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Chapter 1

Introduction

Quantum computation has created a lot of research opportunities in the fields of computer
science and engineering. Besides these advantages, serious problems and constraints emerge
as physicists and engineers try to build such computational devices.

It is acknowledged that there are two main sources of concern in quantum computation.
First, the problem of creating effective (i.e. better than classical) algorithms is linked to
the intrinsic hard nature of the problems that are to be solved – on one hand – and, on
the other hand, it is thwarted by programmers difficulty of thinking in quantum mechanical
terms [30]. The second concern is related to the difficulty of building quantum mechanical
devices, which perform computation by a ”coherent manipulation of atomic-scale dynamics”
[51]. These atomic-scale particles will exhibit the desired behavior only if they are isolated
from the macroscopic environment. Due to todays available technology, this is not possible
to an extent that allows us to consider having intrinsic reliable quantum components.

This report is focused on quantum computation dependability issues, by taking into ac-
count some very important aspects: arbitrary long fault tolerant quantum computation mea-
sured by the accuracy threshold, the reconfigurable quantum hardware (circuits) solutions,
and the experimental, simulated assessment of quantum circuits reliability.

In the theory of fault tolerant quantum computation, the most important metric for mea-
suring the reliability attribute [6] is the accuracy threshold [38][39][63]. But having a fault
tolerant quantum computation, even when there is compliance with the accuracy threshold,
is not likely when the computational process requires a large number of steps. Therefore, a
supplementary technique is employed – the concatenated coding – which is designed to main-
tain arbitrary long, fault tolerant computation. Instead, this report proposes a solution based
on what is generically called ”reconfigurable Quantum Hardware” (or rQHW), in order to
attain fault tolerant quantum computation on an arbitrary large number of steps. Then, our
rQHW investigation goes further by sketching the way we may implement Evolvable Quantum
Hardware. This means that the configuration register of our reconfigurable Quantum Gate
Array must be set by a quantum genetic algorithm. It turned out that any genetic algorithm
can be run in O (

√
n) time in a quantum computational environment.

The simulated quantum circuit reliability assessment is approached as an extension of
our already presented quantum circuit simulation framework [54][55][56]. Thus, necessary
theoretical and implementation background is provided, so that we have means for applying
fault injection and applying correct processing of experimental data results. The inspiration

11



12 CHAPTER 1. INTRODUCTION

of a multilevel approach, motivated by the HDL features, is drawn from the classical hardware
simulated fault injection techniques [11][42][43], which are both very effective and intensively
used [61]. The proposed quantum fault injection strategy maintains the flexibility of the
classical approach, and its multilevel HDL description manner. Also, the entanglement-related
issues are dealt with, with a resulting bubble-bit-based [56] technique.

All these aspects are just part (the theoretical foundation) of a bigger project called
QERIST, which stands for QUantum ERror Injection Simulation Tool, designed for reliability
measures assessment. QUERIST is however an ongoing project, and its description is beyond
the scope of this report, which is concerned only with proving the validity of the basic concepts.

1.1 Report goals

By approaching the field of quantum computation from the above mentioned viewpoints,
namely improving the reliability metrics, and the simulated assessment of appropriate fault
tolerance parameters, some objectives arise as essential for this report, and others – even
though are marginal with respect to our stated theme – have an major impact on the field of
quantum computation in general.

The primary objectives of this report are:

• a comprehensive analysis of the available quantum FTAMs (Fault Tolerance Algorithms
and Methodologies) [3][4], that allows a necessary critique from an engineering stand-
point;

• the design a classical-hardware-inspired methodology which will further improve the
measures of quantum dependabilitys attributes;

• the extension of our quantum circuit simulation framework, so that it can perform fault
injection in order to experimentally measure the reliability parameters of the simulated
circuits.

When considering the domanin that was approached in this report, one may consider the
following objective as less important:

• implementing a quantum version of Evolvable Hardware (EHW), threfore designing
the reconfigurable Quantum Gate Arrays and quantum circuits for running Quantum
Genetic Algorithms [51].

However, this contribution may prove valuable in the quantum computation research com-
munity.

All the stated objectives are complying with the general idea of this reports approach:
finding common ground for quantum computing and computer hardware engineering descrip-
tion and design methodologies. Some aspects can be mapped with little intervention from one
field to the other. But for some problems (i.e. implementing genetic algorithms) quantum
computation provides an efficiency framework.
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1.2 Report outline

This report is structured as follows: Chapter 2 introduces the concepts and techniques that
are used for designing fault tolerant quantum circuits, and for measuring the parameters of
the relevant dependability attributes. Then, Chapter 3 is providing the critique of what is
presented in the previous chapter, and introduces a radical new technique for preserving arbi-
trary long reliable quantum compuating by employing the so-called reconfigurable Quantum
Gate Arrays (rQGA). This chapter also provides practical examples of how the technique ac-
tually works, along with a fault tolerance assessment based on the accuracy theshold. Some
of eamples are presented inside Appendix A

If the configuration register of a rQGA contains a state dictated by a genetic algorithm,
then we have a quantum version of the evolvable hardware. Chapter 4 presents how is it
possible to implement a Genetic Algoriithm in a quantum computational environment.

In Chapter 5.1.1 we have analyzed the way to extend our quantum circuit simulation
framework (which is updated in Appendix B with the latest achievements) to fault injec-
tion abilities. The analysis is based on a comparison with the classical hardware available
techniques and the corresponding study that outlines the aspects that are appropriate for
quantum implemetation, and emphasizes the distinctive characteristics of quantum fault in-
jection according to the quantum error and fault occurence models.
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Chapter 2

Fault Tolerance in Quantum
Computation

In quantum computation dependability is not just a quality indicator. Due to the omnipresent
nature of the error sources, the need for error detection and correction is vital here. Without
such mechanisms there could be no realistic prospect of an operational quantum computa-
tional device. Therefore, the fact that error detecting and correcting techniques have been
developed has enhanced the feasibility of a potential quantum computer.

2.1 Introduction

The main idea, just like for classical computation, is to employ special coding in order to
protect useful data from the destructive effect of the environment. There are two main
sources of errors: the first one is due to the erroneous behavior of the quantum gate and is
producing the so-called processing errors, while the second is generated by the macroscopic
environment interacting with the quantum state, and measuring it in an unfortunate manner.
The later source is producing the storing and transmitting errors.

Within the quantum computational framework, the developed techniques for error detec-
tion and correction have a sound error recovery process, and the error propagation is kept
under control. However, any reliability technique (and the quantum ones make no excep-
tion) is based on making a reliable system out of unreliable components. But how much
unreliable could they be? In classical computation this is not a problem, because digital stor-
ing, transmitting and processing are very reliably implemented jobs. By contrast, quantum
computation could be ruined by innacuracies and errors if the error probability in the basic
components (qubits, quantum gates) excedes an accuracy threshold. This is a critical aspect;
usually the microscopic quantum states are prone frequent errors. Hence, in our context, the
safe recovery issue becomes extremely important.

The main error source is the decoherence effect [30]. The environment is constantly trying
to measure the sensible quantum superposition state, and technologically it is not possible
to perfectly isolate the microscopic state from the environment. A measurement means that
the superposition decays, becoming a projection of the state vector onto the basis vector (the
eigenstate). But the most insidious kind of errors appears when decoherence is affecting the

15
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quantum amplitudes without destroying them; these errors are very similar to small analog
errors.

The solution to the problems stated above is represented, on one hand, by intrinsic fault
tolerance by technological implementation (topological interactions Ahranov-Bohm [1]) and,
on the other hand, by error correcting techniques at the unitary (gate network) level. We will
focus on the error detecting and correcting techniques, which are not easy to approach due
to the quantum computational constraints: the useful state could not be observed (otherwise
it will decohere), nor could it be cloned.

2.2 Specific problems

Although the fault tolerance techniques in quantum computation are inspired from the clas-
sical ones, specific problems arise, increasing the number of important issues to be addressed
(safe recovery, for instance), and thus growing the complexity of the corresponding circuitry
[62]. This subsection is focusing on presenting problems, without sketching any solution.

2.2.1 Error model

As expressed in bra-ket notation [30], the qubit is a normalized vector in some Hilbert space
H2, with {|0〉, |1〉} being the orthonormal basis: |ψ〉 = a0|0〉 + a1|1〉 (a0, a1 ∈ C are the so-
called quantum amplitudes, which represent the square root of the associated measurement
probabilities for the eigenstates |0〉 and |1〉 respectively, with |a0|2 + |a1|2 = 1). Therefore,
the qubit can be affected by 3 types of errors:

• E 1: Bit flip errors. This kind of errors is somehow similar to a classical bit blip
error. For a single qubit things are exactly the same as in classical computation

|0〉 �→ |1〉,
|1〉 �→ |0〉. (2.1)

For 2 or more qubits, flip errors affecting the state could modify it, or could leave it
unchanged. For instance, if we take the so-called cat state [39]

|ψ〉Cat =
1√
2

(|00〉 + |11〉) (2.2)

and the first qubit is affected by the bit flip error the resulted state will be

|ψ〉Cat �→
1√
2

(|10〉 + |01〉) . (2.3)

But, if both qubits are affected by bit flips, we will have no change in the state:

|ψ〉Cat �→
1√
2

(|11〉 + |00〉) = |ψ〉Cat. (2.4)
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• E 2: Phase errors. In quantum computation there is a new kind of error, affecting
the phase of one of the qubit’s amplitudes. This error is very dangerous, due to its
propagation behavior. For a qubit’s eigenstates, similar to Equation 2.1, this error is
expressed:

|0〉 �→ |0〉,
|1〉 �→ −|1〉. (2.5)

The phase error makes sense only when dealing with superposition states. If we take
the equally weighted qubit superposition state 1√

2
(|0〉 + |1〉) and affect it with a phase

error, the result is presented in the following mapping:

1√
2

(|0〉 + |1〉) �→ 1√
2

(|0〉 − |1〉) (2.6)

There is a strict correspondence between the bit flip and the phase error types. This
correspondence is due to the way we can map to each other the Hilbert spaces with
the same dimension but different basis. The bit flip is an error from the H2 space
with basis {|0〉, |1〉}, whereas the phase error appears in the same space with basis{

1√
2
(|0〉 + |1〉) , 1√

2
(|0〉 − |1〉)

}
, or {|+〉, | −〉}. The space basis conversion, in our case,

is made by applying the Hadamard transform as shown in Figure 2.1.

• E 3: Small amplitude errors. The amplitudes a0 and a1 of the quantum bit could be
affected by small errors, similar to analog errors. Even though we might think that this
kind of errors is not too dangerous – after all, it does not destroy the superposition and
conserves the value of the superposed states – small amplitude errors could accumulate
over time, eventually ruining the computation.

0 1 H

Bit Flip
E r r o r

Instead of
A)

H

Phase
Error

Instead of
B) 1

0

� �
2

1
0 - 1

� �
2

1
0 + 1

� �
2

1
0 - 1

� �
2

1
0 + 1

Figure 2.1: Example of transforming a bit flip error into a phase error (A, and vice versa (B.

2.2.2 Quantum constraints and problems

Quantum computation is not only introducing new types of errors, it is putting some com-
putational constraints while generating some new problems. Thus, even if our fault tolerance
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techniques are inspired fom classical computation, we will have to adapt them to the quantum
physics requirements.

Due to the quantum physics laws, we will have the following computational constraints:

• C 1: The observation destroys the state. In classical computation, the encoded
information is observed – therefore, measured – in order to detect and correct the
potential error. This is not possible in quantum computation, because the observation
of a quantum state means that it is measured, destroying the useful state superposition.

• C 2: Information copying is impossible. One way to protect information, in
classical computation, is to copy it, and use the copies in order to compare them with
the original (the majority voting principle). But an important quantum physics law
says that there is no possible cloning for the quantum state, meaning that we cannot
correctly copy a quantum state.

Because of the error types, the constraints, the high error rate, and the quantum circuit
structure quantum error correction encounters some serious problems:

• P 1: Non-destructive measurement. In spite of constraint C 1 we need to measure
the encoded information is some way, without destroying it. As we cannot directly
measure the encoded state, we need to properly prepare some scratch (ancilla) qubits.
We will have to obtain the desired information about the useful state only by measuring
the ancilla qubits.

• P 2: Fault-tolerant recovery. Due to the high error rate in quantum computational
devices, it is very likely that, after detecting the error, the correcting process itself
is affected by errors. This is a very important aspect because, if the recovery is not
fault-tolerant, then the entire effort of coding and error detecting becomes useless.

• P 3: Phase error backward propagation. The phase errors have a awkward prop-
agation behavior. If we take into consideration the XOR gate from Figure 2.2 (A, a
flip error affecting the target qubit (b) will propagate backward onto the source qubit.
This happens due to the gate network equivalence from Figure 2.2 (B and the basis
transformation described by Figure 2.1.

H

B)A)

a
source

b
target

Phase error

H

H

H

a
source

b
target

Phase error Flip error

a
target

b
source

Figure 2.2: (A The backward propagation of a phase error for the XOR gate. (B Gate
network equivalence for the XOR gate resulting in a source-target interchange, where the
Hadamard (H) gates are also changing the qubit basis from {|0〉, |1〉} into {|+〉, |−〉}.
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2.3 Strategies for quantum fault tolerance

In order to deal with the problems described in the previous section, despite the serious
constraints that quantum physics dictate, we will have to follow the following strategies:

• S 1: Digitising small errors. The presence of small errors is not a major concern,
as we can digitise the analog-like kind of errors with the following technique.

q3

q2

q1

0

0

Measurement

s2

s1 0=

0=

A)

0 1000 111a a+

00

q3

q2

q1

0

0

Measurement

s2

s1 1=

0=

B)

0 1010 101a a+

10

q3

q2

q1

0

0

Measurement

s2

s1 0=

0=

C)

�2 2

0 1( 1 000 001 ) ( 1 111 110 )a a- + + + -� � �

2 2

0 1 0 1( 1 1 ) 00 ( ) 11-a a a a- + + +� � �

or
1

1

0 1000 111a a+ or 0 1001 110a a+

post-measurement state

Figure 2.3: Majority voting circuit when: A) no error is present; B) q2 is affected by a
flip-error; C) q3 is affected by a small error.

Suppose that we use a simple coding technique that is suitable for majority voting,
using 3 qubits (|q1, q2, q3〉) for representing 1 useful qubit (|q〉 = a0|0〉 + a1|1〉) the way
that the following 2 mappings prescribe: |0〉 �→ |000〉 and |1〉 �→ |111〉. Thus, state |q〉
will be coded the way it is shown in the following equation:

|q〉 = |q1, q2, q3〉 = a0|000〉 + a1|111〉 (2.7)

The circuit from Figure 2.3 A) will produce the syndrome (s1, s2) = (q2 ⊕ q3, q1 ⊕ q3)
which will have the value (0, 0) when there is no error, and a non-zero value when an
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error occurs. Moreover, this syndrome is able to indicate the qubit that is affected by a
single flip error (10 for q1, 01 for q2, and 11 for q3). Figure 2.3 B) presents the majority
voting circuit signaling a flip error affecting qubit q2. This single flip error is described
by:

|q〉 = a0|010〉 + a1|101〉 (2.8)

When we have a small error affecting, for instance, the amplitudes of qubit q3, then the
circuit from Figure 2.3 then the expression for |q1, q2, q3〉 will be:

|q〉 = a0

(√
1 − ε2|000〉 + ε|001〉

)
+ a1

(√
1 + ε2|111〉 − ε|110〉

)
(2.9)

As Figure 2.3 C) presents, measuring the syndrome qubits will yield either (0, 0) or (1, 1).
The first syndrome indicates no error, which is right because the post-measurement state
of |q1, q2, q3〉 will be a0|000〉+a1|111〉. For the second possible syndrome (1, 1), the post
measurement state of |q1, q2, q3〉 will completely flip the third qubit: a0|001〉 + a1|110〉.
However, the corresponding syndrome indicates the flip in the third qubit, therefore the
small error is digitized and can be corrected as a flip error.

• S 2: Ancilla usage. We know that qubit cloning is impossible, and therefore a majority
voting strategy is hard to implement. However, some kind of an information copy can
be achieved: by using ancilla qubits we can duplicate the eigenstate information inside
the existing superposition (Figure 2.4).

n n

n n

Data

Ancilla

Figure 2.4: Ancilla usage for copying relevant information from data qubits.

n n

n n

Data

Ancilla

CodingD

CodingA

code
Data

code
Ancilla

Computing
Syndrome

Measurement

Classical
syndrome

value

Figure 2.5: Fault-tolerant procedure involving the ancilla qubits: coding the data and ancilla
so that the data errors are copied onto the coded ancilla. The syndrome is obtained by some
quantum gates followed by ancilla measurement.

As a consequence, the ancilla qubits will be entangled with the useful data and any
measurement performed on the ancilla could have a repercussion onto the state of the
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useful qubits. The appropriate strategy will employ special coding for both data qubits
and ancilla, followed by the computation of an error syndrome. The syndrome must be
yielded by measuring the ancilla, provided that the encoding enables us to copy only
the data errors onto the ancilla, but does not copy the useful data (see Figure 2.5).

• S 3: Avoiding massive spreading of phase errors. The way that phase errors
are propagating through the quantum gate is from the source to the target. However,
as shown in E2 phase errors are propagated backwards from the target to the source.
Therefore, the frequently encountered designs like those in Figure 2.6 are prone to spread
phase errors; a phase error on the target qubit will propagate on all the source qubits.
The solution is to use more ancilla qubits as targets, so that no ancilla qubit is used
more than once (see Figure 2.6 B).

A) B)

source
qubits

ancilla
(target qubit)

source
qubits

ancilla
(target qubits)

Figure 2.6: Ancilla qubit usage: A) design that spreads the phase errors; B) fault-tolerant
design.

• S 4: Ancilla and syndrome accuracy. The ancilla code is some known quantum
state. However, setting this state could be an erroneous process. Also, computing the
syndrome is prone to errors, and if an erroneous syndrome is taken into consideration
for the error recovery, then not only that the error is not corrected, but other errors
are dictated in the useful state. Hence, on one hand, we have to make sure that the
ancilla is in the right state by verifying these qubits and recovering the ancilla if such
is the case; on the other hand, in order to have a reliable syndrome, we must compute
it several times.

• S 5: Error recovery. As the small errors could be digitised as shown in S1 (therefore,
they are either corrected or transformed into flip errors) the recovery must deal only
with flip and phase errors. A state that needs to be recovered, because of an error is
described by the following equation:
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a0|0〉 + a1|1〉 error−→

⎧⎪⎪⎨
⎪⎪⎩

a0|0〉 + a1|1〉 if no error is present
a0|1〉 + a1|0〉 for a flip error
a0|0〉 − a1|1〉 for a phase error
a0|1〉 − a1|0〉 for both flip and phase errors

(2.10)

Correcting a flip error means negating the affected qubit, thus applying the transfor-
mation characterized by:

UNot = σx =

[
0 1
1 0

]
(2.11)

Changing the basis from {|0〉, |1〉} into {|+〉, |−〉}, will transform the phase error into
a flip error that can be corrected by σx; after the correction, the initial basis must be
restored. These actions are summarized in Equation (2.12), and they must be taken in
order to correct the phase error.

UZ = H · σx ·H =

[
1 1
1 −1

]
·
[

0 1
1 0

]
·
[

1 1
1 −1

]
=

[
1 0
0 −1

]
(2.12)

Of course, the correction of the third kind of errors (with both bit and phase flip) is
achieved by applying a composed transformation upon the affected qubit:

UY = UNot · UZ =

[
0 −i
i 0

]
(2.13)

2.4 Quantum error correction

Quantum error detection and correction is performed with special coding techniques, which
are inspired from the classic Hamming codes. The classical error detecting and correcting
coding is adapted so that it becomes suitable for the quantum strategy that allows only the
ancilla qubits to be measured. Even so, the syndrome obtained by measuring the proper
ancilla qubits reveals the nature of the error. Thus, the error-correcting strategy described in
the previous section may be employed in order to recover the detected fault.

2.4.1 Steane coding

Steane’s 7-qubit code is inspired from classical Hamming coding, and it is designed to make
sure that the fault tolerant strategies from the previous section could be employed. It is used
for useful data coding, and could be adapted for ancilla coding as well. Because this code
is derived from a classical single error correcting error, it can detect and correct only single
qubit faults in the code block. This means that we cannot recover two qubit faults if the same
type of error affects them. However, the situation where one of the two erroneous qubits is
affected by a bit flip and the other one by a phase flip can be recovered.

LetHA be a Hamming matrix describing a code with 4 useful bits (n = 4), and 3 redundant
bits (k = 3).
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u0 u1 u2 u3 c0 c1 c2 o\e
0 0 0 0 0 0 0 e
0 0 0 1 1 0 1 o
0 0 1 0 1 1 1 e
0 0 1 1 0 1 0 o
0 1 0 0 0 1 1 o
0 1 0 1 1 1 0 e
0 1 1 0 1 0 0 o
0 1 1 1 0 0 1 e
1 0 0 0 1 1 0 o
1 0 0 1 0 1 1 e
1 0 1 0 0 0 1 o
1 0 1 1 1 0 0 e
1 1 0 0 1 0 1 e
1 1 0 1 0 0 0 o
1 1 1 0 0 1 0 e
1 1 1 1 1 1 1 o

Table 2.1: All the possible HA Hamming codes, with the rightmost column indicating whether
the code contains an even (’e’)or an odd (’o’) number of 1s.

HA =

c0 c1 c2 u0 u1 u2 u3⎛
⎝ 1 0 0 1 0 1 1

0 1 0 1 1 1 0
0 0 1 0 1 1 1

⎞
⎠ (2.14)

Because k ≥ log2�n + k + 1	 this code is SEC-DED (Single Error Correction - Double Error
Detection). The above Hamming matrix can also be expressed as

⎧⎨
⎩

c0 = u0 ⊕ u2 ⊕ u3

c1 = u0 ⊕ u1 ⊕ u2

c2 = u1 ⊕ u2 ⊕ u3

(2.15)

This means that Table 2.1 contains all the possible valid codes generated by HA.

The Steane 7-qubit coding of |0〉 consists of a equally weighted superposition of all the
valid Hamming 7-bit words with an even number of 1s:

|0〉S = 1

2
3
2

∑
even(u0u1,u2u3c0c1c2) |u0u1u2u3c0c1c2〉

= 1

2
3
2

(|0000000〉+ |0010111〉+ |0101110〉+ |0111001〉+ |1001011〉+ |1011100〉
+|1100101〉+ |1110010〉)

(2.16)
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The similar superposition of the odd 1s Hamming code words is used for |1〉 coding:

|1〉S = 1

2
3
2

∑
odd(u0u1,u2u3c0c1c2)

|u0u1u2u3c0c1c2〉
= 1

2
3
2

(|1111111〉+ |1101000〉+ |1010001〉+ |1000110〉+ |0110100〉+ |0100011〉
+|0011010〉+ |0001101〉)

(2.17)
With this code, any singular qubit flip error is detected and can be corrected by computing
the following syndrome: ⎧⎨

⎩
m0 = c0 ⊕ u0 ⊕ u2 ⊕ u3

m1 = c1 ⊕ u0 ⊕ u1 ⊕ u2

m2 = c2 ⊕ u1 ⊕ u2 ⊕ u3

(2.18)

Figure 2.7 presents how to compute the syndrome for this code. The ancilla is not prepared
according to previous sections strategies. This aspect will be further elaborated in the next
subsection.

c2

c1

c0

Measurement

u2

u1

u0

u3

m0
0

Measurement

m10

Measurement

m20

Figure 2.7: The circuit that computes the syndrome for Steane’s 7-qubit code.

When we have single errors, the measurement of the syndrome qubits will have certain
results, due to the fact that every superposed state will have the same affected position, and
therefore will dictate the same syndrome eigenvalue. Table 2.2 indicates the link between the
syndrome value and the position of the affected qubit. If, for instance, the flip error affects
qubit u1, then all the eigenstates contained in |0〉S and |1〉S will produce the same syndrome:
(m0, m1, m2) = (0, 1, 1), so the syndrome quantum state will be |m0, m1, m2〉 = |011〉.

This code it is designed to correct bit-flip errors, but with the basis change (obtained
with a Hadamard transform) the phase error is transformed into bit flip error, which can be
corrected. Thus, the phase error correcting code will be described by:

|0̄〉S = H · |0〉S = 1√
2
(|0〉S + |1〉S)

|1̄〉S = H · |1〉S = 1√
2
(|0〉S − |1〉S)

(2.19)

Steane’s 7-qubit code is extremely useful in maintaining the accuracy of the state and will
recover the coded block from any singular error (bit or phase flip). However, one has to be
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m0 m1 m2 erroneous qubit

0 0 0 no error
0 0 1 c2
0 1 0 c1
0 1 1 u1

1 0 0 c0
1 0 1 u3

1 1 0 u0

1 1 1 u2

Table 2.2: Steane code’s syndrome interpretation, with the rightmost row indicating the
position of the bit-flip error.

aware that this code cannot correct flip situations like:

|0̄〉S −→ |1̄〉S and|1̄〉S −→ |0̄〉S
|0̄〉S −→ |0̄〉S and|1̄〉S −→ −|1̄〉S

(2.20)

Applying Steane coding on an arbitrary given quantum state |ψ〉 = a0|0〉+a1|1〉, we must
obtain the state from Equation 2.21 in order to use it for potential recoveries.

|ψ〉S = a0|0〉S + a1|1〉S (2.21)

This coding procedure is achieved with the circuit presented in Figure 2.8, where succesive
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Figure 2.8: The circuit that returns the Steane encoding of an arbitrary state.

states |v〉1, |v〉2, |v〉3, |v〉4 are produced:

|v〉1 = a0
1

2
3
2

( |0000000〉+ |0010000〉+ |0100000〉+ |0110000〉
+|1000000〉+ |1010000〉+ |1100000〉+ |1110000〉

)
+ a1

1

2
3
2

( |0001101〉+ |0011101〉+ |0101101〉+ |0111101〉
+|1001101〉+ |1011101〉+ |1101101〉+ |1111101〉

) (2.22)



26 CHAPTER 2. FAULT TOLERANCE IN QUANTUM COMPUTATION

|v〉2 = a0
1

2
3
2

( |0000000〉+ |0010000〉+ |0100000〉+ |0110000〉
+|1001011〉+ |1011011〉+ |1101011〉+ |1111011〉

)
+ a1

1

2
3
2

( |0001101〉+ |0011101〉+ |0101101〉+ |0111101〉
+|1000110〉+ |1010110〉+ |1100110〉+ |1110110〉

) (2.23)

|v〉3 = a0
1

2
3
2

( |0000000〉+ |0010000〉+ |0101110〉+ |0111110〉
+|1001011〉+ |1011011〉+ |1100101〉+ |1110101〉

)
+ a1

1

2
3
2

( |0001101〉+ |0011101〉+ |0100011〉+ |0110011〉
+|1000110〉+ |1010110〉+ |1101000〉+ |1111000〉

) (2.24)

|v〉4 = a0
1

2
3
2

( |0000000〉+ |0010111〉+ |0101110〉+ |0111001〉
+|1001011〉+ |1011100〉+ |1100101〉+ |1110010〉

)
+ a1

1

2
3
2

( |0001101〉+ |0011010〉+ |0100011〉+ |0110100〉
+|1000110〉+ |1010001〉+ |1101000〉+ |1111111〉

) (2.25)

By inspection, it is obvious that |v〉4 = |ψ〉S.

2.4.2 Ancilla coding

In Figure 2.7 the ancilla qubits used for syndrome computing are not complying with strategy
S 3 from section 2.3. We have to correct that, in order to avoid massive phase-flip error
spreading. Moreover, the ancilla coding process could be affected by errors, so some form of
protection against such errors. Because of the XOR gates that connect data qubits to ancilla
qubits, errors on the ancilla may affect the data when spreading backwards.

Hence, the design of the circuits that encode the ancilla must take into account two aspects:
preventive design according to strategy S 3, and ancilla verification in order to make sure
that the proper ancilla was set.

There are two coding techniques for the ancilla: the Shor and Steane coding. Shor’s ancilla
coding is considered as being somehow less prone to further errors in ancilla preparation,
because the involved quantum operations are less complex. Figure 2.9 A) and B) presents
the Shor and Steane ancilla coding. In A) besides Shor coding, ancilla verification is also
included; the verification for Steane ancilla is in Figure 2.9 C).

Shor’s code is an equally weighted superposition of all the 4-bit, even parity, binary words:

|Anc〉Shor =
1

2
3
2

( |0000〉 + |1100〉+ |1010〉 + |1001〉+
|0110〉 + |0101〉+ |0011〉 + |1111〉

)
(2.26)

In Figure 2.9 A) state |Anc〉Shor is build by starting with the 4-qubit |Cat〉 state, which
is obtained with the leftmost Hadamard gate which dicatates the state

|w〉1 =
1√
2

(|0000〉 + |1000〉) (2.27)

and then 3 successive XOR gates, so that

|w〉2 = |Cat〉 =
1√
2

(|0000〉 + |1111〉) (2.28)
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The Hadamard transform, applied on the Cat state will always map it into an equally weighted
superposition of even parity eigenstates:

|w〉3 =
1

2
3
2

( |0000〉 + |1100〉 + |1010〉+ |1001〉+
|0110〉 + |0101〉+ |0011〉 + |1111〉

)
= |Anc〉Shor (2.29)

The idea for Shor’s ancilla coding is that, if the bit-flip syndrome qubit is |0〉, then the
parity of all the superposed eigenstates will remain unchanged, i.e. even. If the syndrome
qubit is |1〉, the parity of all superposed eigenstates will be changed, thus becoming odd.

The two XOR gates between states |w〉2 and |w〉3 are verifying the correctness of the |Cat〉
generation. If a single error occurs when the Cat state is prepared, then the leftmost and
the rightmost eigentate bits will always have complementary values and the measurement of
the lower qubit in Figure 2.9 A) will have a certain result, |1〉. If there is no error in Cat
state preparation, then the marginal eigenstate bits will always have the same value, so the
measurement will always yield |0〉.

Figure 2.9 B) is similar to Figure 2.8, but in the earlier the middle qubit is |0〉 instead of
a0|0〉 + a1|1〉. Therefore, the resulted state will be |0〉S, instead of a0|0〉S + a1|1〉S. Then, by
applying H⊗7, we will obtain

|Anc〉Steane =
1√
2

(|0〉S + |1〉S) (2.30)

In the Steane ancilla coding case, the bit-flip syndrome is obtained by first applying 7
XOR gates having the data qubit as source, and the ancilla qubit with the same position as
target. The ancilla is measured, and then we apply the Hadamard matrix check HA upon the
resulted word, in order to get the syndrome.

When the ancilla is prepared with Steane’s code, the ancilla verification is performed as
presented in Figure 2.9 C). Two |0〉S blocks are prepared, and a bitwise XOR is performed on
the two qubit blocks. Then, a measurement is performed on the block that contains XORs
target qubits. If there is no error, the measurement result will be an eigenstate from |0〉S and
the nonmeasured block has successfuly passed the verification. If a bit-flip error occurs, then
this fact is revealed by performing an OR on the classical bit measurement results. We can
apply Hamming correction uppon these measurement results, and at the same time finding
if the measured block was |0〉S (the correction is according to the Hamming matrix) or |1〉S
(the correction attempt will qubitwise negate the data block). However, this procedure is not
completely reliable, as we do not know if the bit flip has occured in the verified or in the
measured block. One possible solution is to perform this procedure twice.

2.4.3 Putting it all together

Having the results from our previous two subsections, we are able to present the complete
circuits for error correction. Figures 2.10 and 2.11 present the syndrome for bit-flip and phase-
flip syndromes respectively when using Shor ancilla coding. The later figure is obtained from
the previous by transforming the phase error into a flip error (see Figure 2.1) and applying the
equivalence from Figure 2.2. The entire error-correction circuit for Steane ancilla preparation
is presented in Figures 2.13 (bit-flip), and 2.14 (phase-flip).
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Shor’s ancilla preparation has the following downsides: it uses a large number of qubits
(prone to error), cannot repair the ancilla. Steane ancilla coding uses a smaller qubit number,
is able to repair the ancilla, but the ancilla preparation is more complex, and therefore prone
to error. The two ancilla methodologies are somehow equivalent, and both of them must use
structural redundancy (i.e. ancilla code preparation can be redone until the ae qubits will
be ’0’). However, even if the ancilla was correctly set, errors could still appear in syndrome
computation.

When taking into account the model of non-correlated errors, it was shown that the
redundant syndrome computation will assure a data fidelity of order 1 − O (ξ2) when the
single qubit error probability is ξ. This means that, the probability of a faulty recovered
quantum state is of the same order as the probability of having two simultaneous errors in the
initial state; in fact, the double error cannot be recovered by this code. If the safe recovery
strategies (ancilla coding, redundant syndrome measurement) were not to be implemented,
the fidelity order would have been of the order 1−O (ξ). Such a fidelity factor will not endorse
the use of fault tolerant coding and error correction in the first place.

2.5 Stabilizer codes

The stabilizer codes – when compared with Steane coding – are a generalization of syndrome
generation. When attempting the detection and correction of multiple errors, this is a more
appropriate solution. The stabilizer code is a collection of so-called stabilizer generators, which
are ordered sets of commuting operators. The stabilizer generators are characterizing the error-
correcting code, as the code space is defined by the eigenstates of the commuting operators.
All the commuting operators must be one of the following 1-qubit unitary transforms: N =
UNot = UN , Z = UZ , Y = UY (from Equations 2.11, 2.12 and 2.13), and I. Of course, the
following properties will also hold: I2 = N2 = Z2 = Y 2 and N ·Y = Z,N ·Z = Y, Y ·Z = N .

The idea for the generator codes is to transform (with the 1-qubit transformations sets) the
Steane-coded state so that each superposed classical state (i.e. eigenstate) is transformed into
a different eigenstate, but the overall coded superposition remains unchanged. Therefore, the
collection of stabilizer generators is the collection of bit-flip and phase-flip generators which
assure a complete non-changing transformation. If the number of qubits in the encoded block
is n and we encode k qubits, then we will need at least t = n−k generators. For our considered
example, with just 1 encoded qubit, we need t = 7 − 1 = 6 stabilizer generators. One such
example of stabilizer generators collection is:

G0 = (IIZIZZZ) G3 = (IININNN)
G1 = (IZIZZZI) G4 = (ININNNI)
G2 = (ZZIIZIZ) G5 = (NNIININ)

(2.31)

This collection of stabilizer generation, composed out of phase-flip (left column in Equation
2.31) and bit-flip (right column) generators, will not change the overall coded Steane super-
position as Figure 2.15 shows.

The error could be easily expressed as a 1-qubit transfromation set, for instance E =
(IINIIIZ). In this example, for our qubit block u0u1u2u3c0c1c2 two errors will appear: a
bit-flip in u2 and a phase-flip in c2. The error vector has an important property of being
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Figure 2.10: Bit-flip syndrome computation block, for Shor ancilla coding.
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Figure 2.11: Phase-flip syndrome computation block, for Shor ancilla coding.
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m0 m1 m2 erroneous qubit

0 0 0 no error
0 0 1 u0

0 1 0 u3

0 1 1 u1

1 0 0 c2
1 0 1 u2

1 1 0 c1
1 1 1 c0

Table 2.3: Stabilizer code syndrome interpretation; the rightmost row is indicating the bit-flip
error position.

revealed by the generators: al least one of them (from the collection) will commute when
multiplied with the error vector. This procedure will work for sigle errors and two independent
simultaneous errors (i.e. a vector obtained by multiplying two sigle error vectors). In fact,
E = (IINIIIZ) = (IINIIII) · (IIIIIIZ).
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Figure 2.17: Fault tolerant circuit for stabilizer coding, using one qubit for each syndrome
bit.

The syndrome computation employs Shor ancilla preparation. The number of qubits of the
ancilla equals the number of non-I elements in the generators (4 in our considered example:
1-qubit Steane coding). Each qubit corresponding to such a non-I gate (required by the
generator), will be the source of a XOR gate whose target qubit belongs to the ancilla. Then,
the ancilla is measured; the syndrome bit is obtained as the parity of the measured ancilla
word. Of course, before the phase-flip syndrome is computed the {|0〉, |1〉} is changed with
qubitwise Hadamard transforms, and afterwards the original basis is restored by performing
the same qubitwise operation. The circuit used for stabilizer code syndrome computation is
presented in Figure 2.16. Table 2.3 shows how the error position is found from the syndrome.

We will take into consideration a double error example defined by the set Ed = (IINIIIZ).



38 CHAPTER 2. FAULT TOLERANCE IN QUANTUM COMPUTATION

Thus, the following equalities will hold:

G0 ×Ed = 1 G3 ×Ed = 1
G1 ×Ed = 0 G4 ×Ed = 0
G2 ×Ed = 1 G5 ×Ed = 0

(2.32)

Syndromes (101)phase and (100)bit indicate that there is a phase-flip error in qubit c2 and a

bit-flip error in u2.

A better way to measure the generators will take into consideration the possibility of
measuring all the generators with just one measurement for bit-flip and phase-flip syndromes.
The idea here is to use the proper ancilla, so that only generator eigenvalues are superposed,
and therefore only valid generators will be measured without affecting the coherence of our
quantum syndromes. For our stabilizer code example, the basic idea is expressed in Figure
2.17. But the presented solution uses ancilla qubits that are targets for multiple XOR gates,
so this design is prone to phase (backward propagated) burst errors. The solution would be
to use 7-qubit Steane ancilla; a superposition of all the eigenstates dictated by the stabilizer
generators. Figure 2.18 presents the design that uses Steane coding for the ancilla, with the
Hamming parity being computed according to the generator equivalent matrix.

Although there are many design possibilities, the best fault tolerant approach is due to
the generalization of stabilizer coding. The starting point in formalizing stabilizer coding is
to associate a Hamming matrix to the generator set. For instance, generators G3, G4, G5 from
Equation 2.31 are characterized by the following Hamming matrix:

HStab =

⎛
⎝ 1 1 1 0 0 1 0

1 1 0 0 1 0 1
1 0 1 1 1 0 0

⎞
⎠ (2.33)

Of course, for the Steane code Hamming matrix (HA from Equation 2.14) we have a generator
collection:

GS0 = (ZIZZZII) GS3 = (NINNNII)
GS1 = (ZZZIIZI) GS4 = (NNNIINI)
GS2 = (IZZZIIZ) GS5 = (INNNIIN)

(2.34)

In order to generalize these partial correspondences, we will use the so-called stabilizer code
check matrices. The check matrix is formed by a left half – that is corresponding to the phase-
flip control –, and a right half which is corresponding to the bit flip control: H̃ = (HZ|HN).
The new matrix will have a double number of lines, thus the matrix size is 2n columns and
n− k lines. For the generator collection in Equation 2.34 the check matrix is:

H̃A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 1 1 0 0 0 0 0 0 0
0 1 0 1 1 1 0 0 0 0 0 0 0 0
0 0 1 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 1 1
0 0 0 0 0 0 0 0 1 0 1 1 1 0
0 0 0 0 0 0 0 0 0 1 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠ (2.35)
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Figure 2.18: Stabilizer generator measurement with Steane ancilla coding.
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and for the generators in Equation 2.31 we will have

H̃Stab =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 1 0 0 0 0 0 0 0 0
1 1 0 0 1 0 1 0 0 0 0 0 0 0
1 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0 0 1 0
0 0 0 0 0 0 0 1 1 0 0 1 0 1
0 0 0 0 0 0 0 1 0 1 1 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠ (2.36)

The check matrices are built as follows:

• for each qubit which has a Z in the generator there will be a corresponding ’1’, the same
thing is true for the generators with N elements;

• if an qubit is operated by an Y element, then a ’1’ will appear on the same position in
HZ and HN ;

• the rows correspond to the ordered list of generators (G0, G1, . . .G5 in our generator
code example).
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Figure 2.19: Error-correction with stabilizer generator measurement, Steane ancilla, and syn-
drome computation according to the check matix.

Having the H̃ check matrix generalization theory, better generator measuring devices can
be developed, as Figure 2.19 shows. The preparation of the ancilla assures the fact that,
excepting the syndrome, no other eigenstate is superposed in the quantum measured state.
Thus, operating with only the classical values of the measured ancilla, the affected qubit is
identified by computing the parity according to H̃.

2.6 Gates for fault-tolerant codes

We have described the methodologies that are employed in order to detect and correct errors
affecting the quantum state. However, we must be able to process the encoded states in order
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to build fully functional quantum circuits. Therefore special (i.e. fault-tolerant) gates must
be designed; these gates will perform the same tasks as the ordinary gates, but the processed
states will be the fault-tolerant coded.

There are two ways of approaching the implementation of such quantum gates:

• by decoding the state, applying the ordinary gate, and re-encoding the processed state;

• by processing the encoded state with special designed transformations.

The first approach is not feasible because, although simplifies the operation, it is introducing
the decoding and encoding operations which are prone to errors. Hence, we adopt the second
approach by designing a universal set of quantum gates that are processing the encoded
states (Steane code or any stabilizer code). The gates from the universal set are chosen so
that as many as possible are straightforwardly implemented. It is easy to implement XOR,

NOT, Hadamard, and Phase Shift (P =

(
1 0
0 i

)
) gates by performing qubitwise ordinary

transformations: XOR, N , H , and P † =

(
1 0
0 −i

)
respectively (see Figure 2.20).
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Figure 2.20: Straightforward implementation of some quantum gates operating on fault-
tolerant coded qubits: a) Hadamard; b) NOT; c) Phase Shift; d) XOR.

In order to have an universal set of fault-tolerant codes operating gates, we must define the
Toffoli gate in these 7-qubit code terms. This objective is not achieved in a straightforward
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manner, it needs to define special ancilla qubits preparation , followed by some operations
applied on the processed coded qubits.

The ancilla qubits state will have to be of the form given in the following equation:

|ψ〉code
= 1

2

∑
x,y∈{0,1} |x, y, x ∧ y〉code

= 1
2

(|000〉code + |010〉code + |100〉code + |111〉code
)
.

(2.37)

This state is obtained by setting the innitial state:

H⊗3|000〉 =
1√
2

(|ψ〉code + |φ〉code
)
. (2.38)

where the relationship between |ψ〉code and |φ〉code is

I ⊗ I ⊗N |φ〉code = |ψ〉code (2.39)

Therefore, the state superposition from Equation 2.38 could be seen as a vector in a space
with basis

{|ψ〉code, |φ〉code
}

and, obtaining the desired |ψ〉code state could be reduced to
measuring the superposition state in this new basis. If the result of the measurement is
|φ〉code, then the I ⊗ I ⊗N operator is applied on the measurement outcome.

The procedure for measuring in the
{|ψ〉code, |φ〉code

}
basis is described in Figure 2.21,

where the Zψφ gate is a conditional phase shift in the new space basis. The actual implemen-
tation in the fault-tolerant Toffoli gate construction, which uses |cat〉 states for measuring the
ancilla in the corresponding basis is presented in the left side of Figure 2.22.

code
ancilla

code
0

7

7 7
HH Z��

Measurement

Figure 2.21: The principle used for measuring the ancilla qubits in the {|ψ〉, |φ〉} basis.

If measuring the ’cat’ states will give |m1〉code = |0000000〉⊗3 then the ancilla is rightly
set, otherwise we will negate the least significative ancilla 7-qubit code.

Having the ancilla set, 4 gates are applied on the processed qubits |x1〉code,|x2〉code,|y〉code, 3 XORs and 1 Hadamard. The first 2 XORs have ancilla sources and x1, x2 qubits
as targets, then the last XOR has ancilla code as target with the y qubit as source. Then, the
Hadamard gate is applied on the y qubit, as presented in the center of Figure 2.22. The effect
of applying these 4 gates, on the processed qubits and the ancilla, is presented in Equation
2.40.

|x1, x2, y〉code
∑

a1,a2∈{0,1} |a1, a2, a1 ∧ a2〉code �−→∑
a1,a2,a3∈{0,1} (−1)a3·y|x1 ⊕ a1, x2 ⊕ a2, a3〉code|a1, a2, (a1 ∧ a2) ⊕ y〉code.

(2.40)

The result of the computation is obtained on the ancilla qubits by measuring the processed
qubits, corresponding to x1, x2, and y. If the result is |m2〉 = |000〉code, then x1 = a1 and
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Figure 2.22: The implementation of the fault-tolerant Toffoli gate.

x2 = a2, therefore the ancila qubits will contain the result. Otherwise, as shown in Figure
2.22, some corresponding gates will have to be applied on the ancilla, for each non |0〉code,
in order to correct the result.

2.6.1 Gottesman’s fault tolerant gates

Although the above-described set of universal set of fault tolerant gates suffices from a theo-
retical point of view, a much more general approach would be useful for the future engineering
issues. Shor [47] has marked the way to the fault tolerant gate generalization, but Gottesman
[18][19] gave its exact definition, which can also be found in [39].

We have already presented that for any stabilizer code there is a fault tolerant implemen-
tation of the 1-qubit gates N and Z (i.e. the gates used for processing each qubit in the
stabilizer code). Also, any stabilizer operator can be expressed with a H̃ = (HZ|HN) check
matrix having 2n columns and n − k lines, with n being the code block size, k the number
of encoded useful (i.e. non-redundant) qubits, and n − k the number of operators that are
required to generate the stabilizer code.

The error operators that will commute with the stabilizer code generators are forming a
group denoted GE. This group, as a whole, has its own generator set. The original generators
set are represented as 2n-length binary strings, which will have to satisfy n− k independent
binary logic equations. Therefore, the error operator group GE will have a number of n + k
independent generators, including the n − k stabilizer code generators. Thus we have an
extra-set of 2k operators, able to process the coded state (i.e. altering it in a non-trivial
fashion) without deteriorating the consistency of the code subspace. All the operators from
the extra-set are independent from the stabilizer code generators [10], hence could be used as
ordinary unitary operators on the encoded qubits.

Gottesman [18] has shown that we can choose the 2k operators so that they are only
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1-qubit acting
(
Ẑi, N̂i : i = 1, k

)
, and that all of these are fault-tolerant. Because it was

demonstrated that a fault tolerant Toffoli gate can be constructed in order to act on qubits
encoded by any stabilizer code, we have a comprehensive (and universal) set of fault tolerant

gates:
(
ToffoliFT, Ẑi, N̂i

)
. The gates corresponding to Ẑi will flip the phase of qubit i, while

Ẑi is flipping qubit i. All these operators are complying with the properties described in
Equation 2.41. [

Ẑi, Ẑj

]
=

[
Ẑi, Ẑj

]
= 0[

Ẑi, N̂j

]
= 0 if i �= j

ẐiN̂i + N̂iẐi = 0

(2.41)

As incentive for a favourable implementation of the previously defined gates, the 7-qubit
Steane code (a particular case of stabilizer coding) is considered as the most convenient choice
[39]. Other stabilizer codes may require smaller blocks but the computation will become more
complex.

2.7 Accuracy threshold

2.7.1 Technological requirements

Quantum error-correcting codes exist for r errors, r ∈ N, r ≥ 1. When using such a code, a
non-correctable error occur if a number ≥ r+ 1 errors appear in the coded block at the same
time (i.e. before the recovery process).

If the probability of an quantum gate error or storage error in the time unit is of order
ξ, then the probability of an error affecting the processed data will be of order ξr+1 (a very
small quantity if r is sufficiently big). It seems that a coding procedure corresponding to a
big r will solve our quantum reliability problem. But this issue is in fact more complex than
that. Increasing r means that the safe recovery will become more complex, hence prone to
error: with a high probability r+ 1 errors will accumulate in the block buffer before recovery
is performed.

Suppose the relationship between r and the number of computational steps required for
obtaining the syndrome is polynomial of the order rp. Then, the block error probability (i.e.
the probability of accumulating more than r errors in the coded block before performing
recovery) is given by Equation 2.42 [39].

BlockErrorProbability ∼ (ξrp)r+1 (2.42)

It was proven [18][39] that, in order to reduce as much as possible the error probability, r
must be chosen so that

r ∼ e−1ξ−
1
p (2.43)

As a consequence, we are able to evaluate the degree of accuracy (as error probability in
the time unit), by minimizing the BlockErrorProbability. In other words, if attempting to
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execute N cycles of error correction without any r+1 error accumulating before the recovery
steps, then we must have

N ∼ exp
(
ξ−

1
p

)
(2.44)

Thus, the accuracy degree will have to be

ξ ∼ (logN)−p (2.45)

Nevertheless Equation 2.45 looks better than the accuracy degree corresponding to the no-
coding case:

ξ ∼ N−1 (2.46)

Still, we will have an Nmax so that if N > Nmax then the > r error (non-correctable) is
likely. It is obvious that, in these conditions, we have a limit on how long the fault-tolerant
computation is. Although the encoding techniques already discussed seem to suffice because
Nmax is big enough, one must also notice the extremely high number of gates employed
by quantum algorithm implementation; therefore Nmax must higher than 3 · 109 for Shor’s
algorithm.
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Figure 2.23: Graphical representation of accuracy degree required for the corresponding N ,
for different p’s: 3 for xi1, 4 for xi2, 5 for xi3. xi4 corresponds to the no-coding situation,
while ref is the reference accuracy (i.e. the accuracy allowed by today’s state of the art
technology).

As Figure 2.23 presents, the required accuracy degree approaches today’s technological
limit (tipically 10−3 for p = 4) after N = 105. For a fault tolerant encoding solution for Shor
algorithm implementation this should have happened after N = 109.
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2.7.2 Concatenated coding

A solution for fault tolerant quantum computation with arbitrary length is concatenated
coding. It uses a divide-and-conquer strategy where each qubit is encoded by a block of
sub-qubits, each sub-qubit being encoded by other blocks of qubits, and so on. Figure 2.24
explains the principle of concatenated coding. If we are using – for instance – Steane codes,
then each qubit is encoded by 7 sub-qubits, and therefore a m-depth (or level) concatenated
Steane code will require a 7m-qubit block.

n

n

n

�

n

n

n

�

n

n

n

Figure 2.24: Concatenated coding: each qubit can be encoded by a block of sub-qubits.

But will concatenated coding necessarily bring more fault tolerance? This solution seems
to be two-way because, on one hand it can make things better if the initial error rate is
sufficiently small, however – on the other hand – if the error rates are high, then things will
become worse (fault tolerance degradation).

In this chapter we considered an error model that excludes correlated errors (in time or
space). This model is very good for strategic considerations in fault tolerance, but correlated
errors must not be ignored because they are very likely as long as we can have 2 or 3-qubit
faulty gates, inflicting errors on more than one qubit.

For Steanes code the recovery is intended for singular error and, given a fault tolerant
recovery with uncorrelated errors appearing with probability ε [errors/qubit], concatenated
coding with m levels brings an ε2m

overall error probability at the expense of using a block of
size 7m-qubit. An interesting analysis would be the solution to the following question: how
big the block size must be in order to assure fault-tolerant quantum computation of N steps,
when the accuracy degree is fixed?

� �
Figure 2.25: Transversal implementation of the XOR gate for concatenated coding.
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2.7.3 Analysis

In order to start the analysis required by the above considerations, we have to adopt the
starting point premises from the below list, which assure both a simpler analysis and a worst-
case analysis type.

• The errors are probabilistic uncorrelated, with all the error models (bit-flip, phase-flip,
bit-and-phase-flip) having the same likelihood;

• Total probability in each time slot, between two consecutive fault recoveries, is ξstore,with
the probability of a gate operation failure being ξgate;

• The analysis is performed by building a ”set of concatenation flow equations” [38];

• Steane encoding is used, with Steane syndrome measurement, because is appropriate
for a concatenated coding approach: contains Hadamard and XOR gates, which are
easy to implement transversally (see Figure 2.25 for a XOR gate example);

• In order to compute the syndrome, distructive measurement can be executed at all the
levels in the concatenated code and at the same time [39][63]; this way the recovery will
be performed to all the elementary (lower level) qubits and at the same time recovery is
completed at the highest level in one step. In other words, with this procedure all the
levels of concatenation will execute recovery at the same time.

The idea for accuracy threshold estimation is that at each level of concatenation a block
of 7’s fails if there are at least 2 errors in its subblocks. If pm is the probability of block error
at the m level, the probability of error at the m+ 1 (higher) level will be pm+1, given by

pm+1 =
7∑
i=2

Ci
7p
i
m ∼ 21p2

m (2.47)

and therefore we consider that, because pm+1 < pm if pm < 1
21

, at the lower level (0) we must
have p0 <

1
21

so that level 1 will have a smaller error probability. We have found the threshold
value: 1

21
.

As reference for our further analysis we are taking into considerations Figures 2.13 and
2.14, as Steane code with Steane ancilla implementation. By using the threshold value for
the circuit described in these two figures, Preskill [39] has calculated the elementary qubit
probabilities that will preserve the fault tolerant computation:

ξstore,0 ∼ 6 · 10−4 (2.48)

ξgate,0 ∼ 6 · 10−4 (2.49)

Preskill got these values by assuming that we have only either gate or store errors. These
results are much debated and there is a lot of controversy regarding the procedures and
premises that are to be taken into consideration in order to perform the analysis. However,
the bottom line is that all the computed thresholds are somewhere around 10−4.
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Another problem was also addressed by Preskill [39]: how large must be the block size in
order to ensure the desired accuracy degree (ξgate,0)? For a computation involving N gates,
and an actual gate error rate of ξ the block size must comply to:

blocksize ∼
[

log ξgate,0N

log
ξgate,0

ξ

]log2 7

(2.50)



Chapter 3

Improving Fault Tolerance in
Quantum Circuits

This chapter presents a radically new solution for attaining fault tolerance in quantum cir-
cuits by employing reconfiguration techniques. It begins with an analysis that provides the
necessary critique of the actual quantum fault tolerance techniques, therefore identifying the
weaknesses of those methods, and then sketches the solution based on the so-called reconfig-
urable Quantum Hardware or rQHW.

The proposed technique, applied on a specific case shows drastic improvement of the
accuracy threshold, as an availability (as defined by Avižienis et. al. [6]) measure.

3.1 The big picture

In a classical computer system, there are several fault tolerant techniques that are employed
on different abstraction levels. This section starts by presenting tables with the techniques
that are used on each abstraction level (inspired by classical hardware synthesis [5]), for both
classical and quantum computing systems (see tables 3.1 and 3.1).

In quantum computation we have just 4 abstraction levels; in table 3.1 on the ”level”
column we show the analogy correspondence between the classical hardware and the actual
quantum levels. On the architectural level we deal with quantum computing systems: quan-
tum computers or coprocessors [33][55] where some architectural strategies can be used [35].
At the circuit level the testing techniques are applied; for example, Shors algorithm arithmetic
circuits are implemented with strategies like carry-dependent sum, which provides for parity
fault detection [36]. The unitary level is concerned with the special coding that is thoroughly
discussed throughout this chapter, and the intrinsic reliability at the particle level is provided
by sophisticated technology like topological quantum computation [1].

The so-called ”big picture” in fault tolerant quantum computation is provided by Figure
3.1, which shows the different abstraction levels from the top (architectural – quantum com-
puter) to the bottom level, which has the highest detail degree (technology – particle). Also,
in Figure 3.1 the associated faut-tolerant strategies are presented.

This is our engineering general interpretation of fault tolerant strategy implementations
on different quantum hardware abstraction levels. The abstraction levels were also inspired
from classical hardware design (Gajsky and Kuhns Y diagram [5]). It is also based on what

49
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level
behavioral
domain

fault tolerance
example

components

system
performance
attributes

fault-tolerant
architecture

computers
computer networks

chip algorithms
testing (BIST)

FT reconfiguration
µP, FPGA,
DSP, UART

register data flow
Embryonics

BILBO
testable design

register
ALU
MUX

gate boolean equations
EDC-ECC

testing
gates

flip-flops

circuit differential equations
manufacturing testing
post-fabrication reconf.

MOS tranzistors
bipolar technology

silicon –
manufacturing verif.
intrinsic reliability

geometrical forms

Table 3.1: Hierarchical fault tolerance approach in classical computer hardware.

level
behavioral
domain

fault tolerance
example

components

architectural

{
system
chip

complexity
measures

reliable
architecture [35]

quantum
oracle [55]

circuit
{

register

qustate
flows,

bra-ket
equations

reliable
quantum
arithmetic

devices

quantum
ALU,
Grover

iteration
circuit

unitary
{

gate
matrix

operations

Steane
coding,
ancilla

preparation

qubits,
quantum

gates

particle

{
circuit
silicon

Schrödinger
equations

intrinsic
fault

tolerance

topological
quantum

computation
Aharonov
Böhm [1]

Table 3.2: Hierarchical fault tolerance interpretation for quantum computational devices. The
’level’ column also presents the correspondence with classical hardware levels.
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is already achieved in this field. The researchers have approached all the invoked strategies,
including (rather recently) the testable circuits [40].

This section will also explore some of the limitations of the principles that are applied in
quantum error detection and correction. As already presented in this chapter’s first section,
classical computation is intrinsically fault tolerant, and the encoding techniques are effective
due to the fact that an error is unlikely to occur, thus facilitating a safe recovery. But in
quantum computation the circuits are prone to fail, and safe recovery is improbable. There-
fore, a simple classically inspired solution is not feasible because ancillary qubits preparation
will give the overall fail rate, regardless of the number of ancillary levels. Figure 3.2 shows
that data and ancilla qubits having a error rate of the order ξ will always give an overall ξ
fail rate when a classical approach is used and no matter how many ancilla qubit level are
used for a safe recovery.

The only conceivable solution to the safe recovery problem is to use structural redundancy.
If we prepare na ancilla qubit sets, each with the corresponding syndrome, and the trustworthy
syndrome is selected with a voter, then the probability of a faulty syndrome becomes ξ

na
2 (see

Figure 3.3). This is a good result for a sufficiently small ξ and a big na. However, a big na
means that a lot of ancillary qubits are used and, although fault tolerance is a very important
issue, we want to spare as much as possible qubits.

As already stated in this chapter, our objective is to assure an ξ2 error probability for
the corrected encoded data. The method that is actually used is based on the voter principle
presented in Figure 3.3, but uses a limited structural redundancy. The Steane safe recov-
ery procedure is based on Steane ancilla preparation, which provides for effective syndrome
testing. If one syndrome is not good, then another is available. The probability of both fail-
ing is ξ2 and therefore this procedure, schematically presented in Figure 3.4, is sufficient for
achieving the stated goal. The procedure must be quite simple in order to maintain a limited
number of involved qubits, thus limiting the area of computation that is prone to error.

3.2 Issues to be settled

The theory of fault tolerant quantum computation has evolved and makes the quantum proces-
sors feasible [31][32]. But still there are some potential problems of theoretical nature that
could affect the future quantum hardware engineering issues. Here we will debate two of these
problems:

(α the fact that the error occurrence model that was taken into consideration is of uncor-
related errors;

(β the inflexibility of quantum circuits for ancilla preparation which requires at least two
ancilla sets to be used even if the syndrome computed on the first set is correct.

Both problems would indicate reconfigurable quantum hardware as solution, even though
such a solution does not operate as we would expect from a classical hardware point of view
[30]. Nevertheless, we will thoroughly analyze now the above listed problems, which could
have reconfigurable solutions.

When discussing problem (α, we observe that, for a theoretical approach, it is convenient
to consider an error occurrence model that excludes correlated errors (in time or space). But
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Quantum computer
(reliable architecture)

Quantum circuit
(testable circuits)

Qubits & Gates
(Shor & Steane codes)

Technology
(intrinsic reliability)

Figure 3.1: Quantum fault tolerant achievements on different abstraction levels.
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Figure 3.2: Classical fault tolerant approach for a safe recovery assumption. Here, if the
probability of faulty recovery is of the same order as the probability of faulty data, then
coding is useless because the probability of erroneous corrected data remains ξ.
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Figure 3.4: Steane safe recovery procedure. Corrected data has an error probability of order
ξ2 by using structural redundancy when testing reveals bad ancilla.

it would be unrealistic to consider such a model in practice. On the other hand, dealing
with this kind of errors is rather difficult. Nevertheless, the biggest problem that comes from
correlated errors is that concatenated code blocks are jeopardised. For example, if we use a
concatenated code of size 7 on 3 levels, we have a total of 73 = 343 qubits. We also consider
that only one error/block is tolerable. Thus, when 5 low-level qubits (from 343) are erroneous,
the probability of not being able to correct the entire code is very low. But when these errors
are correlated in space, there is very likely to have a code that cannot be corrected (a block
with at least 2 erroneous sub-blocks). Figure 3.5 presents such an example situation, where
the integrity of the entire code is affected due to the correlated nature of errors in the low-level
qubits.

�
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x � xx x
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x
x

Figure 3.5: Concatenated coding affected by correlated errors.

Also, when we prepare the ancilla qubits – used in syndrome computation – the way
Steane and Preskill prescribe [39][52][53], we have limited structural redundancy because at
lest two ancilla sets are employed for the corresponding syndromes. If we place the ancilla
sets in neighbouring positions, correlated errors will also affect the syndrome computation
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(see Figure 3.6 for such an example).
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Figure 3.6: Steane error recovery affected by correlated errors.

As for the problem (β, this is an obvious resource-related issue. When using concatenated
coding, a lot of qubits are used in order to assure the reliability of just one qubit. With all
this waste of encoding required qubits, we still have to use structural redundancy, because
otherwise we will not have a safe recovery and all the encoding effort is useless. Structural
redundancy means at least doubling the ancillary qubit consumption (ancillary syndrome
qubits also use to concatenated coding!), even if the first ancilla set was correctly prepared.

All the critique contained in the considerations regarding problems (α and (β will not
question the validity of the quantum fault-tolerant techniques including concatenated coding,
ancilla preparation, syndrome measurement and the use of stabilizer codes. These are the best
options from a theoretical point of view. The observations were made from an engineering
point of view, which require that some practical aspects be taken into consideration. Among
these aspects we will find the huge ancillary qubit waste, and the inevitable problems that the
practical technology will face when maintaining and handling qubits (i.e. correlated errors).

3.3 Sketching the solution

The fact that assuming anly uncorrelated probabilistic errors is not realistic, from an engi-
neering point of view, is recognized by Preskill [39][38]. Reconfigurable quantum hardware
rQHW could be a solution for problems (α and (β, which are related to fault tolerance issues
induced by the presence of correlated errors. Also, when choosing dynamically the depth of
concatenated coding, the quantum hardware is reconfigurated accordingly. Another motiva-
tion comes from the fact that reconfigurable solutions are already used successfully in classical
computing fault tolerance [41].

When fighting the transient correlates errors, rQHW brings flexibility that allows for
dynamic ancilla qubit preparation. The actions to be taken against correlated errors are:

• choosing (i.e. setting a corresponding configuration) the ancilla qubits from a distinct
ancillary set so that they will not be neighbors to each other;



56 CHAPTER 3. IMPROVING FAULT TOLERANCE IN QUANTUM CIRCUITS

• just one set of ancillary qubits is set for one data block; if testing reveals that is faulty,
then another ancilla set is configurated in a different area of the reconfigurable quantum
circuit.

From a fundamental point of view, all the coding techniques used in fault-tolerant quantum
computation are designed to move the ”prone to fail area” from the data block to ancilla used
in syndrome computation, where structural redundancy is used. As we will see, by using a
superposition of basis states in the configuration register, we create a fundamentally lower
error probability if the configuration register state is trustworthy. Therefore, the ”prone to
fail area” is moved onto the configuration register.

In principle, a reconfigurable quantum circuit is a quantum gate array (QGA), acting on
an input register the way it is prescribed in a configuration register. The processed input is
stored in an output register. Normally, we should not care about the outcome corresponding
to the configuration register (see Figure 3.7). In a formalized expression, we have:

UQGA : |input〉 ⊗ |config〉 �−→ |output〉 ⊗ |don′t care〉 (3.1)

Reconfigurable
Quantum Gate Array

input output
n

m

n

m
config 'don t care

Figure 3.7: Reconfigurable quantum gate array: the involved registers.

3.3.1 Limitations for rQHW

There are two main limitations that do not allow us to deal with the quantum programmable
gate arrays the way it is done in classical hardware.

1. As shown by Nielsen and Chuang we cannot have a programmable gate array that can
be configured so that it performs any unitary operations, unless the gate array ”operates
in a probabilistic fashion” [29].

2. It is impossible to build a switch-based quantum gate array, as shown in the following
proposition.

Proposition 2.1 (No switches) Due to the qubit cloning impossibility, we cannot have a
switch-based programmable quantum gate array.

Proof: In order to have a switch-based QGA we must be able to implement a basic switch
in quantum terms. Figure 3.8 presents such a device.

Building the switch from Figure 3.8 requires that the black box marked as ”quantum
switch ?” will act like this:
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Quantum
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cq 2oq

Figure 3.8: The desired quantum switch.

Uswitch : |qi〉i1 ⊗ |qc〉i2 ⊗ |0〉o1 ⊗ |0〉o2 �→
{ |qi〉i1 ⊗ |qc〉i2 ⊗ |qi〉o1 ⊗ |0〉o2 for some|qc〉;

|qi〉i1 ⊗ |qc〉i2 ⊗ |0〉o1 ⊗ |qi〉o2 otherwise.
(3.2)

Suppose that we are in the first instance of Equation 3.2 (for some |qc〉). Then, the switch
is reduced (because |qc〉 is fixed) to

Usw1 : |qi〉i1 ⊗ |0〉o1 �−→ |qi〉i1 ⊗ |qi〉o1 (3.3)

But Equation 3.3 is impossible because the no-cloning law of quantum mechanics says
that there is no Uclone so that for any |ψ〉:

Uclone : (|ψ〉 ⊗ |0〉) �−→ (|ψ〉 ⊗ |ψ〉) . (3.4)

3.3.2 Reconfigurable quantum gate array (rQGA) structure

Due to the second limitation of the rQHW, any programmable quantum gate array, which
consists of a set of basic reconfigurable cells, will have to compose the cells in a linear fashion.
Figure 3.9 presents the consequence of limitation 2. Here, we have highlighted the number of
qubits for all inputs and outputs involved.

rQGA
cell0

rQGA
cell1

rQGA
cellw-1

n0 n1

k0

n2

k1

nw-1 nw

l1 lw-1l

m
m0 m1 mw-1

Figure 3.9: Linear connection of basic reconfigurable quantum gate arrays, allowed by the
second limitation.

There are w linear connected cells, with two kinds of inputs – outputted by a previous
cell (nj with j = 0, w − 1, n0 from hole circuit’s input) and coming from the input (lj with
j = 1, w − 1 in number). Also, there are two kinds of outputs: going to be inputs for the
next cell (nj+1, j = 1, w in number, with nw being part of hole circuit’s output), and going to
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the general output (kj, j = 0, w − 2 qubits for each cell). Also, there is m = m0 +m1 +mw−1

qubits control register; cell j having mj corresponding control qubits.
The only limitation is that, for each j = 0, w − 1, the following equation has to hold:

lj + nj = kj + nj+1 (3.5)

when considering that we have a l0 = 0 and kw−1 = 0.
As for the circuit as a hole, we have a total of n0 +

∑w−1
i=1 li input qubits, which is equal

to the total output qubits number nw−1 +
∑w−2

i=0 ki.

3.3.3 Apropriate gates

In order to have a programmable array of gates, the usage of each gate has to be conditioned
by some dedicated qubits (which form the configuration register). Therefore, the most con-
venient set of gates to be used in a basic cell of rQGA is inspired by gate family ∧n (U) that
was introduced by Barenco et al [7]. With this formalism ∧n (U) is a (n+ 1)-qubit unitary
operator, described by [7]:

∧n (U) (|a0, . . . an−1, b〉) �→
{
ub0|a0, . . . an−1, 0〉 + ub1|a0, . . . an−1, b〉 if ∧n−1

i=0 ai = 1
|a0, a1, . . . an−1, b〉 if ∧n−1

i=0 ai = 0,
(3.6)

where U is any unitary transformation [30][12][13] U =

(
u00 u01

u10 u11

)
with u00, u01, u10, u11 ∈

C, n ∈ N, and a0, a1, . . . an−1, b ∈ B = {0, 1}.
However, for any gate that we want to conditionally introduce in our rQGA, we need a

particular case of this formalism, where n = 1 and U is a m − qubit unitary transformation,
representing the gate which is conditioned by one qubit from the configuration register. This

means that the general form of our 1-qubit conditioned gate ∧1

(
U
m-qubit

)
is the 2m+1×2m+1

matrix:

∧n (U) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

. . .

1
u0,0 . . . u0,2m−1

. . .

u2m−1,0 . . . u2m−1,2m−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.7)

In the basic quantum reconfigurable cell architecture, we will use the following elementary
gates: ∧1 (UCNOT ), ∧1 (H). UCNOT stands for any matrix describing a CNOT transform,
while H is the Hadamard matrix. While the relationship between UCNOT and ∧1 (UCNOT )
has been extensively described in [7][62], ∧1 (H) is a special 2-qubit gate described by matrix
and depicted in Figure 3.10.a:

∧1 (H) =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1√

2
1√
2

0 0 1√
2

− 1√
2

⎞
⎟⎟⎠ (3.8)
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H
a) b)

c

t

c

m

Figure 3.10: Special conditioned gates: a) Hadamard, and b) qubit measurement. Qubit c is
used for control, t is target for Hadamard, and m measured if c = |1〉.

Also, a conditioned measurement is needed in order to build a general reconfigurable cell
for the studied quantum circuits. The control for conditioned measurement gates (see Figure
3.10.b) can be only a basis state (i.e. its c is a bit, not a qubit).

Another observation is that we can use either a ”hardwired” implementation for the Toffoli
gate the way it is described in 2.22, or a reconfigured version by using 2 basic reconfigurable
quantum gate array (rQGA) cells.

3.3.4 Basic reconfigurable cell

The basic reconfigurable quantum gate array (rQGA) cell is designed so that rippling several
such basic cells allows for configuration of any concatenated code based on stabilizer coding
and Steane-like ancilla qubit preparation. The idea of this cell architecture is based on the fact
that, when looking at Figures 2.8,2.9.B,2.13 and 2.14, the circuits are built by a regular array
of gates, with a common pattern for both data stabilizer encoding, ancilla qubit preparation,
and syndrome computation.

This general architecture of the basic cell is presented in Figure 3.11. There are n input
and output qubits, and m control qubits. The grey lines represent control qubits, while the
black lines correspond to the processed qubits. Also, a dashed line stands for a control that
can only be classical (no basis state superpositions); full grey lines means that the control can
also be of quantum nature (i.e. superposition of basis states).

In Figure 3.11, the first level of gates from left to right are represented by two Hadamard
gate sub-levels (each having n gates): the first one is common for all the involved circuits
(code generation, ancilla preparation and syndrome computation), the second is used due to
the fact that in some circuits we need a space basis transformation (like in Figure 2.1).

The second level of gates is formed out of Toffoli gates, i.e. XOR gates with 1 qubit for
control. The controlled XORs are placed so that there are gates with each qubit as source for
all the other qubits being targets. There are two sets of such gates, therefore having a total
of n2 − n gates in this level (n is the number of qubits in the input register).

The third level of gates is again formed out of two Hadamard gate sub-levels. The first
sub-level is responsable with basis transformation, while the second corresponds to the second
Hadamard gate level from the ancilla preparation circuit (fig 2.9). Thus, we add another 2n
gates to the basic cell architecture.

The fourth gate level consists of conditional measurement gates: they are required by
the construction of syndrome computation circuits that are processing ancilla qubits (Figures
2.132.14), and by the fault tolerant Toffoli gate architecture from Figure 2.22.
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Figure 3.11: The basic reconfigurable cell for stabilizer encoding solutions.
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Then, Figure 3.11 shows that we need to be able to process the qubit measurement classical
outcomes with classical circuits (i.e. processing with basis states). The basis state logic takes
k classical inputs and produces n classical outputs, which are very important because these
contol signals will configure the rest of the basic cell architecture. Such a solution is motivated
by the fact that the syndrome for a stabilizer code is computed with classical means after
the measurement step, and the correction is also driven (controlled) by the outcome of that
classical computation.

The remained gate levels are controlled with basis states (i.e. clasically) and are responsible
with the correction step.We have two sets of XOR gates, having each of the n qubits as
targets, and being controlled classically. The XOR gate level is guarded by two Hadamard
gates levels, which are responsible for changing the state basis.

3.3.5 Quantum configuration

For the basic cell in Figure 3.11 we are able to give a structure of the configuration register.
First of all, the configuration information for the left half of the cell is of quantum nature,
while the right half has classical configuration, hence we have:

|config〉basic cell = |ψ〉conf ⊗ |bit string〉 (3.9)

The bit string classical configuration register has the following structure:

|bit string〉 = |mm. . .m︸ ︷︷ ︸
n bits

hh . . . h︸ ︷︷ ︸
n bits

xx . . . x︸ ︷︷ ︸
2n bits

hh . . . h︸ ︷︷ ︸
n bits

〉 (3.10)

In Equation 3.10 we have denoted with m a bit that controls a measurement gate, h a
Hadamard gate, and x a XOR gate.

As for the |ψ〉conf part of the configuration register, as we will see, it can be a superposition
of basis state configurations with the same structure given in Equation 3.12. The quantum
configuration

|ψ〉conf =
k∑
i=0

ai|Ni〉 (3.11)

with
∑k

i=0 ‖ai‖2 = 1, ai ∈ C, has Ni ∈ N as basis states, which is equivalent to the structured
binary string in Equation 3.12.

Ni = | hh . . . h︸ ︷︷ ︸
2n bits

t00,1 . . . t
0
0,n−1t

0
1,2 . . . t

0
1,n−1 . . . t

0
n−2,n−1︸ ︷︷ ︸

n(n−1)
2

bits

t10,1 . . . t
1
n−2,n−1︸ ︷︷ ︸

n(n−1)
2

bits

hh . . . h︸ ︷︷ ︸
2n bits

〉 (3.12)

All h’s and t’s are binary digits (∈ {0, 1}) with the following meaning: h controlls a Hadamard
gate, and tls,g is a Toffoli gate from layer l (could be only 0 or 1) with the first control qubit
in the configuration register, the second being input qubit s, and the g input qubit as target.

Appendix A presents (in a practical manner) the way configurations may be build in order
to obtain some useful fault tolerant circuits. The described reconfiguration methods can be
applied for any qubit or qubit group from the input register, so that the qubit vicinity is
manipulated as a weapon in fighting correlated errors. When errors appear, the qubits from
the code block are selected so that they are physically distanced from each other.
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However, this is just one aspect of improving the fault tolerance methodologies of quantum
computation with rQHW. An interesting approach will employ the quantum configuration
opportunity.

If the configuration register is a superposition of classical configurations (i.e. basis states),
then the reconfigurable quantum gate array (rQGA) will have all the configurations from the
superposition at the same time. Therefore, we will have a superposition of k distinct circuits
at the same time. Figure 3.12 presents this feature of quantum reconfigurable circuits.

Circuit k

Circuit 2

Circuit 1

|c
on

fi
g>

| >input

|output>

Figure 3.12: When the configuration register has a quantum nature, the same reconfigurable
quantum gate array acts a a superposition of k simultaneous distinct circuits. These cir-
cuits share the same input state and the same output qubits. The output qubits encode a
superposition of the superposed circuits distinct outputs.

For our previously discussed fault tolerant circuits, we can use a superposition of classical
configurations so that the circuit produces a superposition of all the possible stabilizer codes.
Moreover, we will be able to configure at the same time all the possible versions (corresponding
to all possible stabilizer codes) of the circuit from – for instance – 2.13. Of course, when
measuring the configuration register, just one such fault tolerant configuration will remain,
corresponding to a particular stabilizer code. The idea is that, with such a procedure, the
probability of a gate error occurring in the fault tolerant circuit becomes lower, given a reliable
configuration state.

Suppose all the superposed classical configurations have the same quantum amplitude,
then they will have the same probability of being measured. Also, if we take the circuit
from Figure 2.13 (stabilizer code with Steane ancilla preparation), we have 4! = 24 possible
configurations each corresponding to a distinct stabilizer code (all the possible u0, u1, u2, u3

column arangements from the Hamming matrix in Equation 2.14), and a 1
4

probability of
having the presence of the same gate in two distinct classical configurations. Then, after the
measurement of the configuration register then – with a ξgate gate error probability given
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by the available technology – the reconfiguration solution will have an overall gate error

probability of ξ
24
4

gate = ξ6.

In a general form, the gate error rate for the overal reconfigurable gate array (rQGA) is:

ξrQGA =
(
ξgate

)k×fr

(3.13)

where ξgate is the technology gate error rate, k the number of superposed circuits in rQGA

(i.e. the number of superposed basis states in the configuration register), and fr is the so-
called freedom rate or the frequency of a gate not being used in one particular configuration,
but used in the other superposed configurations. In our example from above, fr = 1

4
and

k = 24.
This is nevertheless a very good result, which capitalizes on the parallelism of quantum

computation, but it is obtained under the assumption that the configuration register is reliable.
However, the quantum configuration technique is useful because reduces the problem of gate
fault tolerance in quantum circuits to a quantum state storage problem. In other words, with
the reconfiguration technique we achieve fault-tolerant operations, by assuring the storing
fault tolerance of a particular quantum state in the configuration register. That is, naturally,
an easier job.

As it is explained in appendix A, there are some practical reasons which make the theoreti-
cal ξ6 hard to achieve. Mainly, there are two reasons: it is hard to set a quantum superposition
containing a number of basis states that is not equal to a power of two, and the physical limits
of the basic cells may force us to a low fr (i.e. the same gate is used by many superposed
configurations, so if an error occurs on that gate, it will spread on all the configurations that
are using it). Our heuristic engineering approach to these problems provides for a solution

that guarantees an overall ξ
8
3 error rate. This result (obtained for configuring the stabilizer

encoder in a quantum fashion) is even better than ξ2, which is the target for single error
correction coding.

In oreder to assess, in fundamental terms, the consequences of reconfigurable quantum
hardware approach, we will get back at Equation 2.45 from section 2.7.1. As we are using the
same type of circuits, which are superposed with a quantum configuration, and the circuit for
setting the quantum configuration will not increase p (appendix A shows the way to obtain
such configuration states, with a fixed number of extra gates), we can write the accuracy
threshold:

ξrQHWthreshold ∼ (logN)−p·(1−fr)· 1
S . (3.14)

All the superposed configurations can be grouped, so that the members of one configuration
group will not use any gate which is used by the configurations from any other group. The
number of such distinct groups is S. In the above equation, fr is the freedom rate dictated
by the members of one particular configuration group.

For a circuit using stabilizer encoding generated with rQHW in a quantum configuration,
and for the heuristic implementation provided in appendix A, suppose we have a high p = 6.

Then, our accuracy threshold ξrQHWthreshold is of the order given by xir (N) = logN− 18
8 because

S = 2 and fr = 1
4
. The comparison between function xir (N) and the technological assuring

threshold (lim = 10−3) is given in Figure 3.13. This figure shows in a very comprehensive way
the fact that the rQHW technique provides means for arbitrary long fault-tolerant quantum
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computation, because the xir (N) function is way over the technological limit, even for very
high N .

5 	10
4

1 	10
5

1.5 	10
5

2 	10
5

0

0.02

0.04

xir N( )

lim

N

Figure 3.13: Evolution of accuracy threshold value for rQHW stabilizer codes (’xir’ function)
with the number of computational steps (N). The technological accuracy limit (’lim’) is also
provided for a relevant comparison.

3.4 Conclusions

The qubits and gates involved in quantum computation implementations are prone to fre-
quent errors, due to the delicate nature of quantum basis state superposition. Decoherence
and leakage errors must be fight against, along with those having a classical correspondent.
While there is an ongoing and outstanding effort in developing a quantum technology with in-
herent fault tolerance [1], special encoding techniques and quantum circuits have been created
in order to reduce the probability of an error affecting the functional circuit. The specially
designed techniques rely on classically inspired codes (i.e. Hamming, stabilizer codes). Also,
due to the fact that there is a serious difficulty in achieving safe recovery, we are forced to
employ structural redundancy. With these techniques we would expect a ξ2 error probability
for the entire circuit, when the qubit and gate error probability are of the order ξ. More-
over, the concatenated coding provides the possibility of performing arbitrary long quantum
computations in fault tolerant conditions.

Nevertheless, if the error rates (ξ’s) are exceeding the calculated threshold values, instead
of reducing the overall error probability, concatenated coding can make things even worse
because it generates more qubits and gates which are, of course, prone to more errors. There-
fore, some of the most relevant papers and books of this field are stressing the need for better,
more reliable, quantum hardware [1][16].
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3.4.1 Shor algorithm requirements

The effort that has to be employed for achieving fault tolerance in quantum algorithm im-
plementations is better emphasized by the following facts. When applying Steane ancilla
preparation and stabilizer coding in Shor algorithm implementation, we will use:

• 3 · 109 Toffoli gates;

• 2160 qubits [39].

By introducing concatenated coding in Shor algorithm circuit, with the technological values
for storage and gate error probability being ξstore = ξgate = 10−6, we will have to use:

• 3 levels of concatenation, therefore a block size of 73 = 343 qubits;

• a total number of 106 qubits.

3.4.2 rQHW summary

As already pointed out by John Preskill [39], due to the fact that quantum reliability theory
is based on some simplifying assumptions (no correlated errors, no dependency between the
error rate and the number of qubits), it is possible that additional techniques will be needed
for the future quantum circuit engineering issues. The presented theory and circuit designs
are ignoring

• gate placement;

• ancilla availability;

• leakage errors (there is a circuit which detects this kind of errors [39]).

The leakage errors were consistently addressed [39] but the engineering problems linked to
the correlated errors and the high ancillary qubit usage remain. We have introduced the so-
called reconfigurable Quantum Hardware(rQHW) and the reconfigurable Quantum Gate Array
(rQGA) Cells, as incentive in avoiding the destructive effect of the correlated errors, and for
reducing the number of required ancilla qubits.

Summarizing, the advantages drawn from rQHW usage are:

• structural redundancy (used for syndrome computation) with reconfigurable properties
provides for ancillary qubit saving;

• qubits used in fault tolerant techniques for one data block can be choose so that they
are not neighbors to each other and the possibility of space correlated errors is limited;

• the fault tolerance in syndrome computation can be reduced to preserving a reliable
configuration register, hence we will concentrate mainly on storage errors, as gate errors
will become less likely;

• quantum configurations for rQHW provides for a ”superposition of circuits at the same
time”, which means that structural redundancy in syndrome computation is achieved
with less ancillary qubits.
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Chapter 4

Evolvable Quantum Hardware

The reconfigurable quantum gate array from Figure 3.7 will translate to evolvable quantum
hardware (qEHW) if its configuration register, them-qubit register |config〉, represents a state
outputted by the means of a genetic algorithm. Therefore, if a qEHW is to be synthesised, one
has to specify how to run genetic algorithms in quantum computing. This chapter proves that
there is a methodology of running any genetic algorithm on a quantum computer in O (

√
n)

time. Then, we also provide the guidlines for implementing the corresponding quantum
circuit.

4.1 Introduction

By clearly identifying its most major problems and limitations, computer science has become
mature [30]. The research community has put a lot of effort in the attempt to solve these
problems and further pushing the computing frontiers; however, by using the means of what
is now called classical computation, it seems that one can hardly expect more than marginal
improvements, even with sophisticated approaches.

In this context, inspiration was mainly found in biology and physics: bio-inspired com-
puting and quantum computing are considered as possible solutions. The opti-mism is fed
by theoretical and practical achievements. Genetic algorithms and evolv-able hardware are
already successfully used in a wide range of applications, spanning from image compression,
robotics and other artificial intelligence related issues, to engineering problems like fault tol-
erance and reliability in critical environments. Moreover, quantum computing seems to draw
even more power from its exponential parallelism: Peter Shor has proven that a classical
exponential problem (integer fac-torization) can be solved in polynomial time [46][48].

The above considerations indicate that the merge between the two novel computing
promises, namely genetic algorithms (GAs) and quantum computing (QC) would be natural
and benefic [51][44][45]. Researchers already follow the path of so-called Quantum Evolu-
tionary Programming (QEP) [17] with outstanding results [49][50]. For instance, the best
approach for automated synthesis of quantum circuits uses genetic programming [26]. Also,
quantum algorithm design can be approached by evolutionary means [50]. In fact, the major-
ity of such applications are addressing quantum computation design issues regarding quantum
algorithms and implementations [49]; they are all part of QEPs sub-area called Quantum In-
spired Genetic Algorithms (QIGAs) [17][28]. The other sub-area, called Quantum Genetic

67
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Algorithms (QGAs), tries to implement ge-netic algorithms in a quantum computation en-
vironment [17][44][45]. This paper pro-poses a new perspective on QGAs, by showing that
a different strategy is necessary in quantum computation, because the genetic search can be
reduced to Grovers algorithm [20].

4.1.1 Motivation

The QGAs rely on qubit representations for the chromosomes and the use of quantum opera-
tors in order to process them during the quest for the optimal solution of the search problem.
In principle, this approach redefines the GA operators in quantum terms; these new oper-
ators will perform better due to the exploit of the quantum parallelism [45]. Nevertheless,
approaching specific applications this way will result in a significant performance enhancement
[21][22].

Because the chromosome represented by qubits, just one quantum chromosome register
would be able to store the entire population as a superposition of all the possi-ble classical
states. The function that evaluates the fitness of the initial population (which could also be
the entire population) would take the chromosome register as input and the output would
be stored in a fitness register. This would store a superposition of all the fitness values,
corresponding to the superposition of the indi-viduals from the chromosome register.

The key observation that led us to this new perspective is the fact that if the best fitness
value can be marked (i.e. by changing the phase of the corresponding eigenstate) without
destroying the superposition of the registers, then Grovers algo-rithm will find the solution
in O (

√
n). Therefore, all the quantum versions of GA operators, like crossover or mutation,

would become useless if we figured out a way to mark the best fitness, inside the fitness
superposition state.

4.2 Quantum Genetic Algorithms

As part of Quantum Evolutionary Programming, QGAs have the ingredients of a sub-stantial
algorithmic speedup, due to the inherited properties from both QC and GA. However, there
still are questions as to how would it be possible to implement a ge-netic algorithm on a
quantum computer. The attempts made in this particular direction suggest there is room
left for taking advantage from the massive quantum computation parallelism [45]. Moreover,
some questions were left open, as pointed out in [17].

4.2.1 Running GAs in a Quantum Computational Environment

For the first time, the possibility (and the advantages) of the QGAs were indicated in [45].
The approach described here contains hard evidence for QGA speedup, but there still are
some unanswered questions [17]. The proposed algorithm uses a number of m register pairs:

|ψ〉i = |φ〉individuali ⊗ |ρ〉fitnessi (4.1)

where i = 0, m− 1. The first (left) register contains the individual, while the second contains
its corresponding fitness. Because we are dealing with quantum regis-ters, both |φ〉 and |ρ〉 can
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encode a superposition of exponentially many individuals and their corresponding superposed
fitness values. Each time a new population (set of individuals) is generated in the individual
register, the corresponding fitness is computed and stored in the fitness register. Of course,
if the fitness register is measured then, due to entanglement [30], the result is only one of the
superposed values; in the individual register will remain superposed the individuals that give
the measured fitness. Fitness register measurement is a crucial element in developing QGAs
[45]. For the general expression of the pair register (N -qubit for the individual register and
M-qubit for the fitness register) given in Equation 4.2 the measurement of the second register
(|y〉) will have r as result with probability from Equation 4.3.

|ψ〉i =

2N−1∑
x=0

2M−1∑
y=0

cx,y|x, y〉, with

2N−1∑
x=0

2M−1∑
y=0

|cx,y|2 = 1 (4.2)

P (r) =

2N−1∑
x=0

|cx,r|2 = 1 (4.3)

The post-measurement state of the pair register will be:

|ψr〉i =
1√
P (r)

2N−1∑
x=0

cx,r|x, r〉 (4.4)

Due to the fact that an individual cannot have more than one fitness, it is obvious that,
if individual u has a fitness value v, then cu,y = 0 for all y �= v.

The QGA, as described in [45], is presented in the following pseudo code:

Genetic Algorithm Running on a Quantum Computer (QGA)

1. For i := 1 to m prepare |φ〉individuali as superposi-tions of individuals and compute the corre-
sponding fitness pair register |ρ〉fitnessi (the outcome will be a set of m fitness values superpo-
sition).

2. Measure all fitness registers.

3. Repeat

(a) Selection according to the m measured fitness values.

(b) Crossover and mutation are employed in order to prepare a new population (setting the
m individual registers).

(c) For the new population, the corresponding fitness values will be computed and then
stored in the fitness registers.

(d) Measure all fitness registers.

Until the condition for termination is satisfied.

Reference [17] provides analysis and critique for the above presented algorithm. The iden-
tified advantages of using QGAs over the classical GAs, which are drawn from the quantum
computational features, are :
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• Due to the superposition of individuals (i.e. basis states) that is stored in the indi-
vidual register, the building block [17] could be crossed not by just one individual, but
by a superposition of exponentially many individuals. Thus, the selection of a new
population is made with the contribution of many attraction pools.

• In quantum computation true random numbers can be generated. It was proven that a
GA with a true random number generator will outperform a pseudo-random solution,
which is the only possibility in classical computation [44].

The questions that remain open are:

• How is it possible to build the crossover operator in quantum computation?

• How is it possible to implement the fitness function on a quantum computer?

• How can the correlation be maintained – by using the entanglement – between the
individual register (superposed) basis states and the (superposed) fitness values from
the fitness register?

Although the advantages appear to be substantial, one can easily argue that the power of
quantum computation is not sufficiently used by this approach. However, some of the opened
questions have been addressed in reference [17]. Giraldi et al. developed a mathematical for-
malism in order to avoid misinterpretations regarding the last question. The second question
is also addressed by defining quantum genetic operators. The proposed formalism establishes
the necessary correlation between the fitness and the individual registers, which cannot be
accomplished with the QGA construction provided in [45].

4.2.2 Mathematical Formalism

The QGA formalism uses m quantum register pairs (N -qubit individual register and M-qubit
fitness register,) as presented in Section 4.2.1. Also, in order to achieve proper correlation
between the individual and its fitness value, the fitness function must be chosen so that it is a
”quantum function” as defined by [33], hence a pseudo-classical operator with a corresponding
Boolean function: f : {0, 1}N → {0, 1}M , Uf : |x〉 ⊗ |0〉 → |x〉 ⊗ |f (x)〉 if |x〉 is a basis state.
When acting on a superposition, the unitary operator corresponding to function f will dictate
the following mapping:

Uf :
2N−1∑
x=0

ax|x〉 ⊗ |0〉 →
2N−1∑
x=0

ax|x〉 ⊗ |f (x)〉 =
2N−1∑
x=0

ax|x, f (x)〉 (4.5)

An important aspect regarding the pseudo-classical Boolean functions is that they are
universal (i.e. any computational function can be represented in such a form), and easy to be
implemented as gate networks. In fact, due to their universality, Boolean functions form the
backbone of the classical computation’s circuit model.

The QGA algorithm, after adopting Giraldi’s formalism can be rewritten as in the below
pseudo-code.
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Genetic Algorithm Running on a Quantum Computer (QGA) with proper for-
malism

1. For i := 1 to m set the individual-fitness pair registers as |ψ〉1i = 1√
n

∑n−1
u=0 |u〉indi ⊗ |0〉fiti (a

superposition of n individuals with 0 ≤ n ≤ 2N ).

2. Compute the fitness values corresponding to the individual superposition, by applying a uni-
tary transformation Uffit

(corresponding to pseudo-classical Boolean operator ffit : {0, 1}N →
{0, 1}M ). For i := 1 to m do |ψ〉2i = Uffit

|ψ〉1i = 1√
n

∑n−1
u=0 |u〉indi ⊗ |ffit (u)〉fiti .

3. For i := 1 to m measure the fitness registers, obtaining the post-measurement states (we
suppose that |y〉i is measured): |ψ〉3i = 1√

ki

∑
v∈{0,1,...,n−1} |v〉indi ⊗ |y〉fiti with ki values in

{0, . . . , n− 1} to satisfy ffit (v) = y.

4. Repeat

• Selection according to the m measured fit-ness values |y〉i.
• Crossover and mutation are employed in order to prepare a new population (setting the
m individual registers |u〉indi ).

• For the new population, the corresponding fit-ness values will be computed and then
stored in the fitness registers(|ffit (u)〉fiti ).

• Measure all fitness registers

Until the condition for termination is satisfied.

Besides the necessary formalism, reference [17] also provides some insight regarding the
implementation of the genetic operators in the quantum computational environment. These
considerations lead towards two main implementation problems:

α) the number of all valid individuals is not always a power of 2, which is the total number
of basis states;

β) crossover implementation is difficult and requires a much thoroughly investigation, in-
cluding quantum computation architectural aspects [35].

4.3 A New Approach

An observation concerning the individual-fitness quantum register pair is that all the possible
valid individuals (n) can be encoded in the same quantum state superposition, which has a
total of 2N possible basis states (n ≤ 2N). If we can figure out a method of measuring the
highest fitness value from the fitness register, then by measuring the individual register we
will get that corresponding individual (or one of them, if several have the same highest fitness
value).

Approaching the QGAs in this manner renders genetic operators as no longer necessary,
as long as finding the maximum has an efficient solution. This effectively leads to solving
problem β.

Because the individual is encoded on N qubits, we have a total of 2N basis states which
can participate in the superposition. It is possible that not all of these basis states will
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encode valid individuals (problem α); the proposed method relies on defining some constrains
regarding the fitness function and the fitness value format, without losing the generality of
the solution. We will consider the fitness function as a Boolean pseudo-classical unitary
operator Uf (characterized by f : {0, 1}N → {0, 1}M) which can be also applied to non-

valid individuals. The fitness value space {0, 1}M can be split, so that a distinct subspace is
allocated to the fitness values corresponding to valid individuals and another distinct subspace
corresponds only to non-valid individuals. This enables us to concentrate only on processing
states that correspond to valid individuals (Section 4.3.2 further elaborates on this particular
aspect).

The method of finding the highest fitness value is inspired from efficient quantum algo-
rithms for finding the maximum [2][14]. Finding the best fitness value is equivalent to marking
the highest classical state that is superposed in the fitness register state or, in other words,
the highest basis state with non-zero amplitude. Basically, the pro-posed methodology relies
on reducing the highest fitness value problem to Grover’s algorithm. In order to do so, special
oracle and fitness value format are defined. Section 4.3.1 presents the quantum algorithm for
finding the maximum [2], Section 4.3.2 presents details for oracle implementation and fitness
register structure, while Sec-tion 4.3.3 provides our adaptation of the algorithm in order to
find the best value in the fitness register.

4.3.1 Computing the Maximum

The minimum/maximum finding quantum algorithms [2][14] are inspired from the classical
”bubble sort” algorithm, but their complexity [8] in quantum version is O (

√
n).

The quantum algorithm for finding the maximum takes an unsorted table of m ele-ments
as input, in order to return the index of the maximum value element. By adopting the
formalism from [2], we have a pool P [i] of m elements (i = 0, m− 1) which will be processed
in order to obtain the index k of the maxi-mum element (P [k]). The Grovers algorithm can
be used with a special oracle that marks all the basis states greater than some given value j:

Oj (i) =

{
1 ifP [i] > P [j]
0 otherwise

(4.6)

Therefore, the resulted algorithm will have the form of the following pseudo code: Quantum

Algorithm for finding the maximum from an unsorted table of m elements

1. Initialize k := P [r]; 0 ≤ r ≤ m− 1 and is randomly chosen;

2. Repeat O (
√
m) times

(a) Set two quantum registers as |ψ〉 = 1√
m

∑m−1
i=0 |i〉|k〉;

(b) Use Grovers algorithm for finding marked states from the first register (i.e. those which
make Ok (i) = 1);

(c) Measure the first register. The outcome will be one of the basis states that are > k. Let
the measurement result be x. Make k := x;
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3. Return k as result. It is the index of the maximum.

The complexity analysis performed in [2] reveals the fact that this algorithm will find the
index of the maximum in 13.6

√
m steps, with an error rate smaller than 1

2
.

4.3.2 The Oracle

In order to deal with problem α) (see Section 4.2.2), we have to adopt a constraint, which does
not restrict the generality of the fitness functions. If we consider the ordinary fitness function
ffit (which applies only on the valid individuals) ffit : {0, 1}N → {0, 1}M , it is Boolean
(and therefore universal), with a straightforward correspondence to the unitary representation
Uffit

[33]. The modified fitness function will accept invalid individuals as argument, and the

returned values will belong to distinct areas, corresponding to valid or invalid individuals.

This can be achieved by defining fmod
fit : {0, 1}N → {0, 1}M+1 as:

fmod
fit (x) ∈

{
0 × {0, 1}M if x is a non-valid individual

1 × {0, 1}M if x is a valid individual
(4.7)

The fitness values are encoded by the qubits in a modified fitness register, which has
a (M + 1)-qubit size. The valid individuals always produce fitness values with the most
significant qubit being ’1’; a ’0’ value for the most significant qubit in the fitness register
indicates the correspondence to a non-valid individual, as presented in Figure 4.1 (quantum
state matrix representation is used).

Another implementation-related problem concerns the oracle described by Equation 4.6.
We propose a solution that uses two’s complement number representation [36] for marking
the states that have a value greater than a given j ∈ N, j > 0. As a consequence, the fitness
register will have the form from Figure 4.2. The oracle processes all the fitness register qubits
except the most significant (v), which indicates if the value represented by the other qubits
belongs to a valid individual or not. All value qubits (fM . . . f0) in the fitness register encode
two’s complement positive integers as fitness values. The oracle adds − (j + 1) to the fitness
register, therefore the basis states (from the state output by the quantum adder [58]) greater
than j will always have fM

′ = 0 (see the oracle implementation from Figure 4.3.) For the
solution in Figure 4.3 we used 2 negation gates (denoted with ’x’) and one XOR gate [7][30].
The architectures for the quantum arithmetic circuits, including the adder/subtractor, are
presented in [58]. Only the qubits containing the result of the arithmetic function (f0

′ . . . fM
′)

are used by the Grover iteration circuit [20][30] in order to find one of the marked basis states.

Although the oracle uses two’s complement addition (which means that we will have to
change the fitness values in the superposition), the correlation between the individual and
the fitness registers is not destroyed, because the addition is a pseudo-classical permutation
function [33][58]. However, the Grover iteration will find as a marked basis state |p〉 =
|f ′

0 . . . f
′
M〉, with p ∈ N, f ′

M , . . . f
′
0 ∈ {0, 1}, which is given by |p〉 = |q − (j + 1)〉, for q ∈ N

and |q〉 = |fM . . . f0〉, with fM , . . . , f0 ∈ {0, 1}. This means that, after measuring |p〉, we have
to add j + 1 to this value in order to have the correct desired basis state (> j).
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Figure 4.1: Basic idea for fitness function construction: when is applied to valid individuals it
produces a value in the valid area (upper half |10 . . . 00〉 ÷ |11 . . . 11〉) of the fitness register,
whereas when applied to invalid individuals the corresponding values in the fitness register
will always be in the invalid area (lower half |00 . . .00〉 ÷ |01 . . .11〉).
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Figure 4.2: The format of the fitness register, for the two’s complement approach of oracle
implementation.
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Figure 4.3: Oracle implementation for a fitness register having the structure from Figure 4.2.

4.3.3 Reduced Quantum Genetic Algorithm

Having a fitness register as defined in the previous subsection, the corresponding fitness func-
tion, and the specially defined oracle, we are able to provide the pseudo- code that corresponds
to running a Genetic Algorithm in the quantum computational environment. It is called re-
duced Quantum Genetic Algorithm (rQGA) because it uses only one population (encoded in
just one quantum state), consisting of all possi-ble individual binary representations (that
correspond to valid and invalid individuals). Crossover and mutation operators are not used
for finding the highest fitness value (they are not required in a quantum context), which is
obtained by employing Grovers algorithm.

The algorithm listed below is inspired from the quantum maximum algorithm from Section
4.3.1. The initial max value must obey the 2M+1 ≤ max ≤ 2M+2 − 1 relation, so that the
search for the highest fitness value will take place only in the valid fitness area. We have a

number of m ∈ O
(√

N
)

pair registers (individual-fitness), where the individual register is

on N qubits, and the fitness register on M + 2 qubits.

Reduced Quantum Genetic Algorithm

1. For i := 0 to m− 1 set the pair registers as |ψ〉1i = 1√
2N

∑2N−1
u=0 |u〉indi ⊗ |0〉fiti ;

2. For i := 0 to m− 1 compute the unitary operation corresponding to fitness calculation |ψ〉2i =
Uffit |ψ〉

1
i = 1√

2N

∑2N−1
u=0 |u〉indi ⊗ |ffit (u)〉fit

i
;
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3. max := randominteger, so that 2M+1 ≤ max ≤ 2M+2 − 1;

4. For i := 0 to m− 1 loop

(a) Apply the oracle. Therefore, if |ffit (u)〉fit
i

> max then the corresponding |ffit (u) −max〉fit
i

basis states are marked;

(b) Use Grover’s algorithm for finding marked states in the fitness register after apply-
ing the oracle. We find one of the marked basis states |p〉 = |ffit (u) −max〉fit

i
, with

ffit (u)max ≥ 0;

(c) max := p+max+ 1;

5. Having the highest fitness value in the |•〉fitm−1 register, we measure the |•〉indm−1 register in order
to obtain the corresponding individual (or one of the corresponding individuals).

4.4 Summary

This paper described a methodology for running Genetic Algorithms on a Quantum Computer.
By taking advantage of the quantum computation features, all the possible chromosome binary
representations can be encoded in just one individual quantum register. This register is correlated
with its pair (fitness) register, which contains a superposition of all corresponding fitness values.
Due to quantum mechanical proper-ties, measuring the highest fitness value in the fitness register,
leads to a post-measurement state of the corresponding individual register that contains superposed
basis state(s) encoding the individual(s) with the highest fitness.

Therefore, the initial problem is reduced to finding the best fitness value without destroying the
individual-fitness register correlation. This objective is achieved by adapting an existing quantum
algorithm for finding the maximum. Without loosing the generality of the solution, the adaptation
requires that a specific structure be adopted for the fitness register, and a special oracle be defined by
employing two’s complement integer representation. As a result, the problem of finding the highest
fitness value can be solved by Grover’s algorithm without employing any genetic operators such as
crossover and mutation.

Because the complexity of our algorithm adaptation is identical with its original form, and based
on the analysis provided by [2], we reached the conclusion that any GA can be performed on a
Quantum Computer in O

(√
N

)
steps (Grover iterations in our case). This consequence broadens

the area of computational problems where the quantum solutions outperform the classical ones.



Chapter 5

Fault Injection in Quantum
Computation

In classical hardware, fault injection techniques are used for validation of Fault Tolerance Algorithms
and Mechanisms (FTAMs). This dependability verification ability is used for the ultimate goal of
incorporating the assessment of used fault tolerance techniques within the design process , which
may use an integrated environment [3][4][42][43].

As it is the case of classical circuits, the Hardware Description Languages (HDLs) are able to
support dual behavioral - structural descriptions on different abstraction levels, and are suitable for
implementing various experimental and formal testing techniques. These features make the HDLs
the most appropriate tools for integrating description, simulation, synthesis, testing, and FTAM
testing in the same environment [11][42][23][43].

This chapter will focus on extending our already defined HDL-based quantum circuit simulation
framework [51][55] (latest developments of this methodology is presented in Appendix B), so that
it can support fault injection that helps evaluating the dependability attributes [6] with relevance
for quantum circuits. The basic classical fault injection techniques are the starting point of our
quantum methodology; therefore, we will emphasize only the differences dictated by the quantum
nature of the processed information.

Quantum entanglement is the most important quantum feature that influences fault injection.
The reason is clear, it is impossible to have a real structural description for the circuit in the presence
of entanglement. Because of the fact that entanglement influences the way that fault injection is
performed (by structural or behavioral architectures), a natural question is how can we involve the
bubble bit technique, so that structural fault injection is still possible in the presence of entanglement.
One robust answer comes from the stabilizer formalism [30][18], but the recently developed bubble
bit technique [56] can also be adapted to error injection, so that the consequences of such this
methodology are extended in order to approach fault tolerance assessment.

This chapter presents the achievements in classical hardware FTAM assessment, identifies the
features that can be adapted to our quantum computational needs, and then sketches the basic
guidlines for the QUantum ERror Injection Simulation Tool (or QUERIST) which is an extension
of our Bubble Bit HDL-based Quantum Circuit Simulation Tool (i.e. features error injection). The
implications of QUERIST development – for the Bubble Bit approach – are indicated in the last
part of this chapter, along with the chapter summary.

77
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5.1 Fault Injection in Classical Hardware

5.1.1 Motivation

The usage of simulated fault injection was proven to be very effective in classical hardware [61].
It provides means for dependability validation and assessment with the possibility of taking into
account all the dependability attributes as defined by [6]. As shown by Rimen et al., the simulated
fault injection has several advantages over hardware fault injection:

• it can be used within the design process, as indicator to be taken into consideration for making
decisions;

• it can also be used in validating existing circuit implementations;

• it can be employed on different design abstraction levels, by making use of any of the available
Hardware Description Languages (HDLs);

• it provides means for assessing fault and error latencies and cover;

• it provides tools for approaching the study of the so-called ”chain of threats” (i.e. the path
for error propagation through the hierarchical abstraction levels);

• it is a less expensive technique.

Summarizing, according to the most relevant publications [3][4][61][42][11] the Software Fault
Injection-Based tools are used for the following purposes:

• validation of FTAMS;

• validation of error models that were assumed in the design process of the implemented fault
tolerant system;

• estimation of fault coverage;

• investigation of error propagation paths and mechanisms, along with relating the results to
the corresponding design abstraction levels;

• incorporation of fault injection-based FTAM assessment in an unified design environment (this
”ultimate goal” according to [43]).

The last item from the above purpose listing indicates HDLs (and VHDL in particular) as the
best possible simulation framework for the following reasons:

• the HDLs are consecrated tools in classical digital design;

• the abstraction hierarchy is covered by their description capabilities;

• the description can be made from both behavioral and structural views;

• the HDLs are already used for testing and validation purposes in classical hardware design

• VHDL is already used as an integrated framework in classical hardware, which brings together
description, simulation, synthesis and optimization, fault injection, and simulated testing (for
example, see the MEFISTO tool [23]).
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The most important motivation for VHDL-based simulated fault injection is the fact that the
integrated framework creates incentive for applying the so-called ”white box testing” [42][43] of
the developed system. This means that the controllability and observability of the system and its
components (as defined by Avižienis et al.) is substantially increased [42][43]. As a consequence,
the chain of threats becomes easier to identify, hence FTAMS responsible for fault removal and
forecasting are better assessed and optimized.

5.1.2 Simulated Fault Injection Analysis

The relevant literature [11][42] defines two main methodologies for attaining simulated fault injection:
those which use only available simulator commands, and those which require intervention in the
ordinary HDL code. The term ordinary HDL code refers to the code used for system description
when correct functioning (i.e. no faults present) is assumed.

As the first methodology is inflexible, and it can hardly be used for the purposes listed in Section
5.1.1, we will concentrate only on the second one (code intervention) by identifying two specific
techniques:

• Insertion of saboteur components: these extra-components (or fault-injection components) are
added with the only purpose of generating faults;

• Definition of mutant descriptions: in VHDL terms a mutant architecture is defined besides
the normal functioning architecture; when the fault is injected, the mutant architecture is
activated by means of a corresponding configuration.

The Saboteur Technique

This technique consists of simply adding new components to the functional system model, dedicated
only to fault injection. Of course, the relevance of these components (i.e. activation occurrence)
does not regard systems non-faulty functioning regime. The saboteurs can be inserted manually
or automatically into the HDL source code (for VHDLs case, as an additional driver for a resolved
signal), and this insertion can be performed in serial or parallel fashion. Figure 5.1 presents the
way saboteurs are inserted between the driver (HDL signal source) and the receiver signal. Function
fS (D1 . . . DN ) is used for computing the new value for the receiver signals in the case of complex
saboteurs, based on input values provided by the relevant drivers.

The Mutant technique

The mutant technique is a component description (architecture in VHDL) that is written in order to
replace the ordinary architecture. The mutant description must behave identically to the replaced
one in the absence of faults, but when faults are activated the component will act according to
the assumed faulty behavior. The mutant and the normal architectures are describing the same
entity, therefore ”share the same interface” [43]. The switching from normal to faulty component
functioning is easy to implement in VHDL due to the configuration mechanism, which indicates the
used architecture at the given time (see Figure 5.2.A).

The mutated description (architecture in VHDL) can be written according to the following
strategies:

• insertion of saboteurs within the normal descriptions (structural or behavioral) – the most
frequently used (see Figure 5.2.B);
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mutants saboteurs signal manipulation variable manipulation

a) highest medium low very low
b) big very big small small
c) due to: due to:

amount of occuring events fault injection control complexity
code size\event

fault injection control complexity
d) Tradeoff between:

modelling capability ↔ time overhead
simulation ↔ compilation time overheads

Table 5.1: An analysis of HDL-based simulated fault injection techniques, after Rimen et al.
[42][43].

• mutation of subcomponents from a structural description;

• statement mutation in the behavioral descriptions;

• manual mutation: the normal description is manually altered in order to induce faulty behav-
ior.

The first 3 strategies can be performed automatically, whereas the last one is due to user inter-
vention.

Built-In Simulator Commands

This technique relies on deliberate altering signal and variable values, by making use of the simulator
commands. When the fault must be injected according to the experimental scenario, a faulty value
is forced for the signal or variable. Such a fault injection strategy is rather inflexible and simulation
environment dependent. Therefore, it could be effective only if the simulator commands are designed
so that they offer functionality and flexibility.

Technique Comparison

When adopting one of the available Simulated Fault Injection techniques, one has to be able to
properly evaluate how appropriate is the technique to the actual needs. References [42][43][61]
provides the means for such an evaluation in classical hardware, by selecting the most relevant
criteria:

a) the capacity of appropriate fault modeling;

b) the effort required for setting up an experiment;

c) the simulation time overhead;

d) the capacity of setting up series of experiments (experiment campaigns).

A straightforward analysis leads to the classification from Table 5.1, according to the above listed
criteria.
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Context

The above described and analysed techniques are part of a more complex process of fault tolerance
assessment. The entire fault tolerance estimation process consists of 3 phases [43]:

1. the simulation setup phase;

2. the experiment simulation phase;

3. the experiment data assessment phase.

The fault insertion techniques are actually applied in phase number 1, but they influence the
way that next phases are performed. Summarizing, the first (setup) phase has 2 main objectives: to
produce a final model (compiled and executable) of the system including all the extras required by
fault injection, and to generate a control description (i.e. observed signals and states list) for each
experiment and experiment campaign.

The second (simulation) phase takes as inputs the executable model which cannot be changed
during execution, and the experiment control list that describes how to perform the experiments.
Both inputs are produced by the previous (setup) phase. The way setup phase manage to attain
the generation of both the executable model and experiment control list is presented in Figures 5.3
and 5.4. In these figures, the HDL code descriptions are presented in the darker boxes, the abstract
non-code (as the Abstract Fault Model or AFM [43]) in non-shaded boxes, while the actions to be
taken are written in the non-shaded ovals.

The simulations dictated by the experiment control list are controlled by a scheduler. The
scheduler algorithm takes the experiment control list and the system start state as inputs, in order
to generate the outputs which consist of the final simulation state and the saved signal traces.

The signal traces, representing the evolution of the observed signals during the simulation ex-
periment, are feeding the third (data processing) phase. This final phase has two tasks to attain:
extraction of relevant experimental data, and the actual data processing. The first goal is achieved
by the so-called data extraction rules, while pursuing the second one requires some assumed fault
tolerance models, attributes and measures [3][4].

The executable model according to AFMs

There are two methodologies for generating the abstract model according to an AFM:

a) Using a distinctive abstract fault injector, which controls all fault activation process.

b) Using a classification structure, in order to build group fault targets in classes; therefore the
activation works the same for all the targets in the given class by means of a ”be faulty call”
[43]. The switching from the non-faulty to the faulty status of the target object (i.e. signal,
variable, component) is an intrinsic object feature.

The experiment control list

The experiment control list consists of a set of batch mode simulator commands. These commands
may differ due to various commercial simulator implementations. However, the command set is built
so that it corresponds to a campaign description and a signal observation list [3][23] (see Figure 5.4).
The campaign description consists of: the used fault set, the starting state, the termination state,
and the activation conditions.
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Configuration
(HDL)

AFM Library
(Fault Set)

AFM Library
(Fault Set)

Generate
Campaign Description

Campaign
Description

Select
Observed Signals

Observed
Signal List

Generate Experiment
Control List

Experiment
Control List

Figure 5.4: Generation of control list, for the experimental fault injection within the HDL
framework [43].
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5.2 Sketching the guidlines for the QUERIST project

With the inspiration drawn from the classical hardware HDL-based fault injection techniques, we
extend our quantum circuit simulation framework. The classical fault injection methodologies can
be mapped without intervention, so that the HDL framework supports fault injection into quantum
circuit simulations. Of course, we cannot expect any efficiency from such an approach. Therefore,
the right solution would be to adapt those methodologies to one of the available efficient simulation
frameworks [55][56][59][60].

This report will describe the guidelines of a bigger software project that fosters simulated fault
injection techniques in quantum circuits; the project is called QUantum ERror Injection Simulation
Tool or QUERIST. In this description, only the adaptation issues will be emphasized, so we present
the decisions that were made so that quantum computational constraints and specific problems are
solved.

The overview of the QUERIST project is presented in Figure 5.5. In the classical approach there
are 3 cycles; likewise the quantum version has the initialization, simulation, and data computation
cycles. The first cycle takes the quantum circuit HDL description as an input. Also, there are 2
abstract (i.e. theoretical assumption) inputs: the HDL model and the assumed error model. The
first one influences how the HDL description is presented, while the second one dictates the test
scenario. In Chapter 2 we have presented the theory of fault tolerant quantum computation, along
with the most commonly assumed error model: random faults, no time or space-correlated errors.
QERIST endorses this error occurrence model, which means that the test scenario has to deal with
defining the start and the stop simulation states because all the signals must be observed (all qubits
are equally prone to error). References [54][55][56] are documenting the HDL modeling of quantum
circuits in order to attain efficient simulation.

The outputs of the first cycle, which are also inputs for the simulation cycle consist of a test
scenario (basically a description of when simulation starts and when it ends), and an executable
HDL model with the corresponding entanglement analysis (i.e. the HDL description according to
the structural architecture dictated by the bubble-bit encoded quantum states, see Appendix B [56]).
The output for the second cycle is the time diagrams of all qubits, from the start to the stop state.

Special designed rules will extract the useful information from the raw, bubble-bit-represented,
qubit traces. The entanglement analysis and the quantum computation reliability theory are used in
order to compare the correct qubit values with the extracted values. The result of that comparison
results in computing the probabilistic accuracy threshold value, in the third cycle.

5.3 Specific problems in the quantum environment

This section explains how to perform simulated quantum fault injection, within the HDL bubble bit
[55][56] framework, by following the rules given by quantum error model theory [39].

Fault injection according to the above stated constraints means that the bubble bit simulation
model as presented in Figure B.11 from Appendix B, has to be modified as Figure 5.6 shows.

Figure 5.6 shows that fault injection is performed just before the bubble bit technique is applied.
Also, fault injection is performed only if the ”random number generator” dictates so. The way
fault injection is triggered, its nature, and the way it is implemented is part of the so-called ”Setup
phase”. This phase is similar to the setup phase from classical hardware fault injection. We also
have a simulation phase which corresponds to running the experiment according to the scenario that
was set in the setup phase. In the end, the data processing phase uses the simulation signal trace
results, in order to compute the appropriate reliability measure.
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Figure 5.5: An overview of the QUERIST project.
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Figure 5.6: The bubble bit HDL simulation model, when fault injection is applied according
to the error and fault occurence models presented in [39].

5.3.1 Setup phase

Injecting a fault, in our simulation framework [54][55][56], consists of accordingly modifying the
quantum state matrix:

|ψS〉 =

⎡
⎢⎢⎢⎣

a0

a1
...

a2n−1

⎤
⎥⎥⎥⎦ . (5.1)

When the fault is a bit-flip, then the fault injection means that we rearrange the matrix elements,
whereas for the phase shift some matrix elements will be multiplied with -1. In the bit flip case the
elementary operation is exchanging values between two matrix positions: ai ↔ aj for i �= j. This
allows building an exchange function that operates on blocks of matrix elements:

Exchange [(u0, . . . uw−1) , (v0, . . . vw−1)] ⇔ ui ↔ vi for every i = 0, w − 1. (5.2)

Suppose we have a quantum state on n qubits, |qn−1 . . . q2q1〉, then if a fault occurs on qubit k,
and that fault is a bit-flip, then we will execute the following algorithm:

Bit-flip fault injection
For i := 0 to 2n−k

Exchange
[(
ai·2k , . . . a(i+1)·2k−1

)
,
(
a(i+1)·2k , . . . a(i+2)·2k−1

)]
End For

When the nature of the error is phase shift, the corresponding algorithm is

Phase-shift fault injection
For i := 0 to 2n − 1

If i mod 2k ≥ 2k − 1 Then ai := (−1) × ai
End For
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We have settled the way the error injection is performed, but how is it going to be triggered?
According to the fault occurrence model [38][39] it has to be a random triggering. Therefore, we
have to use a random number generator.

For a quantum state, we use the generator for the first time in order to find out if an error occurs.
Then, we use the random number generator for selecting one of the following fault types: bit-flip,
phase-shift, both faults.

When first used, the generator returns the number r1. If r1 < nξ (for a nξ given by a fixed error
rate), then we have a fault. We start the number generator again – yielding r2 – and the selected
fault nature is set by the following equation:

r2 =

⎧⎨
⎩

0 ≤ r2 ≤ 1
3 we have a bit-flip

1
3 < r2 ≤ 2

3 we have a phase-shift
2
3 < r2 ≤ 1 we have both bit-flip and phase-shift

(5.3)

For each simulated gate, when the fault is triggered the actual injection is performed on the
processed state. The gate fault is triggered the same way the state fault is triggered: teo random
numbers are deciding if we have a fault, and the nature of the fault. The bit-flip fault for a gate
will have the effect of inducing a bit-flip fault on the target qubit. Instead, the gate phase-shift not
only induces the phase-shift fault on the target qubit, but also spreads the error on all the source
qubits. Figure 5.7 presents these cases ( a) and b) respectively), which are considered by taking into
consideration the quantum fault tolerance problems described by Preskill [38][39].

U

a) bit-flip

bit-flip

U

b) phase-shift

phase-shift

phase-shift

phase-shift

Figure 5.7: The effect of faulty gate operation on the processed qubits: a) gate bit-flip fault,
b) gate phase-shift fault.

5.3.2 Simulation phase

This subsection will take an example of an error correcting quantum device, and show how fault
injection simulation actually works on this circuit. We use a coding technique that replaces 1 qubit
with a cluster of 3 qubits. The qubit basis state |0〉 is encoded as |000〉, and |1〉 as |111〉. For
example, state |ψ〉 = 1√

2
(|0〉 + |1〉) will become |xyz〉 = 1√

2
(|0〉 + |1〉).

If a bit-flip error occurs, then the error is indicated by the syndrome |s1s2〉, where s1 = x⊕z and
s2 = y⊕z. The syndrome value indicates the fault: |10〉 means bit-flip on x, |01〉 on y, |11〉 on z, and
|00〉 indicates that there is no error. The entire circuit is presented in Figure 5.8, and we start with
state |p0〉correct = 1√

2
(|000〉 + |111〉) which is affected by a fault on qubit y: |p0〉 = 1√

2
(|010〉 + |101〉).

The evolution of the bubble-bit quantum state representation throughout the circuit simulation is
described in the following equations:
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|p0〉 =
(

1√
2

[
1
0

]
⊗

[
1
1

]
⊗

[
0
1

]
⊗

[
1
0

])
⊗ |0〉s1 ⊗ |0〉s2 + rec0 (5.4)

|p1〉 =
(

1√
2

[
1
0

]
⊗

[
1
1

]
⊗

[
0
1

]
⊗

[
1
0

])
⊗ |0〉s1 ⊗ |0〉s2 + rec1 (5.5)

|p2〉 ≡ |p1〉 (5.6)

|p3〉 ≡ |p0〉 (5.7)

|p4〉 =
(

1√
2

[
1
0

]
⊗

[
1
1

]
⊗

[
0
1

]
⊗

[
0
1

])
⊗ |0〉s1 ⊗ |0〉s2 + rec2 (5.8)

|p5〉 =
(

1√
2

[
1
0

]
⊗

[
1
1

]
⊗

[
0
1

]
⊗

[
0
1

])
⊗ |0〉s1 ⊗ |1〉s2 + rec2 (5.9)

|p6〉 =
(

1√
2

[
1
0

]
⊗

[
1
1

]
⊗

[
0
1

]
⊗

[
1
0

])
⊗ |0〉s1 ⊗ |1〉s2 + rec0 (5.10)

|p7〉 =
(

1√
2

[
1
1

]
⊗

[
1
0

]
⊗

[
1
0

]
⊗

[
1
0

])
⊗ |0〉s1 ⊗ |1〉s2 + rec3 (5.11)

x

y

z

1 0s =

2 0s =

p0 p1 p2 p3 p4 p5 p6 p7

Figure 5.8: Circuit for singular bit-flip error correction.

The corresponding records are presented in Figure 5.9.
This indicates that state |p7〉 = 1√

2
(|000〉 + |111〉), therefore the inflicted error has been cor-

rected.

5.3.3 Data processing phase

Suppose that, at simulation time t we observe signals {s0, s1, . . . sn−1}. Each such state has a bubble
bit description. If si is on ki qubits, the bubble-bit representation is given by the following equation:

si = |qb0〉 ⊗ |qb1〉 ⊗ . . . |qbki
〉 + reci . (5.12)

In our analysis, si is the state observed during non-faulty simulation, so for the same state in a
faulty environment we will have the bubble expression given by:
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Figure 5.9: Bubble records produced by simulating error correction with the circuit from
Figure 5.8.

s∗i = |qb∗0〉 ⊗ |qb∗1〉 ⊗ . . . |qb∗ki
〉 + rec∗i . (5.13)

For validation of the quantum FTAMs, we need to compare si with s∗i . This can be done with
the operator presented in the following equation:

dif (si, s∗i ) =
{

1 if |qbi〉 �= |qb∗i 〉;∀i = 0, ki or reci �= rec∗i
0 otherwise

(5.14)

This means that the total number of overall state errors at simulation time t is

et =
n−1∑
i=0

dif (si, s∗i ) . (5.15)

The error rate on the overall observed states at moments t0, t1, . . . tm−1 will be given by:

ξsim =
1
m

m−1∑
j=0

etj (5.16)

As pointed out in references [38][39], the used FTAMs are valid if the relationship between the
experimental ξsim and the assumed singular error rate ξ is of the order:

ξsim ∼ ξ2. (5.17)

5.4 Summary

This chapters objective was to produce a comprehensive overview on the simulated fault injection
in classical digital circuits, so that to identify the opportunities of extending the available quantum
circuit simulation framework [56] to fault injection.

Therefore, we propose the theoretical guidelines of a bigger project called QUERIST, designed to
attain quantum FTAMs validation by simulated fault injection. The proposed guidelines guarantee
the success of such an enterprise if the error and fault occurrence models are those considered in the
available literature concerning quantum fault tolerance theory [24][25][18][19][38][39]. The problem
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of setting a framework that assures the flexibility of implementing whatever fault model remains
opened.

Also, an opened question is what other reliability and availability measures to take into consid-
eration, besides the accuracy threshold, and how to compute these parameters within the simulation
framework.

Another problem is finding out if there is a better way to inject gate errors. The proposed
solution is an approximation of what is actually happens, but is the only acceptable way if the
simulation framework uses the bubble-bit technique. The advantage of our methodology is that
assures simulation time efficiency, as proven in [56].



Chapter 6

Conclusion and Future Work

In this report, there are a lot of aspects for which the stake is very high. First of all, we have
the improvement of the reliability of quantum computation by increasing the accuracy threshold.
Dependability is a critical issue in quantum computation [38], and the prospect of a feasible quantum
computer relies mostly on the advances made in this particular field. If the error rate exceeds the
accuracy threshold, then reliable quantum computation is unconceivable, because after a number
of steps the errors will ruin the computation. We propose a technique, proving to be effective on
the considered examples. Thus, we employ the reconfigurable Quantum Gate Arrays in order to
raise the accuracy threshold to such an extent that arbitrary long reliable quantum computation
is possible. The qualitative assessment provided in this report proves that the rQGA technique is
successful in achieving its stated goal.

We have investigated the way to implement a quantum version of evolvable hardware. It was
proven by years of experience that this computational paradigm (reconfigurable hardware + genetic
algorithms) is appropriate for designing robust adaptive digital systems [27][34]. The quantum im-
plementation required two aspects be addressed: the actual structure of the reconfigurable Quantum
Hardware (rQHW) and the circuit implementation of the Genetic Algorithm that dictates the con-
figuration state. The first aspect was defined by describing the rQGA in the fault-tolerant context,
along with the constraints imposed by the inner nature of quantum mechanics [9][16]. But in defining
the second one, it turned out that any Genetic Algorithm can be implemented, so that it is runned
in just O (

√
n) steps.

Chapter 5.1.1 is dealing with continuing our simulation framework description. The continuation
refers to adapting our methodologies to the fault injection goal. Simulated fault injection is exten-
sively used in classical digital circuit design as an indicator to whether the design solutions meet the
reliability requirements (i.e. validation of fault tolerance algorithms and methodologies – FTAMs).
We capitalize on the available classical achievements, by taking into account – also – the specific
quantum computation error and fault occurrence model, in order to produce a quantum interpre-
tation of the VHDL-based MEFISTO tool [42][43]. The examples provided with the experimental
results clearly indicate the fact that fault injection could be implemented straightforwardly within
the bubble-bit framework (i.e. avoidance of entangled representations).

6.1 Report contributions

The original contribution provided in this report is basically centered on the following issues:

1. An engineering standpoint critique over the field of fault tolerant quantum computation, which

91
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clearly points to the rQHW solution.

2. The rQGA structure, designed for optimal implementation of the fault tolerant quantum
circuits;

3. The quantum configuration of the rQGA, so that the accuracy threshold is improved to a point
where arbitrary long reliable quantum computation is possible (the effects are comparable with
those obtained with the concatenated coding technique).

4. The implementation of Evolvable Quantum Hardware.

5. The demonstration that any Genetic Algorithm can be run in O (
√
n) steps. This result is very

important for the field of quantum computing, as it indicates that there are other aspect of
classical computation that could be more efficiently approached in the quantum computational
framework.

6. The extension of our original quantum circuit simulation framework, in order to attain sim-
ulated quantum fault injection that is used for assessing the relevant measures of quantum
reliability.

6.2 Future work

This report is presenting achievements that are only sketching further research directions. All of
them concern the field of fault tolerant quantum computation:

• building the QUERIST project, for the automatic (simulated) assessment of fault tolerance
measures, within the HDL, bubble bit, quantum circuit simulation framework;

• a quantitative evaluation of the rQGA fault tolerant solution, with the QUERIST project;

• integrating QUERIST and the bubble-bit framework with the available automated quantum
circuit synthesis tools (the most effective ones are employing Genetic Algorithms).



Appendix A

Useful configurations

A.1 Encoder with classical configuration

The qubit Steane encoder circuit from Figure 2.8 (a particular case of stabilizer encoding) is config-
ured from one basic rQGA cell (Figure 3.11) with a configuration given the way it was specified in
Equations 3.9, 3.10, 3.11, and 3.12. The classical configuration is not necessary, and the input-output
size is n = 7 qubits.

|config〉0basic cell = |ψ〉Steaneconf ⊗ |bit string〉Steane (A.1)

|bit string〉Steane = |0〉⊗35 (A.2)

|ψ〉Steaneconf = NSteane
0 = |1110000〉 ⊗ |0〉⊗7︸ ︷︷ ︸

Hadamard

⊗

|0〉⊗15 ⊗ |101000〉︸ ︷︷ ︸
t0i,j

⊗

|001011011100111〉 ⊗ |0〉⊗6︸ ︷︷ ︸
t1i,j

⊗

|1〉⊗7 ⊗ |0〉⊗7︸ ︷︷ ︸
Hadamard

(A.3)

A.2 Stabilizer code with Steane ancilla

In this section we will provide a configuration for building the single quantum bit-flip error correcting
circuit with Steane ancilla coding from Figure 2.13. The basic cell partition of this circuit is presented
in Figure A.1.

The configuration states for the two 14-qubit basic cells is given in the following equations. For
the first cell (”Cell 0” in Figure A.1) we have:

|config〉0basic cell = |ψ〉0bft ⊗ |bit string〉0bft (A.4)
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Figure A.1: The partition of the single bit-flip error correcting circuit (stabilizer code and
Steane ancilla) uses 2 basic cells of 14 input qubits.
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|bit string〉0bft = |0〉⊗7 ⊗ |1〉⊗7︸ ︷︷ ︸
measurement

⊗ |0〉⊗14︸ ︷︷ ︸
Hadamard

⊗

|
7 qubits︷ ︸︸ ︷

classical circuit outcome〉 ⊗ |0〉⊗7︸ ︷︷ ︸
XORs

⊗

|1〉⊗7 ⊗ |0〉⊗7︸ ︷︷ ︸
Hadamard

(A.5)

|ψ〉0bft = |1110000〉⊗2 ⊗ |0〉⊗14︸ ︷︷ ︸
Hadamard

⊗

|001011〉 ⊗ |0〉⊗7 ⊗ |01110〉 ⊗ |0〉⊗7 ⊗ |0111〉 ⊗ |0〉⊗7︸ ︷︷ ︸
t0i,j

⊗

|0〉⊗34 ⊗ |001011011100111〉︸ ︷︷ ︸
t0i,j

⊗

|0〉⊗6 ⊗ |1〉 ⊗ |0〉⊗12 ⊗ |1〉 ⊗ |0〉⊗11 ⊗ |1〉︸ ︷︷ ︸
t1i,j

⊗

|0〉⊗10 ⊗ |1〉 ⊗ |0〉⊗9 ⊗ |1〉 ⊗ |0〉⊗8 ⊗ |1〉 ⊗ |0〉⊗7 ⊗ |1〉︸ ︷︷ ︸
t1i,j

⊗

|0〉⊗21︸ ︷︷ ︸
t1i,j

⊗ |0〉⊗28︸ ︷︷ ︸
Hadamard

.

(A.6)

As for ”Cell 1” from Figure A.1, the corresponding configuration is given in the following 3
equations:

|config〉1basic cell = |ψ〉1bft ⊗ |bit string〉1bft (A.7)

|bit string〉1bft = |0〉⊗7 ⊗ |1〉⊗7︸ ︷︷ ︸
measurement

⊗ |0〉⊗14︸ ︷︷ ︸
Hadamard

⊗

|
7 qubits︷ ︸︸ ︷

classical circuit outcome〉 ⊗ |0〉⊗7︸ ︷︷ ︸
XORs

⊗

|0〉⊗14︸ ︷︷ ︸
Hadamard

(A.8)

|ψ〉1bft = |0〉⊗28︸ ︷︷ ︸
Hadamard

⊗

|0〉⊗6 ⊗ |1〉 ⊗ |0〉⊗12 ⊗ |1〉 ⊗ |0〉⊗11 ⊗ |1〉 ⊗ |0〉⊗10 ⊗ |1〉︸ ︷︷ ︸
t0i,j

⊗

|0〉⊗9 ⊗ |1〉 ⊗ |0〉⊗8 ⊗ |1〉 ⊗ |0〉⊗7 ⊗ |1〉 ⊗ |0〉⊗21︸ ︷︷ ︸
t0i,j

⊗

|0〉⊗91︸ ︷︷ ︸
t1i,j

.

(A.9)
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A.3 Quantum configuration for the encoding circuit

We provide some practical means to implement a quantum configuration (superposition state) for
the encoding circuit from Figure 2.8. This circuit corresponds to one particular stabilizer code,
described in Equation 2.34. Of course, we can construct many such codes, but for practical reasons
(easy implementation, less gates controlled by an error-prone quantum state) we consider only those
obtained by permuting the u0, u1, u2, u3 columns in the Hamming matrix HA from Equation 2.14.
Therefore, we have 4! = 24 such distinct codes. As we will see, due to engineering problems, only
some of these codes will be used, a number that is a power of 2, which makes things easier in
preparing the configuration register.

Normally, for obtaining the theoretical probability of ξ6 (see Quantum configuration from section
3.3) we have to prepare a 12 qubit quantum state given by:

|ψ〉12 =
1

2
√

6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|011110111101〉 + |011110111110〉 + |011111011011〉+
|011111011110〉 + |011111101011〉 + |011111101101〉+
|101101111101〉 + |101101111110〉 + |101111010111〉+
|101111011110〉 + |101111100111〉 + |101111101101〉+
|110101111011〉 + |110101111110〉 + |110110110111〉+
|110110111110〉 + |110111100111〉 + |110111101011〉+
|111001111011〉 + |111001111101〉 + |111010110111〉+
|111010111101〉 + |111011010111〉 + |111011011011〉+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A.10)

This 12-qubit state must be fitted in the 12 positions, marked with filled dots, of the configuration
state, as shown below. The configuration state will be

|ψ〉stabilconf =

(
1

2
√

6

23∑
i=0

|Ni〉
)

⊕ |bit string〉stabil (A.11)

with the ’bit string’ being only 0’s (|bit string〉stabil = |0〉⊗35), and the structure of the superposed
configure states:

|Ni〉 = |1110000〉 ⊗ |0〉⊗7︸ ︷︷ ︸
Hadamard

⊗ |0〉⊗15 ⊗ |101000〉︸ ︷︷ ︸
fixed t0i,j

⊗

|t1i,j〉 ⊗ |1〉⊗7 ⊗ |0〉⊗7︸ ︷︷ ︸
Hadamard

.
(A.12)

The |t1i,j〉 contains fixed qubits and the 12 qubits that participate to the superposition state from
Equation A.10, having the following basis state structure:

|t1i,jbasis〉 = |00 • • • •0 • • • • • • • •000000〉. (A.13)

Here, the 0’s correspond to the fixed values, whereas the filled dots mark the qubits from the
superposition.

If we are to prepare state |ψ〉12 from Equation A.10 on the qubits highlited in Equation A.13,
we have to acknowledge the fact that – on one hand – the state itself is hard to obtain due to the
fact that it is a superposition of 24 (not a power of 2) basis states, and – on the other hand – there
are many gates that are used at the same time by the superposed configurations, hence one gate
error can affect several superposed encoding circuits. We have to came out with some engineering
decision in order to deal with these problems.
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Column C1 Column C2 Column C3

q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11

0 1 1 1 1 0 1 1 1 1 0 1
1 0 1 1 1 1 1 0 0 1 1 1
1 1 0 1 0 1 1 1 1 1 1 0
1 1 1 0 1 1 0 1 1 0 1 1

Table A.1: The rows present the basis configurations which can be superposed with minimum
gate usage (qubits q0, q1 . . . q11 are the ordered positions of the filled dots from Equation A.13).
By permutation of columns C1, C2, C3 all the other distinct superposed configurations can be
found.

First, we will arrange the basis state codes from Equation A.10 so that the same gate will not
be used in all the superposed configurations. Four such configurations are given in table A.1. If we
permute the highlighted columns C1, C2, C3 we will get all the configurations from Equation A.10.
However, in our heuristic engineering approach, we will use only the codes from table A.1. The
problem is that when we superpose these configurations, the same gate will be used in 3 out of 4
superpositions, hence producing only an overall ξ

4
3 error probability order.

One solution would be to add one more level of controlled Toffoli gates (t2i,j) in the basic cell.
This will change Equation 3.12 so that we will have:

Nnew
i = |hh . . . h︸ ︷︷ ︸

2n bits

t00,1 . . . t
0
n−2,n−1︸ ︷︷ ︸

n(n−1)
2

bits

t10,1 . . . t
1
n−2,n−1︸ ︷︷ ︸

n(n−1)
2

bits

t20,1 . . . t
2
n−2,n−1︸ ︷︷ ︸

n(n−1)
2

bits

hh . . . h︸ ︷︷ ︸
2n bits

〉 (A.14)

Now, we will present |t1i,j〉 and |t2i,j〉 in detail, the way Equation A.13 prescribes.

|t1i,j basis〉
new = |00 • • • •0 • • • • • • • •000000〉 (A.15)

|t2i,j base〉
new = |00����0��������000000〉. (A.16)

The orthonormal basis structure of the qubit group states marked with filled dots and boxes are
presented, respectively, in the following two equations:

|ρ〉•basis = |b0b1111b21b3b41b51〉 (A.17)

|ρ〉�basis = |11b6b7b81b911b101b11〉. (A.18)

The positions not marked with bi’s are fixed with the corresponding binary value. Therefore, it is
only necessary to present the states corresponding to the bi qubit groups. Fortunately, it is the same
state:

|b0b1b2b3b4b5〉 = |b6b7b8b9b10b11〉 =
1√
2

( |010110〉+
|101001〉

)
. (A.19)

The circuit for obtaining the state in Equation A.19 is presented in Figure A.2.
The result of this configuration, for a described modification of the reconfigurable basic cell and

a gate error rate of order ξ, is that the overall error probability will be ξ
4
3
·2 = ξ

8
3 .
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0

0

0

0

0

0

Hb0 = b6

b1 = b7

b2 = b8

b3 = b9

b4 = b10

b5 = b11

Figure A.2: Circuit for setting the 6-qubit configuration state, which is used in setting a
quantum configuration for the stabilizer encoder.



Appendix B

HDL quantum circuit simulation
methodology

The HDL-based original approach for simulation of quantum circuits [55] is an entanglement-aware
simulation methodology, thus considering the entanglement as the main source of simulation com-
plexity. The usage of Hardware Description Languages (HDLs) is motivated by the fact that they
are able to describe in a compact manner the circuit with both structural and behavioral (func-
tional) architectures [5], thus isolating the entanglement situations. The non-entangled information
is separated inside a simulation engine with specialized algorithms, which are efficient at least for
some specific states appearing in Grover and Shor algorithms [37][55].

This methodology is an enhancement only if there are non-totally entangled states [55]. A case
study for the HDL-based framework, involving states appearing in Shors and Grovers algorithms,
showed that the probability of total entanglement is rising exponentially with the number of qubits
[55]. However, total entanglement could be avoided at least in some specific algorithm states by
”bubble bit” insertion [55]. This technique is favorable for the structural architectures, with the
expense of building some records of size O (

n2
)
. Here, we present the bubble bit technique working

within the HDL-based simulation framework, for some arithmetic circuits, used for Shors algorithm
implementation, and also for Grover’s algorithm circuits.

B.1 The HDL approach

When entanglement is not present in the processed quantum state, it is possible to describe the
circuit and the states in a structural manner, employing only polynomial resources for simulation.
By contrast, when entanglement is detected in the processed state, the circuit has to be described
with a behavioral architecture, and exponential resources must be used in this case. That happens
because, when entanglement occurs between two quantum subsystems, their overall state cannot be
represented correctly as a reunion (assuming implicit tensor product state composition) of the two
individual subsystem states.

In Figure B.1 an HDL simulation approach is presented. Two quantum circuits, functionally
described, guard the entangled quantum state (S3). The first quantum circuit (gate network) is hav-
ing a structural description because is guarded by 2 non-entangled states (S1 and S2). Cp1 . . . Cpn
are the smallest components of the quantum circuit, and A1 . . . An are their corresponding architec-
tures. A quantum register corresponding to a non-entangled state is using a ’/’ notation, while for
the entangled case the used sign is ’)’. Of course, if we are to perform a gate-level simulation [32][59]
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of the quantum algorithm implementation, then the circuit becomes a single quantum gate.

S1

m
circuit

1 S2

m m
circuit

2 S3

mm circuit
3 S4

m

Entanglement
detected

) )

Cp1 Cpi Cpn

Entity 1 Entity i Entity n

A1 Ai An

Entity

Functional
architecture

Structural
architecture

Entity

Functional
architecture

Figure B.1: Example of approaching the HDL simulation of a quantum circuit.

In order to implement this methodology, each circuit must be described both by structural and
functional architectures. For a gate network, if entanglement is detected in the previous or next
quantum state, then the functional architecture has to be selected to describe it; otherwise the
structural architecture is chosen. Figure 2.29 presents a circuit, which can be simulated with a
structural architecture (case B), but for some input states is producing entanglement, and therefore
can only be simulated by functional (behavioral) architectures (case A). In Figure B.2 the bra-ket
notation is used, in order to indicate the individual qubit and overall states.

0
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1

0 1
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1
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Entanglement
detected
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1

00 11
2

+

A)

( )
1

0 1
2

-

0

H

1

11

Entanglement
not detected

B)

Figure B.2: Situations where the same circuit (2 gates: Hadamard and XOR) is involved in
an entanglement case (A), and in a non-entanglement case (B).

The matrix representation of quantum states and unitary operators is adopted; therefore the
quantum states are type array (of complex) signals [55]. The data structure for HDL-simulation is
designed so that the circuit is capable of processing both array of qubit states (the structural case)
and overall states (the behavioral case), depending on entanglement detection [15]. For instance,
if the circuit is processing a 16-qubit state, then the structural architecture will handle 16 [2 × 1]
matrixes (25 complex numbers), whereas the behavioral architecture will have to handle 1

[
216 × 1

]
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matrix (216 complex numbers). Figure B.3 gives an appropriate data structure example described
in VHDL.

library

use all

ieee;
ieee.math_real. ;

use all

package is

--

type is array to of

type is array range of

type is array range<> of

type is record

to

to

end record

end

ieee.math_complex. ;
qupack

the qubit state representation
qubit (0 1) complex;

-- array of qubits representation
qubit_vector (natural <>) qubit;

-- quantum register overall state representation
quregister (natural ) complex;

-- data type for simulation of 2-qubit circuits
-- when ent=true we have entanglement and 'qr' field
-- will be taken into consideration

qudata
qr:quregister(0 3);
qa:qubit_vector(0 1);
ent:boolean;

;
qupack;

Figure B.3: Data set example for the HDL approach.

With the data structure from Figure B.3 and the above considerations, we are able to describe
the circuit from Figure B.2 with both structural and behavioral architectures. The behavioral
architecture (’functional’ in Figure B.4) has a group of 4 variable assignments, motivated by the fact
that the overall transformation produced by the circuit is characterized with the resulted matrix
from Equation B.2. The effect of the Hadamard gate over the overall input state is given by

H ⊗ I =
1√
2

[
1 1
1 −1

]
⊗

[
1 0
0 1

]
=

1√
2

⎡
⎢⎢⎣

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎤
⎥⎥⎦ . (B.1)

Applying the XOR gate over the 2 qubits with the source qubit outputted by the Hadamard gate
and the target qubit not being transformed will have the following effect:

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ · 1√

2

⎡
⎢⎢⎣

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎤
⎥⎥⎦ =

1√
2

⎡
⎢⎢⎣

1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

⎤
⎥⎥⎦ . (B.2)

When structural description is possible, the circuit can be reduced to the form given by Figure
B.5(A), with U0, U1, U2 . . . Un−1 being 1-qubit unitary transformations, and q0, q1, q2 . . . qn−1 indi-
vidual qubits. For the case in Figure B.2(B), the structural description is possible, because the
circuit can be reduced as Figure B.5(B) shows. This is, in fact, the motivation for the architecture
’structural’ of entity ’circ-ex’ (see Figure B.4).
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entity is

port in inout

end

architecture of is

begin

process

variable to

variable

begin

if then

for in to loop

end loop

else

end if

circ_ex
(q1: qudata;q2: qudata);

circ_ex;
functional circ_ex

(q1)
t:quregister(0 3);
r:qudata;

(q1.ent)
l1: i 0 3 t(i):=q1.qr(i);

l1;
t:=tensor_product_1(q1.qa(0),q1.qa(1));
;

r.qr(0):=(1.00/sqrt(2.00))*(t(0)+t(2));
r.qr(1):=(1.00/sqrt(2.00))*(t(1)+t(3));
r.qr(2):=(1.00/sqrt(2.00))*(t(1)-t(3));
r.qr(3):=(1.00/sqrt(2.00))*(t(0)-t(2));
r.ent:=true;
q2<=r 20 ns;

; functional;
structural circ_ex

Hadamard_gate
(qi: qubit;qo: qubit);

;
qxor

(qs: qubit;qti: qubit;qto: qubit);
;

c1:Hadamard_gate (q1.qa(0),q2.qa(0));
c2:qxor (q2.qa(0),q1.qa(1),q2.qa(1));

structural;
________________________________________________

Hadamard_gate
(q1: qubit;qo: qubit);

Hadamard_gate;
hga Hadamard_gate

qo(0)<=(1.00/sqrt(2.00))*(qi(0)+qi(1)) 10ns;
qo(1)<=(1.00/sqrt(2.00))*(qi(0)-qi(1)) 10ns;

hga;
________________________________________________

qxor
(qs: ;qti: qubit;qto: qubit);

qxor;
qxa qxor

(qs,qti)

(qs(0).im=0.00 qs(0).re=0.00)
(qs(1).re=0.00 qs(1).im=0.00)
"XOR's output will be entangled"

failure;
qs(0).im=0.00 qs(0).re=0.00

qto(0)<=qti(1) 10 ns;
qto(1)<=qti(0) 10 ns;

qs(1).im=0.00 qs(1).re=0.00 qto<=qti;
; ; qxa;

after

end process end

architecture of is

component

port in out

end component

component

port inout in out

end component

begin

port map

port map

end

entity is

port in out

end

architecture of is

begin

after

after

end

entity is

port inout in out

end

architecture of is

begin

process

begin

assert and or

and

report

severity

if and then

after

after

elsif and then

end if end process end

Figure B.4: Some relevant pieces of VHDL code, describing the circuit from Figure B.2.
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q0

q1

qn-1

U0

U1

qi

qTi

qS

qTo

B)

Figure B.5: A) Reduction of any n-qubit quantum circuit when entanglement is not present.
B) reduction of the circuit from Figure B.2 situation (B), with qi = 1√

2
(|0〉 − |1〉) the input

source, the target input qTi = |0〉, the target output qTo = |1〉, and the output source
qS = |1〉.

B.2 Methodology effectiveness

B.2.1 Automated procedure

The simulation methodology is automated by using qubit group extraction algorithms. These al-
gorithms are responsible for detecting total entanglement (this notion will be explained in the next
subsection), and for extracting automatically the non-entangled qubit groups, if such is the case,
thus setting the entanglement flag (the ’ent’ field in the Figure B.3 example) accordingly.

Efficient automated extraction of non-entangled qubit group states is not conceivable unless
we have some a priori information about the overall state [51]. When dealing with states from
certain points in the circuits implementing specific algorithms, we have that knowledge because of
the characteristic form these states exhibit. For example, the states dictated by Shor’s algorithm
[46] arithmetic circuits, (i.e. all the states except those dictated by the last algorithm step – the
Quantum Fourier Transform) are described by the following equation:

|ψarithmetic〉 = ξ

⎡
⎢⎢⎢⎣

b0
b1
...

b2n−1

⎤
⎥⎥⎥⎦ (B.3)

where n is the number of qubits, ξ ∈ C, and bi ∈ B = {0, 1}.
Only if the extraction algorithms are not successful, the employment of our simulation method-

ology will not be an improvement. Such algorithms do exist, for states appearing in Grover and
Shor algorithms, and for an arbitrary state [55][37]. As for the states involved in Shor’s algorithm
arithmetic operations, they are not totally entangled iff, in the set {b0, b1, . . . b2n−1} of Equation B.3
elements, there is a d ∈ N so that all the

(
bk·2d , bk·2d+1,...b

(k+1)·2d−1

)
subsets (with k = 0..2n−d − 1)

are in the same set of two 2d× 1 matrixes with binary elements: one matrix with all elements being
zeros, and the other with at least one non-zero element [55]. With theoretical result, an extraction
algorithm can be developed. It detects and extracts d-qubit (1 ≤ d < n) groups that are not entan-
gled with the rest in the register (see Figure B.6). Here, function Compute-set returns the decimal
correspondent of the binary information encoded by the 2d-dimensional subset. The algorithm will
return q (the state of the d-depth qubit group) and Q (overall state of the remained n− d qubits).
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INPUTS:

q:=NULL; k :=0;

Set:=Compute_set( );

Set=0?

RETURN q

NoYes

START

RETURN Q

No

k k:= +1;

);2;12..0}(1,0{ ��� nib n
i )1( �dd

� � 121122
,,,

������ ddd kkk
bbb �

Q k[ ]:=’0’;
Yes

q:=Set; Q k[ ] :=’1’; k k:= +1;

Set:=Compute_set( );� � 121122
,,,

������ ddd kkk
bbb �

Set=0?

Set=q?

Q k[ ] :=’0’; Q k[ ] :=’1’;

Yes No

?
12 �� �dnkk k:= +1;

No Yes

EXIT

Figure B.6: Qubit group extraction algorithm (with depth d), for states dictated by Shor
algorithm arithmetic circuits.
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B.2.2 Entanglement analysis

Even though the entanglement affects all the state qubits (complete entanglement), there could be a
qubit group state that is not entangled with the rest. A state is having total entanglement if there
is no qubit or group of qubits that could be extracted as non-entangled. Figure B.7(A) presents an
example of complete, but non-total, entanglement. Any unitary transformation which outputs the
state presented in Figure B.7(A) can be reduced to the expression from Figure B.7(B).

In Figure B.6, when the extraction algorithm is successful for d = 1, then the entanglement is
not complete, and if there is a d < n so that the algorithm avoids ’EXIT’ in Figure B.6, then we have
a non-total entanglement situation. We use the circuit model as basic point in our gate-level [51]
simulation methodology. Figure B.8 presents the circuit model of quantum computation, which is a
rippling of consecutive quantum networks of gates and registers, with the last register being measured
in order to get the result. The HDL-based, entanglement aware simulation methodology is presented
in Figure B.9. The entanglement analysis units are using algorithms like the one in Figure B.6 in
order to extract the non-entangled qubit groups and passes this qubit groups information to the
corresponding quantum network and register. The network selects the structural architecture with
the appropriate unitary transformations (as suggested by Figure B.7), while the quantum register
will be represented now as a collection of independent qubit groups.

q0
q1
q2
q3

q0

q1

q2

q3
U0

U1

Figure B.7: A) Complete entanglement example: for qubit groups {q1, q2} and {q0, q3} there
is total entanglement inside the group, but there is no entanglement between the two groups;
B) unitary transformation expression.
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state

Classical
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Measurement

Figure B.8: The circuit model of quantum computation.

The total entanglement is the only situation in which our HDL simulation approach brings no
improvement. For Shor, Deutsch-Jozsa and Grover algorithms the probability of finding non-total
entanglement decreases exponentially with the number of qubits in the processed state [37][55],
therefore further investigations are necessary. However, there are many algorithm situations where
entanglement is not present. Such is the case for Deutsch-Jozsa algorithm with the oracle being a
circuit that computes the parity of the quantum state encoded in the query register [30]. For a query
register of 4-16 qubits and the oracle being the circuit computing query’s parity, the simulation time
evolution with the number of qubits (for both structural and behavioral architectures) is presented
in Figure B.10.
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Figure B.9: The entanglement-aware quantum circuit simulation model.
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Figure B.10: Discrepancy between simulation times with behavioral and structural architec-
tures, for Deutsch-Jozsa algorithm.
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B.3 The bubble bit technique

Considering the arithmetic circuits involved in Shor’s algorithm (with Grover’s algorithm experi-
encing a similar situation [55][56]), the difference between a non-entangled and a totally entangled
state could be a simple binary couple flip. Therefore we developed an algorithm that creates a new
entanglement-free-represented state, in order to alter the entangled state representation by inserting
appropriate values called ”bubble bits” and storing their positions in the state vector. Our technique
is similar to the stabilizer codes, which offer the opportunity for efficient simulation (as proven in
Gottesman-Knill theorem [30]), but instead finding transformations that leaves the n-qubit state
unchanged or stabilized, we produce a corresponding n+ 1-qubit state which is not entangled (it is
used for simulation), and a set of memorized inserted matrix elements (the bubble records).

The purpose is to avoid the 2n × 2n matrix expression of the n-qubit register unitary operator.
After performing the bubble bit insertion procedure, the equivalent quantum network will have only
1-qubit gates, and after applying the unitary operator in this manner, the original state can be
restored. Because the unitary transform is obtained with at most n [2×]-size matrixes, incentive for
structural (i.e. polynomial) simulation is provided.

The bubble bit insertion technique generates a new simulation model, under the form shown in
Figure B.11. First, the FArh architectures are used for the quantum networks. These architectures
are used by the quantum networks (QNet1 . . . QNetn) from Figure B.9 simulation model, with
a high probability of being functional architectures. The state output by QNeti, having FArh
as architecture, will be processed with the bubble bit procedure, and the result stored in QRegi
(bubble). At this point, QNeti will have non-entangled input and output states, hence it will be
described by an entirely structural architecture (computation flowing along the darker arrow in
Figure B.11).
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m

m+1

Record
n

m+1

Classical
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Figure B.11: Quantum circuit simulation model, when the bubble bit technique is employed.

The procedure for bubble bit insertion works as follows: every couple (b2k, b2k+1) from the state
vector (as considered in Equation B.3) is scanned. From this equation, ξ will be ignored because

all non-zero amplitudes are equal. We denote couple matrixes as:
[

0
0

]
= 0̂,

[
0
1

]
= 1̂,

[
1
0

]
=

2̂,
[

1
1

]
= 3̂. When a non-0̂ value is encountered all the other couples to be processed will have to
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be of either this particular value or 0̂.
The bubble insertion described in Figure B.12 must be performed until all the elements from

the state vector are scanned; here the oval is the first relevant couple detected and the rectangle
represents the current processed couple. The bubble bit is inserted between the bits shown in
rectangles in Figure B.12. After the bubble insertion, a current processed couple (c) results along
with a next couple (n) that could be already processed when no ’?’ sign appears. There are 2 cases
where a bubble bit could also be inserted in the next couple; that happens when becomes obvious
that it would be the only choice (see Figure B.12 for details). When the entire state vector is scanned
and processed in this way, the extraction of one qubit (characterized by the first encountered non-0̂)
becomes straightforward, and it can be said that one bubble step is completed. Several bubble steps
must be performed until all qubits are extracted.
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Figure B.12: Bubble bit insertion technique.

Any bubble-bit insertion will also increase the number of state matrix elements (bi). The so-
lution for maintaining a coherent matrix-form quantum state is to add an extra-qubit to the state
representation. Thus, the number of bi elements will be increased from 2n to 2n+1 – at the first
bubble step – by inserting extra 0’s. The next bubble steps will require erasure of 0’s, so that
the matrix-form representation further complies with the quantum state coherence requirement (a
k-qubit state implies 2k vector elements in the state matrix representation).

For every bubble-bit insertion, its position inside the vector is recorded. Each bubble {b, pos}
is described by its nature (b = 0/1) and its position in the resulted state (pos). Performing all the
necessary bubble steps requires a total of O (

n2
)

records be produced.

B.4 Experimental results

Efficient quantum gate-level simulation may be achieved by using the HDL simulation framework,
at least for some particular circuit cases (Grover iteration, arithmetic circuits) [51][55]. The ability
of HDLs to describe a circuit with both structural and behavioral architectures allows isolating
entangled qubit cases, which are the sources of simulation complexity. Besides special algorithms for
non-entangled qubit group extraction [55], the simulation methodology we developed relies on the
bubble bit technique, introduced as a method of avoiding entangled representations. This method
substantially (i.e. exponentially) improves simulation times with the expense of buiding some records
of size O

(
n2

)
, as experimented for Shor’s algorithm arithmetic circuits and Grover algorithm circuit.
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B.4.1 Quantum arithmetic

In order to illustrate how the bubble bit technique works, we take as example the backbone of
quantum arithmetic circuits: the 1-qubit full adder from Figure B.13(A). The way this add-cell
could be rippled in order to build n-qubit adders is suggested in Figure B.13(B). The simulation
of the 1-qubit full adder will have to take into consideration the successive states from part (A) of
Figure B.13. The input state (|ψ1〉) is not entangled, as shown in the following equation:

|ψ1〉 =
1√
2

(|0〉 + |1〉) ⊗ 1√
2

(|0〉 + |1〉) ⊗ 1√
2

(|0〉 + |1〉) ⊗ |0〉. (B.4)
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Figure B.13: A) The 1-qubit full adder; B) obtaining a 2-qubit adder from 1-qubit Σ cells.

The other states are entangled, with the last one (|ψ5〉) being totally entangled and therefore the
bubble bit technique has to be applied. As presented by Equations B.5 to B.8, the resulted state
representations are identical, with only the corresponding records being different.

|ψ2〉 =
1

2
√

2

( |0000〉 + |0010〉 + |0100〉 + |0111〉
|1000〉 + |1010〉 + |1100〉 + |1111〉

)
bubble−→ 1

4
3̂⊗4 ⊗ 1̂ + rec2 (B.5)

|ψ3〉 =
1

2
√

2

( |0000〉 + |0010〉 + |0110〉 + |0101〉
|1000〉 + |1010〉 + |1110〉 + |1101〉

)
bubble−→ 1

4
3̂⊗4 ⊗ 1̂ + rec3 (B.6)

|ψ4〉 =
1

2
√

2

( |0000〉 + |0010〉 + |0110〉 + |0101〉
|1000〉 + |1011〉 + |1111〉 + |1101〉

)
bubble−→ 1

4
3̂⊗4 ⊗ 1̂ + rec4 (B.7)

|ψ5〉 =
1

2
√

2

( |0000〉 + |0010〉 + |0110〉 + |0101〉
|1010〉 + |1001〉 + |1101〉 + |1111〉

)
bubble−→ 1

4
3̂⊗4 ⊗ 1̂ + rec5 (B.8)

Figure B.14 presents the step-by-step results of the procedure applied on the 1-qubit full adder,
while Figure B.15 contains the details regarding all the bubble steps performed for |ψ2〉. Figure B.14
has 6 columns and 5 rows; the columns correspond to the following: 1 record (rec), 4 qubits for the
circuit’s inputs (x, y, cin, A also labeled as 0, 1, 2, 3), and the extra qubit required by bubble bit
insertions (e). All the involved successive states |ψ1..5〉 have a distinct allocated row in this procedure
illustration.
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Figure B.14: Bubble bit procedure results.
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Figure B.15: Bubble bit procedure example.

size n ent gates bub tWB tB

1 4 total 4 4 <0.5 sec <0.5 sec
4 13 total 16 12 13.5 sec 2 sec
8 25 total 32 24 4 hr, 12 sec 13 sec
16 49 total 64 48 timed out 41 sec
32 97 total 128 94 timed out 3 min, 48 sec
64 193 total 256 192 timed out 16 min, 7 sec

Table B.1: Quantum full adder simulation results.

The results from Figure B.14, as well as Equations from B.5 to B.8, indicate a structural net-
work (’SArh’ from Figure B.11) of only identity qubit gates (characterized by I matrix). The new
equivalent network was obtained the way section B.1 and Figure B.5 explain. This is important,
because the structural (i.e. polynomial) simulation is now possible, with the original quantum states
that can be restored because of the information stored in the appropriate records.

The presented results are due to VHDL simulations, carried on a Windows XPTM, PENTIUMTM

IV CPU 1,6GHz, 192MB RAM machine. We have performed the gate-level simulation of quantum
arithmetic [58] of the full adder (see Figure B.13). The experiment was pursued in the presence of
total entanglement (therefore not a trivial simulation, as it is defined by [57]), thus requiring the
bubble bit technique. The results are presented in table B.1, where size is the size of the adder in
qubits, n is the size of the corresponding overall state (in qubits), ent is the type of the entanglement
after the rightmost gate of the circuit, gates is the number of gates involved, bub is the maximum
number of bubbles inserted for one record, and tWB, tB are the simulation times obtained without
and with the bubble technique respectively.

Table B.2 presents simulation times for the modulo-k (we considered k = 2size−1) quantum
adders and multipliers, as essential circuits used for Shor’s algorithm implementations [46][48][58].
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size Modulo adder Modulo multiplier
tWB tB tWB tB

4 33 min, 4 sec 3.5 sec 6 hr, 12 min 9 sec
8 8hr, 53 min 17 sec timed out 44.5 sec
16 timed out 58.5 sec timed out 2 min, 16 sec
32 timed out 5 min, 42 sec timed out 16 min, 23 sec
64 timed out 21 min, 4 sec timed out 53 min, 18 sec

Table B.2: Experimental results for modulo adder and multiplier (simulation time).

Because additional memory is required in order to store the records dictated by the bubble bit
technique, Figure B.16 presents the polynomial memory overhead for the simple quantum ripple
adder, modulo adder, and modulo multiplier.

Figure B.16: Extra memory requirements.

B.4.2 Simulation of Grover’s algorithm

When considering the states involved in Grover’s algorithm, we will have a more general approach
to avoiding entangled representations in the quantum states. The general form of states dictated by
circuits from Grover’s algorithm implementations is:

|ψGrover〉 = ξ

⎡
⎢⎢⎢⎣

a0

a1
...

a2n−1

⎤
⎥⎥⎥⎦ (B.9)

where ai ∈ {−1, 0, 1} for i = 0..2n − 1.
For explaining how our experiment works, we take as example the Grover algorithm circuit from

[30] (see Figure B.17), which performs quantum search on a 2-qubit register.
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a) b) c) d)

non-entangled entangled non-entangled

Figure B.17: Grover algorithm circuit for a 2-qubit search register. The oracle UO can be any
of the a)-d) gates; also an entanglement analysis is provided by showing where it appears and
where it is absent.

The algorithm that transformes the state representation into a non-entangled one consists of
repreating the bubble insertion algorithm until (n+ 1) [2×]-size matrices are extracted. The insertion
algorithm is described by the following pseudocode:

Bubble insertion algorithm

1. scan all the couples (ak, ak+1) from Equation B.9;

(a) memorize the first non-0̂ couple;

(b) insert bubbles according to rules in Figure B.18 and memorize their nature
and position;

2. if the number of ai elements is a power of 2 (= 2m) then go to step 4;

3. if the previous adjustement consisted of a 0’s padding then erase zeros so that
the number of ai (matrix) elements will be the closest power of 2;

4. extract the first detected non-0̂ couple as a non-entangled qubit representation;

The rules for bubble insertion are presented in Figure B.18, where ’x’ stands for either ’-1’ or
’1’. Of course, -x = 1 when x=-1.

In order to keep track of the operations involved by the bubble bit technique, we will watch the
highlighted states (|ψ1〉 . . . |ψ5〉) from Figure B.19. In this figure, the lower qubit value is known
throughout the computation (it is shown in Figure B.19) and it is not entangled with the rest. The
search register is made out of qubits A and B, while qubit e is the extra qubit which is used only
because it is required by the bubble bit non-entangled representation. Initially, e = |0〉.

The result of applying the bubble bit technique on the |ψ1〉 . . . |ψ1〉 states is presented in Figure
B.20. In fact, as forecasted in the entanglement analysis from Figure B.17, the bubble bit technique
is only necessary for states |ψ2〉 and |ψ3〉.
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Figure B.18: Bubble bit insertion rules for Grover algorithm states.
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Figure B.19: Relevant states for Grover algorithm simulation.



B.4. EXPERIMENTAL RESULTS 115

e B A rec

1
1

1
-1

1
1

1
1

1
1

step bubble zeros

1

2

{-1,3}
{1,5}

{-1,3}

+2

-1

1
1

1
1

step bubble zeros

1

2

{-1,3}
{-1,5}

{1,3}

+2

-1

1
1

1
0

1
0

0
1

1
0

1�

2

3

4

5

�

�

�

�

1
0

1
-1

1
-1

Figure B.20: Bubble bit insertion results for 2-qubit Grover search simulation.

These results can also be expressed as equations, where
[ −1

1

]
= 4̂ and

[
1
−1

]
= 5̂:

|ψ1〉 =
1
2

(|00〉 + |01〉 + |10〉 + |11〉) = 0̂ ⊗ 3̂⊗2 (B.10)

|ψ2〉 =
1
2

(|00〉 + |01〉 − |10〉 + |11〉) = 3̂ ⊗ 5̂ ⊗ 3̂ + rec1 (B.11)

|ψ3〉 =
1
2

(|00〉 − |01〉 + |10〉 + |11〉) = 3̂⊗2 ⊗ 5̂ + rec2 (B.12)

|ψ4〉 =
1
2

(|00〉 + |01〉 − |10〉 − |11〉) = 1̂ ⊗ 5̂ ⊗ 3̂ (B.13)

|ψ5〉 = |10〉 = 1̂ ⊗ 2̂ ⊗ 1̂ (B.14)

The way that the bubble insertion procedure works is presented in Figure B.21.
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Figure B.21: Bubble bit insertion procedure for |ψ3〉.

The result is the possibility of performing HDL structural simulation of the circuit, and there-
fore obtaining polynomial simulation times. The equivalent gate network, that can be simulated
structurally, is presented in Figure B.22.
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Figure B.22: 2-qubit search Grover equivalent circuit, obtained with the bubble-bit technique
in order to allow structural (i.e. polynomial) simulation.

In Figure B.22 we use a HNH gate. It is a gate that performs negation in a changed basis space.

Its equivalent network is H ·N ·H = 1√
2

[
1 1
1 −1

]
·
[

0 1
1 0

]
· 1√

2

[
1 1
1 −1

]
=

[
1 0
0 −1

]
.

In order to represent the bubble records, we will add the data structure from Figure B.23 to
the VHDL package from Figure B.3. In Figure B.24 we present the methodology that was used
when building corresponding VHDL entity-architecture pairs, for the 1-qubit gate levels that were
dictated by the bubble quantum state representation (as, for instance, ”phase shift” in Figure B.22).
These entity-architecture pairs have a fixed form, with only the marked components and signals
being dictated by bubble bit technique’s outcome (see Figure B.24).

-- the type describing bubble structure
bubb

nature:integer;
position:integer;

;
-- the bubble type

bubble_type (natural <>) bubb;
-- structure of bubble records

rec_rec
bubble:bubble_type(0 to 1);
zeros:integer;

;
-- data type for bubble records

bubble_record (natural <>) rec_rec;

type is record

end record

type is array range of

type is record

end record

type is array range of

Figure B.23: Data types required by bubble record representation.

Grover’s algorithm was simulated for an Oracle that marks just one basis state, like [60]. Figures
B.25 and B.26 present the time diagrams resulted from simulation of Grover’s algorithm with a
2-qubit data register and |10〉 the ”marked” basis state. In these figures the relevant datapath is
highlighted by arrows, which point the fields that are actually used by the corresponding structural
or behavioral architectures. Of course, for the bubble bit simulation only structural architectures
are required.

The runtime evolution with the number of qubits in the data register is presented in Figure B.27.
Also, the measured simulation times are compared here with the runtime complexity reported in [60],
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entity is

port in out

end

architecture

component

port in out

end component

component

port in out

end component

begin

port map

port map

port map

after

after

end

level_bubble
(si: qudata;so: qudata);

level_bubble;
bubble_arh of level_bubble is

qubit_1_gate
(qi: qubit;qo: qubit);

;

identity_1_gate
(qi: qubit;qo: qubit);

;

c0: ???_1_gate (si.qa(0),so.qa(0));
c1: ???_1_gate (si.qa(1),so.qa(1));

cn-1: ???_1_gate (si.qa(n-1),so.qa(n-1));
so.ent <= true time_delay;
so.qr <= si.qr after time_delay;
so.bub <= bubble_record time_delay;

bubble_arh;

resulted after
applying the
bubble bit
technique

Figure B.24: VHDL gate level implementation (entity-architecture pair) for bubble bit state
transformation.

which is 0.22 × 1.44n. The graphical representation shows substantial runtime improvement. Also,
Figure B.28 presents the memory overhead of bubble bit simulation, dictated by the bubble records.
The added trendline indicates that the supplementary memory overhead grows polynomially with
the number of qubits in the data register.
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Figure B.25: Time diagram resulted from VHDL simulation of Grover’s algorithm, without
the bubble bit technique.
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Figure B.26: Time diagram resulted from VHDL simulation of Grover’s algorithm, with the
bubble bit technique.
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Figure B.27: HDL bubble bit runtime results for Grover algorithm simulation, compared with
the reference complexity.
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A trendline is added to the sample data, showing polynomial growth.
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