Figure 3-6A.
If neither is the case, then information shifting is done through signal WI (west
input), also shown in Figure 3-6B.

Shifting the data out of the memory molecule is a process similar to that of
shifting the data in with respect to being driven by multiplexers. In order to
assemble a complete macro-molecule, both input and output connections have to

Page 154 Ph.D. Thesis Appendix

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

be properly configured. The output signals that need to be redefined are EO and
C_EO (to the east), WO (to the west).

The implementation of signal WO is presented in Figure A-5, routing signal
NEW_EI when the molecule is located at the bottom of the macro-molecule, but it
is neither a left corner, not a bottom of column (signal BSRC active). Signal
NEW_EI is obtained from signals EI (east input) and I_C_NI (north input),
multiplexed through signal RC. When RC is active (the molecule is a right
corner) the WO signal will take the value of the I_C_NI signal, the process being
shown in Figure 3-16 where signal NIC (I_C_NI) goes to WOUT (WO). If RC is
not active, then the WO signal will take the value of the EI signal (shown as EIN
in Figure 3-16).

The implementation of signal EO is presented in Figure A-6. If the molecule
is located at the south border of the macro-molecule (signal BSX active) then the
value of signal EO will take the value of signal I_C_NI (NIC in Figure 3-18).

Data output ports are available at each molecule situated at the north
border of a macro-molecule through the N_OUT signal shown in Figure A-7. The
storage data is output from the CREG by using a multiplexer driven by the MEM
signal (which is active when in memory mode only) and reaches the data output
port (also shown in Figure 3-13 as using the NOUT signal).

A.1.3 The HOLD signal

The HOLD mechanism was introduced in order to control the data shifting
process inside a macro-molecule. When the HOLD signal is active (on logic “1”)
the memory data shifting process is inhibited. Each macro-molecule has an input
HOLD signal to the molecule situated at the left corner or at the bottom of
column, which is than driven both horizontally (from signal WIC to signals EOC
and NOC) and vertically (from signal SIC to signal NOC).

The implementation of signals C_NO (signal NOC in Figure 3-20) and
C_EO (signal EOC in Figure 3-20) is presented in Figure A-6. If the molecule is
not located at the bottom of the macro-molecule then its value is given by signal
C_SI (signal SIC in Figure 3-20); its value is determined by signal WI (signal
WIC in Figure 3-20) if the molecule is either the left or the right corner or by
signal C_WI otherwise.

If the molecule is located at the south border of the macro-molecule, but it is
not the right corner (signal BSX active but signal RC inactive) then if the
molecule is not the left corner or the bottom of a memory column the value of
signal C_EO will take over the value from signal C_WI (signal WIC in Figure 3-
20). On the other hand, if the molecule is located at the left corner or is the
bottom of a memory column, the C_EO signal will drive the value of signal of
signal WI; this is different than suggested in Figure 3-20, being changed with the
implementation of the Fault-Tolerant RAM-MuxTree concepts and shown in
Figure 4-24.

Appendix Ph.D. Thesis Page 155

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

Figure A-5: Top view of the RAM-MuxTree molecule (left half).

Page 156 Ph.D. Thesis Appendix

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

Figure A-6: Top view of the RAM-MuxTree molecule (right half).

Appendix Ph.D. Thesis Page 157

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

Figure A-7: Top view of the Functional Unit (FU).

Page 158 Ph.D. Thesis Appendix

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

A.2 FTRAM-MuxTreeSR

The FTRAM-MuxTree molecule extends the design of the RAM-MuxTree by
allowing the implementation of error-correcting codes within structures following
the general architecture shown in Figure 4-16.

A.2.1 Overview

There are two steps that have to be carried out in order to achieve fault
tolerance inside a macro-molecule:
• fault location is enabled by the Error Correcting Logic (ECL), a structure that

computes redundant data based on the genome data (Storage Data in Figure
4-16), compares the results with the reference (Check Data in Figure 4-16),
and also generates the necessary HOLD signals;

• fault correction is also enabled by the ECL, which also generates the INV
signals used in order to flip the value of erroneous bits. Taking into
consideration the particular data path information follows inside a macro-
molecule, data can be accessed at the north border of each macro-molecule,
while the correction process takes place one clock cycle later, at the south
border of the macro-molecule.

The operations that are to be carried out inside a fault-tolerant macro-
molecule and their respective signal configurations are shown in Table 4-6.

A.2.2 The INV signal

In order to describe the role of the INV signal we will revisit Figure 4-21,
which presents two essential moments in time: data that is accessed through the
data output ports at the north border of the macro-molecule at time t reaches the
south border the next clock cycle, at time t+1. For this particular situation, the
macro-molecule is a 3x4 array. Therefore, according to SubSection 4.3.1, at time t
data is read under the form of () ()31 32 33

F F FData t c c c= and, after computing the

Hamming equations it results that the middle bit ()32
Fc is erroneous. Therefore,

the error matrix is and the relationship between the data

accessed at time t and the data that needs to be restored results as:
() ()0 1 0E t =

() () ()_Data t Original Data t E t= ⊕ . From this equation the data can be restored by

() () ()_Original Data t Data t E t= ⊕ . We could also view the error matrix as a

containing complemented INV signals; wherever there is a logic “1”, the
respective INV signal should be activated for the next clock cycle (INV signals
are active on logic “0”). Therefore at time t+1 signal INV2 has to be activated in
order to recover the damaged data: () () ()1 2 31 1 1 0 1E t INV INV INV= − − − = 0 .

Each memory molecule located at the south border has an access port
providing the local INV signal, shown in Figure A-3 and derived from the
MEM_INV signal from Figure A-2.

Appendix Ph.D. Thesis Page 159

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

Figure A-8: Block schematic of a molecule’s state automaton.

A.2.3 The KILL signal

The occurrence of a non-recoverable error is also possible during normal
operation of a fault-tolerant macro-molecule. If such is the case, the ECL triggers
the KILL signal, which will effectively disable the entire cell and start the self-
repairing processes at the higher, cellular level (Figure 4-35). The KILL signal is
activated when the left corner of bottom of column molecule both the INV and
the HOLD signals all active (INV set to logic “0” and HOLD set to logic “1”); the
configuration for setting the KILL signal is given in Table 4-6. The KILL signal
is shown in Figure A-2 as G_K_MEM.

In order to produce the same effect at molecular level, the KILL signal
generated by the ECL (when in memory mode) has to be combined with the same
signal produced when in logic mode. The state of each molecule [128] is stored by
the automaton shown in Figure A-8, in which the G_K_MEM signal has been
added in order to also reflect the death of the cell due to non-recoverable memory
errors.

Page 160 Ph.D. Thesis Appendix

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

Figure A-9: Map of a fault tolerant macro-molecule (logic level).

A.2.4 ECL Implementation for a (7,3) Hamming SEC code

The block schematic for an ECL implementing a single error correcting code was
shown in Figure 4-27. All molecules that implement the ECL are operating in
logic mode. Figure A-9 presents the logic level of the ECL (the configurations of
the FU units), while Figure A-10 presents the bus level of the ECL (the
configurations of the SB units) of all molecules that make up the ECL unit [98].

The notations are those used in [67]. Due to the fine graininess in
Embryonics (which was a target from the very beginning), a significant number

Appendix Ph.D. Thesis Page 161

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

Figure A-10: Map of a fault tolerant macro-molecule (bus level).

of molecules (that is, 6 of them) have to be used in order to implement a single
EX-OR gate. This fact contributes to a significant hardware overhead that could
be improved by adding a programmable EX_OR gate to the FU units.

A.2.5 Experiments with Macro-Molecules

Experimentation has been done with macro-molecules of different dimensions.
With a number of 18 Biodules available, experiments were conducted with a 3x1
memory column (shown in Figure A-11), a 3x3 macro-molecular array (shown in

Page 162 Ph.D. Thesis Appendix

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

Figure A-11: Top view of a 3x1 memory column.

Figure A-12), and a 6x3 macro-molecular array.
The two essential processes for the Embryonics architecture, namely self-

repair and self-replication were preserved in the new FTRAM-MuxTree design.
While the self-repairing mechanisms required a significant change in the way

Appendix Ph.D. Thesis Page 163

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

Figure A-12: Top view of a 3x3 macro-molecule.

they operated in order to ensure memory data protection, this was not the case
when the self-replication mechanisms were concerned. Since the macro-
molecules are configured by the MOLCODE (as are machines made of logic
molecules), the self-replication process extends successfully upon the new
memory structures.

At this moment, the design of FTRAM-MuxTree molecule may be
considered as final: there are logic molecules for implementing combinational
and sequential logic machines, and there are memory molecules required by
micro-programmed machines. With self-repairing capabilities accommodating
both molecular operating modes, it remains for the future to have complex
computing systems implemented onto the Embryonics platform as extremely
dependable machines.

Page 164 Ph.D. Thesis Appendix

Lucian Prodan A Bio-Inspired and Fault Tolerant Multiplexer-Based FPGA

REFERENCES

[1] M. Abramovici, M. A. Breuer, A. D. Friedman. Digital Systems Testing
and Testable Design. Wiley-IEEE Press, 1994.

[2] M. Abramovici, C. Stroud. “No-overhead BIST for FPGAs”. In Proc. 1st
IEEE International On-Line Testing Workshop, pp. 90-92, 1995.

[3] A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr. “Basic Concepts and
Taxonomy of Dependable and Secure Computing”. IEEE Transactions on
Dependable and Secure Computing, 1(1), Jan-Mar 2004, pp.11-33.

[4] C. Bernard, D. Mange, A. Stauffer. Catalogue logidules. Laboratoire de
systèmes logiques, Ecole Polytechnique Fédérale de Lausanne, Oct. 1994.

[5] M. Blaum, R. Goodman, R. McEliece. “The Reliability of Single-Error
Protected Computer Memories”. IEEE Transactions on Computers,
vol.37, no.1, pp.114-119, January 1988.

[6] D.W. Bradley, A.M. Tyrrell. “Immunotronics: Hardware Fault Tolerance
Inspired by the Immune System”. Proceedings 3rd International
Conference on Evolvable Systems, LNCS 1801, pp. 11-20, Springer-
Verlag, April 2000.

[7] S.D. Brown, R.J. Francis, J. Rose, Z.G. Vranesic. Field-Programmable
Gate Arrays. Kluwer Academic Publishers, Boston, 1992.

[8] A.W. Burks, ed. Essays on Cellular Automata. University of Illinois
Press, Urbana, IL, 1970.

[9] C. Carmichael. Triple Module Redundancy Design Techniques for Virtex
FPGAs. Xilinx Application Note XAPP197, June 2001.

[10] C. Carmichael, E. Fuller, J. Fabula, F. De Lima. “Proton Testing of SEU
Mitigation Methods for the Virtex FPGA”. Military and Aerospace
Programmable Logic Devices Conference (MAPLD), USA, 2001.

[11] F.H.C. Crick. “On Protein Synthesis”. Symposia of the Society for
Experimental Biology, 12, 1958, pp. 548-555.

[12] D.R. Croley, H.B. Garett, G.B. Murphy, T.L. Garrard. “Solar Particle
Induced Upsets in TDRS-1 Attitude Control System RAM During the
October 1989 Solar Particle Events”. IEEE Transactions on Nuclear
Science, NS-42, 1489 (1995).

[13] C. Dai. “Soft Errors in Present and Future. Semiconductor Technologies
and Products”. MSD (Materials Structures and Devices) C2S2 (Center for
Circuits, Systems, Software) Workshop, Berkeley CA, 2002.

[14] C. Dai, N. Hakim, S. Hareland, J. Maiz, S.W. Lee. “Alpha-SER Modeling
and Simulation for Sub-0.25um CMOS Technology”. Symposium on VLSI
Technology Digest of Technical Papers, 1999.

[15] B. Davari. CMOS Technology Scaling, 0.1um and Beyond. IEDM, 1996.
[16] S.Durand, A.Stauffer, D.Mange. Biodule: An Introduction to Digital

Biology. Technical Report, Logic Systems Laboratory, Swiss Federal
Institute of Technology (EPFL), Lausanne, 1994.

[17] F. Faccio, G. Anelli, M. Campbell, M. Delmastro, P. Jarron, K. Kloukinas,
A. Marchioro, P. Moreira, E. Noah, W. Snoeys, T. Calin, J. Cosculluela, R.

References Ph.D. Thesis Page 165

A Bio-Inspired and Fault Tolerant Multiplexer-Based FPGA Lucian Prodan

Velazco, M. Nicolaidis, A. Giraldo. Total Dose and Single Event Effects
(SEE) in a 0.25m CMOS Technology. CERN-LHCC RD49 Project,
Geneva, Switzerland.

[18] B. Feingold, P. Layton. “Total Dose and Single Event Effects Testing of a
Commercial 0.8um CMOS Gate Array Process”. The 2nd Military and
Aerospace Programmable Logic Device International Conference
(MAPLD99), 1999.

[19] T.C. Fogarty, J.F. Miller, P. Thomson. “Evolving digital logic circuits on
Xilinx 6000 family FPGAs”. In P.K. Chawdhry, R. Roy, and E.K. Pant
(eds.), Soft Computing in Engineering Design and Manufacturing,
Springer-Verlag, 1998, pp. 299-305.

[20] T. Francke, M. Boezio, G. Barbiellini, G. Basini, R. Bellotti, U. Bravar, F.
Cafagna, P. Carlson, M. Casolino, M. Castellano, M. Circella, C. De
Marzo, M.P.De Pascale, N. Finetti, R.L.Golden, C. Grimani, M. Hof,
W.Menn, J.W. Mitchell, A. Morselli, J.F. Ormes, P. Papini, S. Piccardi, P.
Picozza, M. Ricci, P. Schiavon, M. Simon, R. Sparvoli, P. Spillantini, S.A.
Stephens, S.J. Stochaj, R.E. Streitmatter, M. Suffert, A. Vacchi, N.
Weber, N. Zamp. “A New Measurement of the Atmospheric Proton and
Muon Fluxes”. In Proc. 26th Intl. Cosmic Ray Conference, vol. 2, 1999, pp.
80-83.

[21] L.B. Freeman. “Critical Charge Calculations for a Bipolar SRAM Array”.
IBM Journal of Research and Development, vol.40, no.1, January 1996,
pp. 119-129.

[22] J. Gaisler. “Evaluation of a 32-Bit Microprocessor with Built-In
Concurrent Error Detection”. In 27th Annual Intl. Symposium on Fault-
Tolerant Computing (FTCS-27), 1997, pp. 42-46.

[23] J. Gaisler. Concurrent Error Detection and Modular Fault-Tolerance in a
32-Bit Processing Core for Embedded Space Flight Applications. On-
board Data Division, European Space Research and Technology Centre,
2200 AG Noordwijk, The Netherlands.

[24] H. deGaris. “CAM-BRAIN: The Evolutionary Engineering of a Billion
Neuron Artificial Brain by 2001 Which Grows/Evolves at Electronic
Speeds Inside a Cellular Automata Machine (CAM)”. Towards Evolvable
Hardware, Springer Verlag, New York, 1996.

[25] S.F. Gilbert. Developmental Biology. Sinauer Associates, Inc., MA, 3rd
ed., 1991.

[26] M. Goeke, M. Sipper, D. Mange, A. Stauffer, E. Sanchez, M. Tomassini.
“Online Autonomous Hardware”. In T. Higuchi, M. Iwata, W. Liu, eds.
Proceedings International Conference on Evolvable Systems: From
Biology to Hardware (ICES96), LNCS 1259, Springer-Verlag, Berlin,
1997, pp. 96-106.

[27] A.J. van de Goor. Testing Semiconductor Memories. Theory and Practice.
John Wiley and Sons, 1991.

[28] C. S. Guenzer, R. G. Allas, A. B. Campbell, J. W. Kidd, E. L. Petersen, N.
Seeman, E. A. Wolicki. “Single Event Upsets in RAM’s Induced by
Protons at 5.2 GeV and Protons and Neutrons below 100 MeV”. IEEE
Trans. Nuclear Science, vol. NS-27, pp. 1485–1489.

[29] C. S. Guenzer, E. A. Wolicki, R. G. Allas. “Single Event Upsets of
Dynamic RAM’s by Neutrons and Protons”. IEEE Trans. Nuclear Science,
vol. NS-26, 1979, pp. 5048.

Page 166 Ph.D. Thesis References

Lucian Prodan A Bio-Inspired and Fault Tolerant Multiplexer-Based FPGA

[30] R. Gupta. “Addressing problems of the large”. In IEEE Design & Test of
Computers, July-August 2003, pp. 3.

[31] F. Hanchek, S. Dutt. “Methodologies for Tolerating Cell and Interconnect
Faults in FPGAs”. IEEE Transactions on Computers, vol. 47, no. 1,
January 1998.

[32] J.P. Hayes. Introduction to Digital Logic Design. Addison-Wesley,
Reading, MA, 1993.

[33] P. Hazucha, C. Svensson. “Impact of CMOS Technology Scaling on the
Athmosferic Neutron Soft Error Rate”. IEEE Trans. on Nuclear Science,
vol.47, no.6, December 2000, pp. 2586-2594.

[34] B.G. Henson, P.T. McDonald, W.J. Stapor. SDRAM Space Radiation
Effects Measurements and Analysis. Innovative Concepts Incorporated,
McLean, VA 22102, www.innocon.com.

[35] J.H. Holland. Adaptation in Natural and Artificial Systems. The
University of Michigan Press, Ann Arbor, 1975.

[36] J.W. Howard Jr., K.A. LaBel, M.A. Carts, R. Stattel, C.E. Rogers, T.
Irwin. “Update on Total Dose and Single Event Effects Testing of the
Intel Pentium III (P3) and AMD K7 Microprocessors”. The 4th Military
and Aerospace Programmable Logic Device International Conference
(MAPLD01), 2001.

[37] M.Y. Hsiao. “A Class of Optimal Minimum Odd-Weight-Column SEC-
DED Codes”. IBM Journal of Research and Development, vol.14, pp.395-
401, July 1970.

[38] M. Huhtinen, F. Faccio. “Computational method to estimate Single Event
Upset rates in an accelerator environment”. Nucl.Instrum.Meth.A450,
2000, pp.155-172.

[39] B.W. Johnson. Design and Analysis of Fault-Tolerant Digital Systems.
Addison-Wesley, 1989.

[40] J.O. Kephart. “A Biologically Inspired Immune System for Computers”.
In R. Brooks, P. Maes, eds, Artificial Life IV, MIT Press, 1994.

[41] J.R. Koza. Genetic Programming. The MIT Press, Cambridge, MA, 1992.
[42] K. LaBel, A. Moran, D. Hawkins, A. Sanders, C. Seidleck, H. Kim, J.

Forney, E.G. Stassinopoulos, P. Marshall, C. Dale, R. Barry. Single Event
Effect Proton And Heavy Ion Test Results in Support of Candidate NASA
Programs. Whitepaper, 1995.

[43] J. Lach, W.H. Mangione-Smith, M. Potkonjak. “Efficiently Supporting
Fault-Tolerance in FPGAs”. In Proc. FPGA 98, Monterey, CA, February
1998, pp.105-115.

[44] P.K. Lala. Self-Checking and Fault-Tolerant Digital Design. Morgan
Kaufmann, 2001.

[45] P.K. Lala. Digital Circuit Testing and Testability. Academic Press, 1997.
[46] P.K. Lala. Fault Tolerance and Fault Testable Hardware Design. Prentice

Hall, 1985.
[47] C.G. Langton. “Self-Reproduction in Cellular Automata”. Physica 10D,

pp.135-144, 1984.
[48] J.A. Lesniak, W.R. Weber. “The Charge Composition and Energy Spectra

of Cosmic-Ray Nuclei”. Astrophysics Journal 223, 1978.
[49] D. Levi, S. Guccione. “GeneticFPGA: A Java-Based Tool for Evolving

Stable Circuits”. In Proc. 1st NASA/DoD Workshop Evolvable Hardware,
Pasadena CA, July 1999, pp. 12-17.

References Ph.D. Thesis Page 167

A Bio-Inspired and Fault Tolerant Multiplexer-Based FPGA Lucian Prodan

[50] H.R. Lewis, C.H. Papadimitriou. Elements of the Theory of Computation.
Prentice-Hall, Englewood Cliffs, NJ, 1981.

[51] P. Liden, P. Dahlgren, R. Johansson, J. Karlsson. “On Latching
Probability of Particle Induced Transients in Combinational Networks”.
In Proc. Intl. Symposium on Fault-Tolerant Computing (FTCS-24), 1994,
pp.340-349.

[52] D. Mange. Microprogrammed Systems: An introduction to Firmware
Theory. Chapman & Hall, London, 1992.

[53] D. Mange, S. Durand, E. Sanchez, A. Stauffer, G. Tempesti, P. Marchal,
C. Piguet. A New Paradigm for Developing Digital Systems Based on a
Multi-Cellular Organization. Technical Report, Logic Systems
Laboratory, EPFL, Lausanne, 1996.

[54] D. Mange, S. Durand, E. Sanchez, A. Stauffer, G. Tempesti, P. Marchal,
C. Piguet. ”A New Self-Reproducing Automaton Based on a Multi-
Cellular Organization”. Technical Report No 95/114, Logic Systems
Laboratory, Swiss Federal Institute of Technology (EPFL), Lausanne,
April 1995.

[55] D. Mange, M. Goeke, D. Madon, A. Stauffer, G. Tempesti, S. Durand.
Embryonics: A New Family of Coarse-Grained Field-Programmable Gate
Arrays with Self-Repair and Self- Reproducing Properties. Technical
Report No 95/154, Logic Systems Laboratory, Swiss Federal Institute of
Technology (EPFL), Lausanne, November 1995.

[56] D. Mange, D. Madon, A. Stauffer, G. Tempesti. “Von Neumann Revisited:
A Turing Machine with Self-Repair and Self-Reproduction Properties”.
Robotics and Autonomous Systems, Vol. 22, No. 1, 1997, pp. 35-58.

[57] D. Mange, P. Marchal, C. Piguet, E. Sanchez. Circuit électronique
organisé en réseau matriciel de cellules. No CH 688 425, September 15,
1997.

[58] D. Mange, P. Marchal, C. Piguet, E. Sanchez. Electronic System
Organised as an Array of Cells. US Patent No 5,508,636, April 16, 1996.

[59] D. Mange, P. Marchal, C. Piguet, E. Sanchez. Electronic System
Organised as an Array of Cells. Swiss patent application (applicant:
CSEM, Centre suisse d'électronique et de microtechnique S.A.), patented
in 17 european countries (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT,
LI, LU, MC, NL, PT, SE), 1994.

[60] D. Mange, E. Sanchez, A. Stauffer, G. Tempesti, P. Marchal, C. Piguet.
“Embryonics: A New Methodology for Designing Field Programmable
Gate Arrays with Self-Repair and Self-Replicating Properties”. IEEE
Transactions on VLSI Systems, 6 (3), 1998, pp. 387-399.

[61] D. Mange, M. Sipper. “Von Neumann’s Quintessential Message:
Genotype + Ribotype = Phenotype”. In Artificial Life, vol.4, no.3, 1998,
pp. 225-228.

[62] D. Mange, M. Sipper, P. Marchal. “Embryonic Electronics”. In
BioSystems 51, 1999, pp. 145-152.

[63] D. Mange, M. Sipper, A. Stauffer, G. Tempesti. ”Toward Robust
Integrated Circuits: The Embryonics Approach”. In Proc. of the IEEE,
vol. 88, No. 4, April 2000, pp. 516-541.

[64] D. Mange, A. Stauffer. Interpréteur du langage PICOPASCAL. Logic
Systems Laboratory, The Swiss Federal Institute of Technology (EPFL),
Lausanne, 1998.

Page 168 Ph.D. Thesis References

Lucian Prodan A Bio-Inspired and Fault Tolerant Multiplexer-Based FPGA

[65] D.Mange, A.Stauffer. “Introduction to Embryonics: Towards New Self-
repairing and Self-reproducing Hardware Based on Biological-like
Properties”. In Artificial Life and Virtual Reality, John Wiley, 1994.

[66] D. Mange, A. Stauffer, G. Tempesti. Self-Replicating and Self-Repairing
FPPAs. Technical Report No. 97/246, Logic Systems Laboratory, The
Swiss Federal Institute of Technology, Lausanne, September 1997.

[67] D. Mange, M. Tomassini, eds. Bio-Inspired Computing Machines:
Towards Novel Computational Architectures. Presses Polytechniques et
Universitaires Romandes, Lausanne, Switzerland, 1998.

[68] P. Marchal. “Field Programmable Gate Arrays: State of the Art”.
Communications of the ACM, vol. 42, no. 4, 1999.

[69] P. Marchal. “John von Neumann: The Founding Father of Artificial Life.”
In Artificial Life, vol.4, no.3, 1998.

[70] P. Marchal, P. Nussbaum, C. Piguet, S. Durand, D. Mange, E. Sanchez,
A. Stauffer, G. Tempesti. “Embryonics: The Birth of Synthetic Life”. In E.
Sanchez, M. Tomassini, eds., Towards Evolvable Hardware, LNCS,
Springer Verlag, Berlin, 1996, pp. 166-197.

[71] P. Marchal, C. Piguet, D. Mange, A. Stauffer, S. Durand. “Embryological
Development on Silicon”. In R.A. Brooks, P. Maes, eds., Artificial Life IV,
MIT Press, Cambridge, MA, pp. 365-370.

[72] P. Marchal, A. Stauffer. “Binary Decision Diagram Oriented FPGAs”. In
Proc. FPGA’94, 2nd International ACM/SIGDA Workshop on Field-
Programmable Gate Arrays, Berkeley, CA, February 1994, pp. 1-10.

[73] D. Marston. Memory System Reliability With ECC. Intel Appl. Note, AP-
73, Intel Corp., 1980.

[74] M. May. “Mother Nature’s Menders. The Battle Against Aging”. Scientific
American Special Issue “The Quest to Beat Aging”, June 2000.

[75] T.C. May, M.H. Woods. “Alpha-particle-induced soft errors in dynamic
memories”. IEEE Trans. Electronic Devices, vol. ED-26, 1979, pp. 2.

[76] J.M. Moreno, Y. Thoma, E. Sanchez, O. Torres, G. Tempesti. “Hardware
Realization of a Bio-inspired POEtic tissue”. In R. S. Zebulum, D.
Gwaltney, G. Hornby, D. Keymeulen, J. Lohn, and A. Stoica, eds.
Proceedings of the NASA/DoD Conference on Evolvable Hardware
(EH’04), Los Alamitos, CA, 2004, pp. 237-244.

[77] R. Negrini, M. G. Sami, R. Stefanelli. Fault Tolerance Through
Reconguration in VLSI and WSI Arrays. The MIT Press, Cambridge, MA,
1989.

[78] J. von Neumann. The Computer and the Brain (2nd edition). Physical
Science, 2000.

[79] J. von Neumann. The Theory of Self-Reproducing Automata. A. W.
Burks, ed. University of Illinois Press, Urbana, IL, 1966.

[80] J. von Neumann. Collected Works (6 volumes). Pergamon Press, 1961-63.
[81] J. von Neumann. “Probabilistic Logic and the Synthesis of Reliable

Organisms from Unreliable Components”. In C.E. Shannon, J. McCarthy
(eds.) Automata Studies, Annals of Mathematical Studies 34, Princeton
University Press, pp. 43-98, 1956.

[82] M.A. Nielsen, I.L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[83] T.J. O’Gorman, J.M. Ross, A.H. Taber, J.F. Ziegler, H.P. Muhlfeld, C.J.
Montrose, H.W. Curtis, J.L. Walsh. “Field Testing for Cosmic Ray Soft

References Ph.D. Thesis Page 169

A Bio-Inspired and Fault Tolerant Multiplexer-Based FPGA Lucian Prodan

Errors in Semiconductor Memories”. IBM Journal of Research and
Development, Vol 40, No 1, January 1996, pp. 41–50.

[84] C. Ortega, A. Tyrrell. “Reliability Analysis in Self-Repairing Embryonic
Systems”. In Proc. 1st NASA/DoD Workshop Evolvable Hardware,
Pasadena, CA, July 1999, pp. 120-128.

[85] C. Ortega, A. Tyrrell. “Self-Repairing Multicellular Hardware: A
Reliability Analysis”. In D. Floreano, J.-D. Nicoud, F. Mondada, eds,
Advances in Artificial Life, Berlin, Germany: Springer-Verlag, vol. 1674,
1999, pp. 442-446.

[86] C. Ortega, A. Tyrrell. “MuxTree Revisited: Embryonics as a
Reconfiguration Strategy in Fault-Tolerant Processor Arrays”. In
Evolvable Systems: From Biology to Hardware, M. Sipper, D. Mange, A.
Perez-Uribe, eds, LNCS vol. 1478, Springer Verlag, Berlin, 1998, pp. 206-
217.

[87] K. Parnell, N. Mehta. Programmable Logic Design. Quick Start Hand
Book. Xilinx Inc, Jan. 2002.

[88] D.A. Patterson, J.L. Hennessy. Computer Organization and Design: A
Quantitative Approach. 3rd Edition, Morgan Kaufmann, May 2002.

[89] A. Perez-Uribe. Structure-Adaptable Digital Neural Networks. PhD thesis
2052, Swiss Federal Institute of Technology-Lausanne, October, 1999.

[90] A. Perez-Uribe, E. Sanchez. “FPGA Implementation of an Adaptable-Size
Neural Network”. In Proc. Intl. Conference on Artificial Neural Networks
(ICANN96), Springer-Verlag, Heidelberg, 1996, pp. 383-388.

[91] M. Perkowski, A. Mishchenko, A. Chebotarev. “Evolvable Hardware or
Learning Hardware? Induction of State Machines from Temporal Logic
Constraints”. Proc. 1 NASA/DoD Workshop on Evolvable Hardware, st

Pasadena, CA, July 1999, pp. 129-138.
[92] J.Y. Perrier, M. Sipper, J. Zahnd. “Toward a Viable, Self-Reproducing

Universal Computer”. In Physica 97D, 1996, pp. 335-352.
[93] M. Pflanz, K. Walther, H.T. Vierhaus. “On-line Error Detection

Techniques for Dependable Embedded Processors with High
Complexity”. In Proc. 8th IEEE Intl. On-Line Testing Workshop
(IOLTW'02), France, July 2002, pp. 69-73.

[94] J. Preskill. “Fault Tolerant Quantum Computation”. In H.K. Lo, S.
Popescu and T.P. Spiller, eds. Introduction to Quantum Computation,
World Scientific Publishing Co., 1998.

[95] L. Prodan, M. Udrescu, M. Vladutiu. “Survivability of Embryonic
Memories: Analysis and Design Principles”. Proceedings of the
NASA/DoD Conference on Evolvable Hardware (EH'05), IEEE Computer
Society, Washington DC, 2005, pp. 280-289.

[96] Lucian Prodan, Mihai Udrescu, Mircea Vladutiu. “Multiple-Level
Concatenated Coding in Embryonics: A Dependability Analysis”. GECCO
(ACM-SIGEVO), Washigton, DC, USA, June 25-29, 2005, pp. 941-948.

[97] L. Prodan, M. Udrescu, M. Vladutiu. “Reliability Assessment in
Embryonics Inspired by Fault-Tolerant Quantum Computation”. In
Proceedings 2nd ACM International Conference on Computing Frontiers
(CF'05), Ischia, Italy, 2005, pp.323-333.

[98] L. Prodan, M. Udrescu, M. Vladutiu. “Self-Repairing Embryonic Memory
Arrays”. In R. S. Zebulum, D. Gwaltney, G. Hornby, D. Keymeulen, J.
Lohn and A. Stoica, eds. Proceedings of the NASA/DoD Conference on

Page 170 Ph.D. Thesis References

Lucian Prodan A Bio-Inspired and Fault Tolerant Multiplexer-Based FPGA

Evolvable Hardware (EH’04), IEEE Computer Society, Seattle WA, 2004,
pp. 130-137.

[99] L. Prodan, G. Tempesti, D. Mange, A. Stauffer. “Embryonics: Electronic
Stem Cells”. In R.K. Standish, M.A. Bedau, and H.A. Abbass, Eds.,
Artificial Life VIII, Proceedings of the 8th International Conference on
Artificial Life, Bradford Book, The MIT Press, Cambridge MA, pp.101-
105, 2003.

[100] L. Prodan, D. Mange, G. Tempesti. The Embryonics Project:
Specifications of the MUXTREE Field-Programmable Gate Array.
Technical Report No. IC/2002/03, School of Computer and
Communication Sciences, Logic Systems Laboratory, Swiss Federal
Institute of Technology (EPFL), Lausanne, Switzerland, January 2002.

[101] L. Prodan, G. Tempesti, D. Mange, A. Stauffer. “Embryonics: Artificial
Cells Driven by Artificial DNA”. In Y. Liu, K. Tanaka, M. Iwata, T.
Higuchi, M. Yasunaga (eds.), Evolvable Systems: From Biology to
Hardware, Proc. 4th International Conference on Evolvable Systems
(ICES2001), Tokyo, Japan, Lecture Notes in Computer Science vol. 2210,
Springer-Verlag, Berlin, 2001, pp. 100-111.

[102] L. Prodan, G. Tempesti, D. Mange, A. Stauffer. “Biology Meets
Electronics: The Path to a Bio-Inspired FPGA”. In J. Miller, A.
Thompson, P. Thomson, T.C. Fogarty (eds.), Evolvable Systems: From
Biology to Hardware, Proc. 3rd International Conference on Evolvable
Systems (ICES2000), Edinburgh, Scotland, LNCS vol. 1801, Springer,
Berlin, 2000, pp. 187-196.

[103] L. Prodan, G. Tempesti, D. Mange, A. Stauffer. “Embryonics: Artificial
Cells Made of Artificial Molecules”. In Proc. Fourth International
Conference on Technical Informatics (CONTI 2000), Universitatea
Politehnica din Timisoara, Romania, 2000, pp. 99-104.

[104] T.R.N. Rao, E. Fujiwara. Error-Control Coding for Computer Systems.
Prentice-Hall, 1989.

[105] J.A. Reggia, J.D. Lohn, H.H. Chou. “Self-Replicating Structures:
Evolution, Emergence, and Computation”. In Artificial Life, vol.4, no.3,
1998.

[106] R. B. Roberts, ed. Microsomal Particles and Protein Synthesis: Papers
Presented at the First Symposium of the Biophysical Society. Washington,
DC, Pergamon Press, 1958.

[107] E. Sanchez, D. Mange, M. Sipper, M. Tomassini, A. Perez-Uribe, A.
Stauffer. “Phylogeny, Ontogeny, and Epigenesis: Three Sources of
Biological Inspiration for Softening Hardware”. In T. Higuchi, M. Iwata,
W. Liu, eds., Proc. 1st Int. Conference on Evolvable Systems: From
Biology to Hardware (ICES96), LNCS vol. 1259, Springer-Verlag, Berlin,
1997, pp. 35-54.

[108] E. Sanchez, M. Sipper, J.-O. Haenni, J.-L. Beuchat, A. Stauffer, A. Perez-
Uribe. “Static and Dynamic Configurable Systems”. IEEE Transactions
on Computers, vol. 48, no.6, June 1999, pp. 556-564.

[109] E. Sanchez, M. Tomassini (eds.). Towards Evolvable Hardware. LNCS,
vol. 1062, Springer-Verlag, Heidelberg, 1996.

[110] N. Seifert, D. Moyer, N. Leland, R. Hokinson. “Historical Trend in Alpha-
Particle Induced Soft Error Rates of the Alpha™ Microprocessor”. In

References Ph.D. Thesis Page 171

A Bio-Inspired and Fault Tolerant Multiplexer-Based FPGA Lucian Prodan

IEEE 39th Annual International Reliability Physics Symposium, 2001,
pp. 259–265.

[111] L. Sekanina. Evolvable Components. From Theory to Hardware
Implementations. Springer-Verlag, 2004.

[112] C.E. Shannon. “Von Neumann's contributions to automata theory”. In
Bulletin of the American Mathematical Society 64, 1958, pp. 123-129.

[113] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger, L. Alvisi. “Modelling
the Effect of Technology Trends on the Soft Error Rate of Combinational
Logic”. In Proc. Intl. Conference on Dependable Systems and Networks
(DSN), June 2002.

[114] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, L. Alvisi. Modeling the
Impact of Device and Pipeline Scaling on the Soft Error Rate of Processor
Elements. UT-Austin Computer Sciences Technical Report TR-02-19,
April 2002.

[115] M. Sipper. “Fifty Years of Research on Self-Replication: An Overview”. In
Artificial Life, vol.4, no.3, 1998, pp. 237-258.

[116] Moshe Sipper. “If the Milieu is Reasonable: Lessons from Nature on
Creating Life”. Journal of Transfigural Mathematics, vol.3, no.1, 1997,
pp. 7-22.

[117] M. Sipper, D. Mange, E. Sanchez. “Quo Vadis Evolvable Hardware?”
Communications of the ACM 42 (4), 1999, pp. 50-56.

[118] M. Sipper, D. Mange. A. Stauffer. “Ontogenetic Hardware”. In
BioSystems 44 (3), 1997, pp. 193-207.

[119] M. Sipper, E. Sanchez, D. Mange, M. Tomassini, A. Perez-Uribe, A.
Stauffer. “A Phylogenetic, Ontogenetic and Epigenetic View of Bio-
Inspired Hardware Systems”. In IEEE Transactions on Evolutionary
Computation, Vol. 1, No. 1, April 1997.

[120] M. Sipper, G. Tempesti, D. Mange, E. Sanchez. Guest Editors’
Introduction. “Von Neumann’s Legacy”: Special Issue on Self-Replication.
In Artificial Life, vol.4, no.3, 1998.

[121] D.F. Smart, M.A. Shea. Galactic Cosmic Radiation and Solar Energetic
Particles. Report No. ADA 167000, U.S. Air Force Geophysics Laboratory,
1985.

[122] E.H. Spafford. “Computer Viruses – A Form of Artificial Life?” In C.G.
Langton, C. Taylor, J.D. Farmer, S. Rasmussen, eds., Artificial Life II,
Addison-Wesley, Redwood City, CA, 1992, pp. 727-745.

[123] A. Stauffer. Membrane Building and Binary Decision Machine
Implementation. Technical Report No. 247, Logic Systems Laboratory,
The Swiss Federal Institute of Technology, Lausanne, September 1997.

[124] A. Stauffer, D. Mange, G. Tempesti, C. Teuscher. “A Self-Repairing and
Self-Healing Electronic Watch: The BioWatch”. In Y. Liu, K. Tanaka, M.
Iwata, T. Higuchi, and M. Yasunaga, eds., Evolvable Systems: From
Biology to Hardware. Proceedings of the 4th International Conference on
Evolvable Systems (ICES'2001), October 3-5, 2001, Tokyo. LNCS Vol.
2210, Springer-Verlag, Berlin, Heidelberg, 2001, pp. 112-127.

[125] A. Stauffer, D. Mange, G. Tempesti, C. Teuscher. “Biowatch: A Giant
Electronic Bio-Inspired Watch”. In Proc. 3 NASA/DoD Workshop on
Evolvable Hardware, July 12 - 14, 2001,

rd

Long Beach, California, pp. 185-
192.

Page 172 Ph.D. Thesis References

Lucian Prodan A Bio-Inspired and Fault Tolerant Multiplexer-Based FPGA

[126] C. Stroud, S. Konala, M. Abramovici. “Using ILA testing for BIST in
FPGAs”. In Proc. 2nd IEEE International On-Line Testing Workshop,
Biarritz, July 1996.

[127] H.H.K. Tang. “Nuclear Physics of Cosmic Ray Interaction with
Semiconductor Materials: Particle–Induced Soft Errors from a Physicist’s
Perspective”. IBM Journal of Research and Development, Vol 40, No 1,
January 1996, pp. 91–108.

[128] G. Tempesti. A Self-Repairing Multiplexer-Based FPGA Inspired by
Biological Processes. Ph.D. Thesis No. 1827, Logic Systems Laboratory,
The Swiss Federal Institute of Technology, Lausanne, 1998.

[129] G. Tempesti. “A New Self-Reproducing Cellular Automaton Capable of
Construction and Computation”. In Proc. 3rd European Conference on
Artificial Life, Granada, Spain, June 4-6, 1995, Lecture Notes in
Artificial Intelligence, vol. 929, Springer Verlag, Berlin, 1995, pp. 555-
563.

[130] G. Tempesti. ”A New Self-Reproducing Cellular Automaton Capable of
Construction and Computation”. Technical Report No 95/116, Logic
Systems Laboratory, Swiss Federal Institute of Technology (EPFL),
Lausanne, June 1995.

[131] G. Tempesti, D. Mange, A. Stauffer. “A Robust Multiplexer-based FPGA
Inspired by Biological Systems”. Journal of Systems Architecture: Special
Issue on Dependable Parallel Computer Systems, EUROMICRO, 43(10),
1997, pp. 719-733.

[132] G. Tempesti, D. Mange, A. Stauffer. ”The Embryonics Project: A Machine
Made of Artificial Cells”. Rivista di Biologia-Biology Forum, Vol. 92, No 1,
January-April 1999, pp. 143-188.

[133] G. Tempesti, D. Mange, A. Stauffer. “Self-Replicating and Self-Repairing
Multicellular Automata”. In Artificial Life, vol.4, no.3, 1998, pp. 259-282.

[134] G. Tempesti, D. Mange, A. Stauffer, C. Teuscher. “The BioWall: an
Electronic Tissue for Prototyping Bio-Inspired Systems”. In A. Stoica, J.
Lohn, R. Katz, D. Keymeulen, and R. S. Zebulum, eds., Proceedings of the
2002 NASA/DoD Conference on Evolvable Hardware (EH'2002), IEEE
Computer Society, Los Alamitos CA, pp. 221-230.

[135] G. Tempesti, C. Teuscher. “Biology Goes Digital: An array of 5,700
Spartan FPGAs brings the BioWall to "life"”. XCell Journal, Fall 2003,
pp.40-45.

[136] Y. Thoma, G. Tempesti, E. Sanchez, J.-M. Moreno Arostegui. “POEtic: An
Electronic Tissue for Bio-Inspired Cellular Applications”. BioSystems, 74
(1-3), 2004, pp. 191-200.

[137] J.A. Thomson, J. Itskovitz-Eldor, S.S. Shapiro, M.A. Waknitz, J.J.
Swiergiel, V.S. Marshall, J.M. Jones. “Embryonic Stem Cell Lines
Derived from Human Blastocysts”. Science 282, Nov. 6, 1998, pp. 1145-
1147.

[138] Y. Tosaka, S. Satoh, T. Itakura, H. Ehara, T. Ueda, G. Woffinden, S.
Wender. “Measurement and Analysis of Neutron-Induced Soft Errors in
Sub-Half-Micron Circuits”. In IEEE Transactions on Electron Devices,
Vol. 45, No. 7, July 1998.

[139] Y. Tosaka, S. Satoh, K. Suzuki, T. Sugii, H. Ehara, G.Woffinden,
S.Wender. “Impact of cosmic ray neutron induced soft errors on advanced

References Ph.D. Thesis Page 173

A Bio-Inspired and Fault Tolerant Multiplexer-Based FPGA Lucian Prodan

submicron CMOS circuits”. Symposium on VLSI Technology Digest of
Technical Papers, 1996.

[140] S. Trimberger, ed. Field-Programmable Gate Array Technology. Kluwer
Academic Publishers, Boston, 1994.

[141] A.J. Tylka, J.H.Adams Jr., P.R. Boberg, B. Brownstein, W.F. Dietrich,
E.O. Flueckiger, M.A. Shea, D.F. Smart, E.C. Smith. “CREME96: A
Revision of the Cosmic Ray Effects on Micro-Electronics Code”. In IEEE
Trans. on Nuclear Science, vol.44, no.6, December 1997, pp. 2150-2160.

[142] A.J. Tylka, W.F. Dietrich, P.R. Boberg. “Probability Distributions of
High-Energy Solar-Heavy-Ion Fluxes from IMP-8: 1973-1996”. In IEEE
Trans. on Nuclear Science, vol.44, no.6, December 1997, pp. 2140-2149.

[143] A.J. Tylka, W.F. Dietrich, P.R. Boberg, E.C. Smith, J.H.Adams Jr.
“Single Event Upsets Caused by Solar Energetic Heavy Ions”. In IEEE
Trans. on Nuclear Science, vol.43, no.6, December 1996, pp. 2758-2766.

[144] A. Tyrrell. “Computer Know Thy Self!? A Biological Way to Look at
Fault-Tolerance”. In Proc. 2nd IEE/EuroMicro Workshop on Dependable
Computing Systems, Milan, September 1999.

[145] M. Udrescu, L. Prodan, M. Vladutiu. “Improving Quantum Circuit
Dependability with Reconfigurable Quantum Gate Arrays”. In
Proceedings 2nd ACM International Conference on Computing Frontiers
(CF'05), Ischia, Italy, 2005, pp. 133-144.

[146] M. Udrescu, L. Prodan, M. Vladutiu. “Simulated Fault Injection in
Quantum Circuits with the Bubble Bit Technique”. In Proceedings 7th
International Conference on Adaptive and Natural Computing
Algorithms (ICANNGA), Coimbra, Portugal, 2005, pp. 276-279.

[147] M. Udrescu, L. Prodan, M. Vladutiu. “The Bubble Bit Technique as
Improvement of HDL-Based Quantum Circuits Simulation”. In
Proceedings 38th IEEE Annual Simulation Symposium, San Diego CA,
USA, 2005, pp. 217-224.

[148] M. Udrescu, L. Prodan, M. Vladutiu. “Using HDLs for Describing
Quantum Circuits: A Framework for Efficient Quantum Algorithm
Simulation”. In Proceedings 1st ACM Conference on Computing Frontiers
(CF’04), Ischia, Italy, 2004, pp. 96-110.

[149] M. Udrescu, L. Prodan, M. Vladutiu. “A New Perspective in Simulating
Quantum Circuits”. In Proceedings GECCO, Chicago IL, July 2003, pp.
283-290.

[150] C. Vaughan. Stem cells' “Guardians” Found to Control Cell
Specialization. Stanford Report, October 18, 2000.

[151] J.D. Watson, N.H. Hopkins, J.W. Roberts, J. Argetsinger Steitz, A.M.
Weiner. Molecular Biology of the Gene. Benjamin/Cummings, Menlo
Park, CA, 4th edition, 1987.

[152] G.S.West, S.J. Wright, H.C. Euler. Space and Planetary Environment
Criteria Guidelines for Use in Space Vehicle Developments. NASA-TM-
78119, 1977.

[153] W. Wolf. Computers as Components. Principles of Embedded Computing
System Design. Academic Press, 2001.

[154] S. Wolfram. Cellular Automata and Complexity. Addison-Wesley,
Reading, MA, 1994.

[155] L. Wolpert. The Triumph of the Embryo. Oxford University Press, New
York, 1991.

Page 174 Ph.D. Thesis References

Lucian Prodan A Bio-Inspired and Fault Tolerant Multiplexer-Based FPGA

[156] R. C. Wyatt, P. J. McNulty, P. Toumbas, P. L. Rothwell, R. C. Filz. “Soft
Errors Induced by Energetic Protons”. In IEEE Trans. Nuclear Science,
26, 1979, pp. 4905.

[157] S. Xanthakis, S. Karapoulios, R. Pajot, A. Rozz. “Immune System and
Fault Tolerant Computing”. In J.M. Alliot, ed., Artificial Evolution,
LNCS vol. 1063, Springer-Verlag, 1996, pp. 181-197.

[158] X. Yao. “Following the Path of Evolvable Hardware”. Communications of
the ACM, April 1999, 42(4), pp. 47-49.

[159] J. M Yarbrough. Digital Logic. Applications and Design. West Publishing
Company, 1997.

[160] C. Zalka. Threshold Estimate for Fault Tolerant Quantum Computation.
In arXiv:quant-ph/9612028, v2, July 28, 1997.

[161] J.F. Ziegler. “Terrestrial Cosmic Ray Intensities”. IBM Journal of
Research and Development, Vol 42, No 1, January 1998, pp. 117–139.

[162] J.F. Ziegler. “Terrestrial Cosmic Rays”. IBM Journal of Research and
Development, vol.40, no.1, January 1996, pp. 19-39.

[163] J.F. Ziegler, H.W. Curtis, H.P. Muhlfeld, C.J. Montrose, B. Chin, M.
Nicewicz, C.A. Russell, W.Y. Wang, L.B. Freeman, P. Hosier, L.E.
LaFave, J.L. Walsh, J.M. Orro, G.J. Unger, J.M. Ross, T.J. O’Gorman, B.
Messina, T.D. Sullivan, A.J. Sykes, H. Yourke, T.A. Enger, V. Tolat, T.S.
Scott, A.H. Taber, R.J. Sussman, W.A. Klein, C.W. Wahaus. “IBM
Experiments in Soft Fails in Computer Electronics (1978-1994)”. IBM
Journal of Research and Development, Vol 40, No 1, January 1996, pp. 3–
18.

[164] J. F. Ziegler, W. A. Lanford. “The Effect of Cosmic Rays on Computer
Memories”. Science, vol.206, 1979, pp. 776.

[165] J.F. Ziegler, H.P. Muhlfeld, C.J. Montrose, H.W. Curtis, T.J. O’Gorman,
J.M. Ross. “Accelerated Testing for Cosmic Soft Error Rate”. IBM
Journal of Research and Development, Vol 40, No 1, January 1996, pp.
51–72.

[166] J.F. Ziegler, M.E. Nelson, J.D. Shell, R.J. Peterson, C.J. Gelderloos, H.P.
Muhlfeld, C.J. Montrose. “Cosmic Ray Soft Error Rates of 16-Mb DRAM
Memory Chips”. IEEE Journal of Solid-State Circuits, vol.33, no.2,
February 1998, pp. 246-252.

[167] ***. “Opportunities and Challenges: A Focus on Future Stem Cell
Applications”. In Stem Cells: Scientific Progress and Future Research
Directions, National Institutes of Health, Department of Health and
Human Services, June 2001.

[168] ***. The BioCube. http://lslwww.epfl.ch
[169] ***. ITRS – International Technology Roadmap for Semiconductors,

Emerging Research Devices, 2004, http://www.itrs.net/Common/2004
 Update/2004_05_ERD.pdf
[170] ***. Stem Cells: A Primer. National Institutes of Health, May 2000.
[171] ***. Xilinx 6200 Preliminary Data Sheet. Xilinx, San Jose, CA, 1996.
[172] ***. http://www2.slac.stanford.edu/vvc/cosmicrays/cratmos.html
[173] ***. http://www.sel.noaa.gov/
[174] ***. http://www.ngdc.noaa.gov/stp/GOES/scatter.pdf
[175] ***. http://presto.stsci.edu/vision/vision_se/ngstOpsConceptWG/
 Communications Study/SolarProtonFlux/SolarProtonFlux.htm

References Ph.D. Thesis Page 175

http://lslwww.epfl.ch/

A Bio-Inspired and Fault Tolerant Multiplexer-Based FPGA Lucian Prodan

Page 176 Ph.D. Thesis References

Lucian Prodan Self-Repairing Memory Arrays Inspired by Biological Processes

LIST OF PUBLICATIONS

Conference Proceedings

L. Prodan, M. Udrescu, M. Vladutiu. “Survivability of Embryonic Memories:
Analysis and Design Principles”. Proceedings of the NASA/DoD Conference on
Evolvable Hardware (EH'05), IEEE Computer Society, Washington DC, 2005,
pp. 280-289.

L. Prodan, M. Udrescu, M. Vladutiu. “Multiple-Level Concatenated Coding in
Embryonics: A Dependability Analysis”. Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO), ACM-SIGEVO, Washigton DC,
2005, pp. 941-948.

L. Prodan, M. Udrescu, M. Vladutiu. “Reliability Assessment in Embryonics
Inspired by Fault-Tolerant Quantum Computation”. Proceedings of the 2nd
International Conference on Computing Frontiers (CF'05), ACM-SIGARCH,
Ischia, Italy, 2005, pp.323-333.

M. Udrescu, L. Prodan, M. Vladutiu. “Improving Quantum Circuit Dependability
with Reconfigurable Quantum Gate Arrays”. Proceedings of the 2nd
International Conference on Computing Frontiers (CF'05), ACM-SIGARCH
Ischia, Italy, 2005, pp. 133-144.

M. Udrescu, L. Prodan, M. Vladutiu. “Simulated Fault Injection in Quantum
Circuits with the Bubble Bit Technique”. In Bernardete Ribeiro et al., eds.,
Proceedings of the International Conference "Adaptive and Natural Computing
Algorithms", Coimbra, Portugal, 2005, Springer-Verlag, Berlin, pp. 276-279.

M. Udrescu, L. Prodan, M. Vladutiu. “The Bubble Bit Technique as Improvement
of HDL-Based Quantum Circuits Simulation”. Proceedings of the 38th Annual
Simulation Symposium (ANSS), IEEE Computer Society, San Diego CA, 2005,
pp. 217-224.

L. Prodan, M. Udrescu, M. Vladutiu. “Self-Repairing Embryonic Memory
Arrays”. Proceedings of the NASA/DoD Conference on Evolvable Hardware
(EH'04), IEEE Computer Society, Seattle WA, 2004, pp. 130-137.

M. Udrescu, L. Prodan, M. Vladutiu. “Using HDLs for Describing Quantum
Circuits: A Framework for Efficient Quantum Algorithm Simulation”.
Proceedings of the 1st Conference on Computing Frontiers (CF’04), ACM-
SIGARCH, Ischia, Italy, 2004, pp. 96-110.

M. Udrescu, L. Prodan, M. Vladutiu. “A New Perspective in Simulating
Quantum Circuits”. Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO), 2003, LBP pp. 283-290.

L. Prodan, G. Tempesti, D. Mange, A. Stauffer. “Embryonics: Electronic Stem
Cells”. In R.K. Standish, M.A. Bedau, and H.A. Abbass, Eds., Artificial Life VIII,

List of Publications Ph.D. Thesis Page 177

Self-Repairing Memory Arrays Inspired by Biological Processes Lucian Prodan

Proceedings of the 8th International Conference on Artificial Life, Bradford Book,
The MIT Press, Cambridge MA, 2003, pp.101-105.

L. Prodan, G. Tempesti, D. Mange, A. Stauffer. “Embryonics: Artificial Cells
Driven by Artificial DNA”. In Y. Liu, K. Tanaka, M. Iwata, T. Higuchi, M.
Yasunaga (eds.), Evolvable Systems: From Biology to Hardware, Proceedings of
the 4th International Conference on Evolvable Systems (ICES2001), Tokyo,
Japan, LNCS 2210, Springer-Verlag, Berlin, 2001, pp. 100-111.

L. Prodan, G. Tempesti, D. Mange, A. Stauffer. “Biology Meets Electronics: The
Path to a Bio-Inspired FPGA”. In J. Miller, A. Thompson, P. Thomson, T.C.
Fogarty (eds.), Evolvable Systems: From Biology to Hardware, Proceedings of the
3rd International Conference on Evolvable Systems (ICES2000), Edinburgh,
Scotland, LNCS 1801, Springer-Verlag, Berlin, 2000, pp. 187-196.

L. Prodan, G. Tempesti, D. Mange, A. Stauffer. “Embryonics: Artificial Cells
Made of Artificial Molecules”. Proceedings of the 4th International Conference on
Technical Informatics (CONTI 2000), “Politehnica” University of Timisoara,
Romania, 2000, pp. 99-104.

Technical Reports

L. Prodan, D. Mange, G. Tempesti. The Embryonics Project: Specifications of the
Muxtree Field Programmable Gate Array. Technical Report 200203, School of
Computer and Communication Sciences, Logic Systems Laboratory, Swiss
Federal Institute of Technology (EPFL), Lausanne, January 2002.

Page 178 Ph.D. Thesis List of Publications

	Cover©.pdf
	
	
	
	
	
	
	
	
	

	Abstract.pdf
	Abstract
	 Rezumat

	Acknowledge.pdf
	Acknowledgements

	TOC.pdf
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Bio-Inspired Architectures
	Chapter 3. A Bio-Inspired Memory Architecture
	Chapter 4. Reliable MuxTree Memory Arrays
	Chapter 5. Conclusions
	Appendix. A Hardware Implementation
	

	Chapter1Alpha©2.pdf
	Chapter 1
	Introduction
	1.1 Motivations
	1.2 The Legacy
	1.2.1 The POE Model
	1.2.2 The Embryonics Project
	1.2.3 A Plea for Bio-Inspiration

	1.3 Features
	1.4 Outline

	Chapter2Alpha©2.pdf
	Chapter 2
	Bio-Inspired Computing Systems
	2.1. A Brief History of Bio-Inspiration
	2.1.1 Introduction
	2.1.2 The Road to Bio-Inspiration
	2.1.3 The Technology
	2.1.3.1. Characteristics of the FPGAs
	2.1.3.2. Bio-Inspiration and Robustness
	2.1.4. Bio-Inspired Computing

	2.2. The Embryonics Project
	2.2.1 Scope of Embryonics
	2.2.2 Bio-Inspired Robustness
	2.2.3 Bio-Inspired Functionality
	2.2.3.1 Artificial Organisms and Cellular Coordinates
	2.2.3.2 The Artificial Cell
	2.2.3.3 The Artificial Molecule

	2.3. Objectives

	Chapter3Alpha©2.pdf
	Chapter 3
	A Bio-Inspired Memory Architecture
	3.1. Introduction
	3.2. Memory-Related Issues: Cyclic VS Addressable
	3.3 Memory Organization
	3.3.1 The Global Memory
	3.3.2 The Basic Memory (Macro-Molecule)

	3.4 Memory Architecture
	3.4.1 Introduction
	3.4.2 Short Overview
	3.4.3 The Memory Structure
	3.4.4 Data Routing
	3.4.5 Operating Modes for the Configuration Register (CREG)

	3.5 The Molecular Code
	3.5.1 The Logic Mode (M=0)
	3.5.1.1 General Description
	3.5.1.2 An Example
	3.5.2 The Memory Mode (M=1)
	3.5.2.1 General Description
	MEM1
	MOLECULE’S POSITION

	3.5.2.2 The Short Memory Mode (Q=0)
	3.5.2.3 The Long Memory Mode (Q=1)
	3.5.2.4 An Example

	3.6 The HOLD Mechanism
	3.7 Multiple-Level Fault-Tolerance
	3.7.1 Self-Repair at the Molecular Level
	3.7.2 Self-Repair at the Cellular Level
	3.7.3 The UNKILL Mechanism

	3.8 Testing the RAM-MuxTreeSR Prototype
	3.8.1. The Space Divider
	3.8.1.1. General Description
	COMP2:0

	3.8.1.2. An Example
	3.8.2. Prototype Configuration
	EPROM ADDRESS

	Chapter41Alpha©2.pdf
	Chapter 4
	Fault-Tolerant Macro-Molecules
	4.1. Introduction
	4.1.1 Bio-Inspired Storage
	4.1.2 Fault, Error, Failure
	4.1.3 Inspiration Toward Achieving Dependability
	4.1.4 Self-Repair in RAM-MuxTreeSR

	4.2. Single Event Upsets: An Analysis
	4.2.1 Radioactive Isotopes
	4.2.2 Cosmic Ray Influence
	4.2.3 Modeling Cosmic Ray Influence
	4.2.4 Introduction to Particle Physics
	4.2.5 Ion-Induced SEUs
	4.2.6 Neutron-Induced SEUs
	4.2.7 SEUs Induced by Alpha Particles
	4.2.8 Proton-Induced SEUs
	4.2.9. Conclusions

	4.3. A Reliability Analysis
	4.3.1. Datapath Model for Embryonic Memory Structures
	4.3.2. Preliminaries
	4.3.3. Strategies for Macro-Molecular Fault-Tolerance
	4.3.4. Fault-Tolerance at the Macro-Molecular Level
	4.3.4.1. SEC Strategy
	4.3.4.2. DEC Strategy
	4.3.5. Fault-Tolerance at the Molecular Level
	4.3.5.1. SEC Strategy
	4.3.5.2. DEC Strategy
	4.3.6. Cosmic Ray Influence On Reliability

	Chapter42AlphaNoEq©6.pdf
	4.4. FTRAM-MuxTreeSR: Fault Tolerant Macro-Molecules
	4.4.1. Error Correcting Coding Techniques
	4.4.2. Single Error Correction Codes with Double Error Detection
	4.4.3 Possible Error Scenarios in a Macro-Molecule
	4.4.4. Architecture of a FTRAM-MuxTreeSR Molecule
	4.4.4.1 Architecture of a SEC Macro-Molecule
	4.4.4.2 Architecture of a SEC-DED Macro-Molecule
	4.4.5. Fault-Tolerant Memory Arrays: An Example
	4.5. Macro-Molecular Accuracy Threshold
	4.5.1 Quantum Dependability
	4.5.2 Quantum-Inspired Dependability in Embryonics

	4.6. Fault Tolerance Assessment in Embryonics
	4.6.1 Reliability at the Molecular Level
	4.6.1.1 Reliability of a Macro-Molecule
	4.6.1.2 Reliability of an Ensemble of Logic Molecules
	4.6.2 Reliability at the Cellular Level
	4.6.3 Reliability at the Organismic Level

	4.7. Bridging Quantum and Bio-Inspired Computing
	4.7.1 From Multiple-Level Self-Repairing to Multiple-Level Coding
	4.7.2 Conclusions

	Chapter5Alpha©.pdf
	Chapter 5
	Conclusions
	5.1 Analysis of the Results
	a. Bio-Inspired Design and Functionality
	b. Memory Addressing
	c. Self-Repair at the Molecular Level
	d. Hierarchical Self-Repair
	e. Self-Replication

	5.2 Original Contributions
	5.3 Electronic Stem Cells
	Stem Cells. A special type of cell appears to answer some of the previous questions, a cell that can give birth to other identical cells, and all being able to become specialized cells themselves, such as muscular or nerve cells. After years of hard work, scientists succeeded in growing and replicating these mother cells. Called “stem cells”, these basic units ultimately mature and differentiate to become the building material of all types of body tissue [99].
	The Membrane. Every living cell's inner mass is delimited from the surrounding environment by the cellular membrane, which also acts as an interface with the exterior, allowing a limited exchange of substances. If the biological world allows and depends on exchanging substances, the world of silicon has more restrictive rules: the material replacing substances, but nonetheless allowed and dependent on its exchange, is information. Much as in nature, where substances entertain life by carrying energy and information, in the world of silicon electronic signals carry in a similar way the same ingredients, entertaining artificial life.
	Hierarchical Self-Testing and Self-Repairing. As in nature, where multiple self-testing happens in each and every living being, Embryonics also relies on more than one such mechanism [99]. The very first self-testing procedure employs test vectors and applies to the core of the molecule. Both off-line and on-line testing procedures are used at molecular level, thus allowing for successful recovery, or healing [128].

	5.4 Embryonics: Present and Future

	AppendixAlpha©.pdf
	Appendix
	A Hardware Implementation
	A.1 RAM-MuxTreeSR
	A.1.1 Overview
	A.1.2 Molecular Resources
	A.1.3 The HOLD signal
	
	

	A.2 FTRAM-MuxTreeSR
	A.2.1 Overview
	A.2.2 The INV signal
	A.2.3 The KILL signal
	A.2.4 ECL Implementation for a (7,3) Hamming SEC code
	A.2.5 Experiments with Macro-Molecules

	AlphaCheckRefs©.pdf
	References

	Publications©.pdf
	List of Publications
	Conference Proceedings
	Technical Reports

