
Grover’s Algorithm and the Evolutionary Approach of
Quantum Computation

Mihai Udrescu1, Lucian Prodan1, Mircea Vlăduţiu1

1 Advanced Computer Systems & Architectures Laboratory, Computer Science Department,
“Politehnica” University , 2 Parvan Blvd,

300223 Timişoara, Romania
{mudrescu, lprodan, mvlad}@cs.utt.ro

http://www.acsa.utt.ro

Abstract. In the recent years we were witnesses of an intense research activity,
trying to find some common ground for quantum computation and genetic pro-
gramming [4][19]. The use of genetic algorithms provides outstanding means
for automated synthesis of quantum circuits. In this paper we focus on the op-
portunity of designing so-called Quantum Genetic Algorithms or QGAs. As the
qubit representation of the chromosomes provides the possibility of represent-
ing the entire population with just one quantum superposition state, a quantum
state can be generated as a superposition of all the corresponding fitness values.
By marking the superposed chromosome that dictates the best fitness value, one
only needs to apply Grover’s algorithm in order to return the solution of the
search. We also present the implementation details of the proposed procedure,
along with an illustrating example.

1 Introduction

By clearly identifying its most major problems and limitations, computer science has
become mature [10]. The research community has put a lot of effort in the attempt to
solve these problems and further pushing the computing frontiers; however, by using
the means of what is now called classical computation, it seems that one can hardly
expect more than marginal improvements, even with sophisticated approaches.

In this context, inspiration was mainly found in biology and physics: bio-inspired
computing and quantum computing are considered as possible solutions. The opti-
mism is fed by theoretical and practical achievements. Genetic algorithms and evolv-
able hardware are already successfully used in a wide range of applications, spanning
from image compression, robotics and other artificial intelligence related issues, to
engineering problems like fault tolerance and reliability in critical environments.
Moreover, quantum computing seems to draw even more power from its exponential
parallelism: Peter Shor has proven that a classical exponential problem (integer fac-
torization) can be solved in polynomial time [16].

The above considerations indicate that the merge between the two novel comput-
ing promises, namely genetic algorithms (GAs) and quantum computing (QC) would
be natural and benefic [19]. Researchers already follow the path of so-called Quan-

tum Evolutionary Programming (QEP) [4] with outstanding results [17]. For instance,
the best approach for automated synthesis of quantum circuits uses genetic program-
ming [8]. Also, quantum algorithm design can be approached by evolutionary means
[18]. In fact, the majority of such applications are addressing quantum computation
design issues regarding quantum algorithms and implementations [17]; they are all
part of QEP’s sub-area called Quantum Inspired Genetic Algorithms (QIGAs) [4][9].
The other sub-area, called Quantum Genetic Algorithms (QGAs), tries to implement
genetic algorithms in a quantum computation environment [4][14][15]. This paper
proposes a new perspective on QGAs, by showing that no genetic algorithm strategy
is necessary in quantum computation, because it can be reduced to Grover’s algo-
rithm [5].

1.1 Motivation

The QGAs rely on qubit representations for the chromosomes and the use of quantum
operators in order to process them during the quest for the optimal solution of the
search problem. In principle, this approach redefines the GA operators in quantum
terms; these new operators will perform better due to the exploit of the quantum par-
allelism [15]. Nevertheless, approaching specific applications this way will result in a
significant performance enhancement [6][7].

Because the chromosome represented by qubits, just one quantum chromosome
register would be able to store the entire population as a superposition of all the pos-
sible classical states. The function that evaluates the fitness of the initial population
(which could also be the entire population) would take the chromosome register as
input and the output would be stored in a fitness register. This would store a superpo-
sition of all the fitness values, corresponding to the superposition of the individuals
from the chromosome register.

The key observation that led us to this new perspective is the fact that if the best
fitness value can be marked (i.e. by changing the phase of the corresponding eigen-
state) without destroying the superposition of the registers, then Grover’s algorithm
will find the solution in (nO) . Therefore, all the quantum versions of GA opera-
tors, like crossover or mutation, would become useless if we figured out a way to
mark the best fitness, inside the fitness superposition state.

1.2 Quantum Computation Background

For quantum computing, the information storage unit is the quantum bit or qubit,
which is presented here in bra-ket notation [10]. The qubit is a normalized vector in
the H 2 Hilbert space, with { 1,0 } as the orthonormal basis: 0 10a aψ = + 1 . Here,
a0, a1∈ are the so-called quantum amplitudes, which represent the square root of
the associated measurement probabilities for the superposed states

^
0 and 1 respec-

tively, with 12
1

2
0 =+ aa . The qubits can be organized in linear structures called

quantum registers, encoding a superposition of all possible classical states. For an n-

qubit quantum register, its corresponding state is a normalized vector in a 2n-

dimensional Hilbert space, ∑ −

=
=

12

0

n

i ir iaψ , where ∑ −

=
=

12

0
2 1

n

i ia , i∈ . When the

individual qubit states are known, the tensor product provides the register overall
state [10]. For instance, 2 qubits –

`

10 10 aaA +=ψ and 10 32 aaB +=ψ – give
11100100 31213020 aaaaaaaaBA +++=⊗ ψψ as the overall state. A better han-

dling of the quantum states is possible with the matrix representation. Thus, the 2-
qubit tensor product from above will have the following matrix form:

. []20
0 2 0 3 1 2 1 3

31

†aa
a a a a a a a a

aa
⎡ ⎤⎡ ⎤

⊗ =⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦
• Entanglement
For a quantum register state, entanglement occurs iff it cannot be represented as a
tensor product of its parts. In a 2-qubit example, we say that state 1ψ is not entan-

gled while 2ψ is entangled, because ()1
1 2

00 01ψ = + = ()1
2

0 0⊗ + 1 , but

there are no 1φ and 2φ qubits with () 212
1

2 1100 φφψ ⊗=+= .

• Quantum circuits
The quantum circuits are constrained networks of gates, with no cloning and no feed-
back allowed [2]. The quantum gate is the physical device implementing a unitary
operator [10], which represents the quantum state transform. Due to the unitary prop-
erty, all quantum operators are reversible. In the circuit model of quantum computa-
tion, which is a rippling of consecutive quantum networks of gates and registers, the
register measurement is the only non-unitary operation.

It was proven that the set of gates (){ }UXOR 0,∧ is universal in quantum computa-
tion [2]. The n+1 qubit transform ()Un∧ is a conditional operator, applying 1-qubit
unitary operator U on the target qubit iff the other n input qubits are '1'. If

, then the conditional transform only negates the target qubit for the

other input bits being '1'. The XOR gate is

xU σ=⎥
⎦

⎤
⎢
⎣

⎡
=

01
10

()xσ1∧ , while the Toffoli gate (universal in
classical reversible computation) is ()2 . ∧ xσ

2 Quantum Genetic Algorithms

As part of Quantum Evolutionary Programming, QGAs have the ingredients of a
substantial algorithmic speedup, due to the inherited properties from both QC and
GA. However, there still are questions as to how would it be possible to implement a
genetic algorithm on a quantum computer. The attempts made in this particular direc-
tion suggest there is room left for taking advantage from the massive quantum com-
putation parallelism [15]. Moreover, some questions were left open, as pointed out in
[4].

2.1 Running GAs in a Quantum Computational Environment

For the first time, the possibility (and the advantages) of the QGAs were indicated in
[15]. The approach described here contains hard evidence for QGA speedup, but
there still are some unanswered questions [4]. The proposed algorithm uses a number
of m register pairs:
 individual fitness

i i i
ψ φ ϕ= ⊗ (1)

where 0, 1i m= − . The first (left) register contains the individual, while the second
contains its corresponding fitness. Because we are dealing with quantum registers,
both φ and ϕ can encode a superposition of exponentially many individuals and
their corresponding superposed fitness values. Each time a new population (set of
individuals) is generated in the individual register, the corresponding fitness is com-
puted and stored in the fitness register. Of course, if the fitness register is measured
then, due to entanglement [10], the result is only one of the superposed values; in the
individual register will remain superposed the individuals that give the measured
fitness. Fitness register measurement is a crucial element in developing QGAs [15].
For the general expression of the pair register (N-qubit for the individual register and
M-qubit for the fitness register) given in (2) the measurement of the second register
(y) will have r as result with probability (3).

2

,

2 1 2 1 2 1 2 1

0 0 0 0
, , with 1

N M N M

x y x yi x y x y
c x y cψ

− − − −

= = = =
= =∑ ∑ ∑ ∑ , (2)

 () 2

,

2 1

0

N

x r
x

P r c
−

=
= ∑ (3)

 The post-measurement state of the pair register will be:

()

1
,

2 1

0
,

N

r xi P r x
c x rψ

−

=
= ∑ r (4)

Due to the fact that an individual cannot have more than one fitness, it is obvious that,
if individual u has a fitness value v, then , 0u yc = for all y ≠ v.

 The QGA, as described in [15], is presented in the following pseudo code:

Genetic Algorithm Running on a Quantum Computer (QGA)

1. For i:=1 to m prepare individual

i
φ as superpositions of in-

dividuals and compute the corresponding fitness pair

register
fitness

i
ϕ (the outcome will be a set of m super-

positions of fitness values).
2. Measure all fitness registers.
3. Repeat

a. Selection according to the m measured fitness
values.

b. Crossover and mutation are employed in order
to prepare a new population (setting the m in-
dividual registers).

c. For the new population, the corresponding fit-
ness values will be computed and then stored
in the fitness registers.

d. Measure all fitness registers
 Until the condition for termination is satisfied.

 Reference [4] provides analysis and critique for the above presented algorithm.
The identified advantages of using QGAs over the classical GAs, which are drawn
from the quantum computational features, are :
− Due to the superposition of individuals (i.e. basis states) that is stored in the indi-

vidual register, the building block [4] could be crossed not by just one individual,
but by a superposition of exponentially many individuals. Thus, the selection of a
new population is made with the contribution of many attraction pools.

− In quantum computation true random numbers can be generated. It was proven
that a GA with a true random number generator will outperform a pseudo-
random solution, which is the only possibility in classical computation [14].

The questions that remain open are:
− How is it possible to build the crossover operator in quantum computation?
− How is it possible to implement the fitness function on a quantum computer?
− How can the correlation be maintained – by using the entanglement – between

the individual register (superposed) basis states and the (superposed) fitness val-
ues from the fitness register?

Although the advantages appear to be substantial, one can easily argue that the
power of quantum computation is not sufficiently used by this approach. However,
some of the opened questions have been addressed in reference [4]. Giraldi et al.
developed a mathematical formalism in order to avoid misinterpretations regarding
the last question. The second question is also addressed by defining quantum genetic
operators. The proposed formalism establishes the necessary correlation between the
fitness and the individual registers, which cannot be accomplished with the QGA
construction provided in [15].

2.2 Mathematical Formalism

The QGA formalism uses m quantum register pairs (N-qubit individual register and
M-qubit fitness register,) as presented in Section 2.1. Also, in order to achieve proper
correlation between the individual and its fitness value, the fitness function must be
chosen so that it is a “quantum function” as defined by [11], hence a pseudo-classical
operator with a corresponding Boolean function: , :{0,1} {0,1}N Mf →

: 0 (fU x x f x⊗ → ⊗) if x is a basis state. When acting on a superposition,
the unitary operator corresponding to function f will dictate the following mapping:

2 1 2 1 2 1

0 0 0
: 0 () ,

N N N

f x x x
x x x

U a x a x f x a x f x
− − −

= = =
⊗ → ⊗ =∑ ∑ ∑ () (5)

An important aspect regarding the pseudo-classical Boolean functions is that they are
universal (i.e. any computational function can be represented in such a form), and

easy to be implemented as gate networks. In fact, due to their universality, Boolean
functions form the backbone of the classical computation’s circuit model.

The QGA algorithm, after adopting Giraldi’s formalism can be rewritten as in the
pseudo code below.

Genetic Algorithm Running on a Quantum Computer (QGA) – with proper formalism

1. For i:=1 to m set the individual-fitness pair regis-

ters as
1

1

0

1 0
n

ind fit

i i
u

u
n

ψ
−

=

= ⊗∑ i

2

(a superposition of n in-

dividuals with 0 Nn≤ ≤).
2. Compute the fitness values corresponding to the in-

dividual superposition, by applying a unitary trans-
formation

fitfU (corresponding to pseudo-classical Boo-

lean operator). For i:=1 to m do fit :{0,1} {0,1}Nf → M

fit

12 1
fit

0

1 ()
indn fit

fi i u i
U u f

n
ψ ψ

−

=
= = ⊗∑ i

u

3. For i:=1 to m measure the fitness registers, obtain-
ing the post-measurement states (we suppose that

i
y

is measured):
3

{0,1, , 1}
1 ind fit

v ni i i
i

v y
k

ψ ∈ −= ⊗∑ … i with k values

in {0 to satisfy , , 1}n −… fit ()f v y= .
4. Repeat

a. Selection according to the m measured fitness
values

i
y .

b. Crossover and mutation are employed in order
to prepare a new population (setting the m in-

dividual registers
ind

i
u).

c. For the new population, the corresponding fit-
ness values will be computed and then stored

in the fitness registers(fit () fit

i
f u).

d. Measure all fitness registers
 Until the condition for termination is satisfied.

 Besides the necessary formalism, reference [4] also provides some insight
regarding the implementation of the genetic operators in the quantum computational
environment. These considerations lead towards two main implementation problems:
α) the number of all valid individuals is not always a power of 2, which is the total
number of basis states;
β) crossover implementation is difficult and requires a much thoroughly
investigation, including quantum computation architectural aspects [12].

3 A New Approach

An observation concerning the individual-fitness quantum register pair is that all the
possible valid individuals (n) can be encoded in the same quantum state
superposition, which has a total of 2N possible basis states (2Nn ≤). If we can figure
out a method of measuring the highest fitness value from the fitness register, then by
measuring the individual register we will get that corresponding individual (or one of
them, if several have the same highest fitness value).

Approaching the QGAs in this manner renders genetic operators as no longer nec-
essary, as long as finding the maximum has an efficient solution. This effectively
leads to solving problem β).

Because the individual is encoded on N qubits, we have a total of 2N basis states
which can participate in the superposition. It is possible that not all of these basis
states will encode valid individuals (problem α); the proposed method relies on defin-
ing some constrains regarding the fitness function and the fitness value format, with-
out losing the generality of the solution. We will consider the fitness function as a
Boolean pseudo-classical unitary operator Uf (characterized by)
which can be also applied to non-valid individuals. The fitness value space

:{0,1} {0,1}N Mf →

{0,1}M can be split, so that a distinct subspace is allocated to the fitness values corre-
sponding to valid individuals and another distinct subspace corresponds only to non-
valid individuals. This enables us to concentrate only on processing states that corre-
spond to valid individuals (Section 3.2 further elaborates on this particular aspect).

The method of finding the highest fitness value is inspired from efficient quantum
algorithms for finding the maximum [1][3]. Finding the best fitness value is equiva-
lent to marking the highest classical state that is superposed in the fitness register
state or, in other words, the highest basis state with non-zero amplitude. Basically, the
proposed methodology relies on reducing the highest fitness value problem to
Grover’s algorithm. In order to do so, special oracle and fitness value format are
defined. Section 3.1 presents the quantum algorithm for finding the maximum [1],
Section 3.2 presents details for oracle implementation and fitness register structure,
while Section 3.3 provides our adaptation of the algorithm in order to find the best
value in the fitness register.

3.1 Computing the Maximum

The minimum/maximum finding quantum algorithms [1][3] are inspired from the
classical “bubble sort” algorithm, but their complexity in quantum version is (nO) .

The quantum algorithm for finding the maximum takes an unsorted table of m ele-
ments as input, in order to return the index of the maximum value element. By adopt-
ing the formalism from [1], we have a pool []P i of m elements (0, 1i m= −) which

will be processed in order to obtain the index of the maximum element (k []P k).
The Grover’s algorithm can be used with a special oracle that “marks” all the basis
states greater than some given value j:

 [] []1 if
()

0 otherwisej

P i P j
O i

⎧ >
= ⎨
⎩

 (6)

Therefore, the resulted algorithm will have the form of the following pseudo code:

Quantum Algorithm for finding the maximum from an unsorted table of m elements

1. Initialize k:=P[r]; 0≤r≤m-1 and is randomly chosen
2. Repeat (mO) times

a. Set two quantum registers as 1

0
1

m

i
m iψ

−

=
= ∑ k

b. Use Grover’s algorithm for finding marked
states from the first register (i.e. those
which make =1) ()kO i

c. Measure the first register. The outcome will
be one of the basis states that are > k. Let
the measurement result be x. Make k:=x.

3. Return k as result. It is the index of the maximum.

The complexity analysis performed in [1] reveals the fact that this algorithm will find
the index of the maximum in 13.6 m steps, with an error rate smaller than1 2 .

3.2 The Oracle

In order to deal with problem α) (see Section 2.2), we have to adopt a constraint,
which does not restrict the generality of the fitness functions. If we consider the ordi-
nary fitness function fitf (which applies only on the valid individuals)

, it is Boolean (and therefore universal), with a straightforward
correspondence to the unitary representation

fit :{0,1} {0,1}Nf → M

fitfU [11]. The modified fitness function

will accept invalid individuals as argument, and the returned values will belong to
distinct areas, corresponding to valid or invalid individuals. This can be achieved by
defining mod 1

fit :{0,1} {0,1}N Mf +→ as:

 (7) mod
fit

0 {0,1} if is a non-valid individual
()

1 {0,1} if is a valid individual

M

M

x
f x

x
⎧ ×

∈⎨
×⎩

The fitness values are encoded by the qubits in a modified fitness register, which
has a (M+1)-qubit size. The valid individuals always produce fitness values with the
most significant qubit being ‘1’; a ‘0’ value for the most significant qubit in the fit-
ness register indicates the correspondence to a non-valid individual, as presented in
Fig. 1 (quantum state matrix representation is used).

Fig. 1. Basic idea for fitness function construction: when is applied to valid individuals it pro-
duces a value in the valid area (upper half – 10...00 11...11÷) of the fitness register,
whereas when applied to invalid individuals the corresponding values in the fitness register will
always be in the invalid area (lower half – 00...00 01...11÷).

Another implementation-related problem concerns the oracle described by (6). We
propose a solution that uses two’s complement number representation [13] for mark-
ing the states that have a value greater than a given , 0j j∈ > . As a consequence,
the fitness register will have the form from Figure 2. The oracle processes all the
fitness register qubits except the most significant (v), which indicates if the value
represented by the other qubits belongs to a valid individual or not. All value qubits
(0mf f…) in the fitness register encode two’s complement positive integers as fitness
values. The oracle adds to the fitness register, therefore the basis states (from
the state output by the quantum adder [20]) greater than j will always
have (see the oracle implementation from Fig. 3.) For the solution in Fig. 3
we used 2 negation gates (denoted with ‘x’) and 1 XOR gate [2][10]. The architec-
tures for the quantum arithmetic circuits, including the adder/subtractor, are presented
in [20]. Only the qubits containing the result of the arithmetic function (

(1)j− +

'Mf = 0

0' 'Mf f…)

are used by the Grover iteration circuit [5][10] in order to find one of the marked
basis states.

Fig. 2. The format of the fitness register, for the two’s complement approach of ora-
cle implementation.

Fig. 3. Oracle implementation for a fitness register having the structure from Fig. 2.

Although the oracle uses two’s complement addition (which means that we will
have to change the fitness values in the superposition), the correlation between the
individual and the fitness registers is not destroyed, because the addition is a pseudo-
classical permutation function [11][20]. However, the Grover iteration will find as a
marked basis state 0' 'Mp f f= … , with 0, ' , ' {0,1}Mp f f∈ ∈… , which is given

by (1)p q j= − + , for and l∈ 0Ml f f= … , with 0 {0,1}Mf f ∈… . This

means that, after measuring p , we have to add j+1 to this value in order to have the
correct desired basis state (>j).

3.3 Reduced Quantum Genetic Algorithm

Having a fitness register as defined in the previous subsection, the corresponding
fitness function, and the specially defined oracle, we are able to provide the pseudo-
code that corresponds to running a Genetic Algorithm in the quantum computational
environment. It is called reduced Quantum Genetic Algorithm (rQGA) because it uses
only one population (encoded in just one quantum state), consisting of all possible
individual binary representations (that correspond to valid and invalid individuals).

Crossover and mutation operators are not used for finding the highest fitness value
(they are not required in a quantum context), which is obtained by employing
Grover’s algorithm.

The algorithm listed below is inspired from the quantum maximum algorithm from
Section 3.1. The initial max value must obey the 12 max 2M M+ 2 1+≤ ≤ − relation, so
that the search for the highest fitness value will take place only in the valid fitness
area. We have a number of (m∈� O)N pair registers (individual-fitness), where the
individual register is on N qubits, and the fitness register on M+2 qubits.

Reduced Quantum Genetic Algorithm

1. For i:= 0 to m-1 set the pair registers as
2 1

1

0

1 0
2

N
ind fit

i iN
u

uψ
−

=

= ⊗∑ i

2. For i:= 0 to m-1 compute the unitary operation cor-
responding to fitness calculation

fit

2 12 1
fit

0

1 ()
2

N ind
fit

fi i N u i
U uψ ψ

−

=
= = ⊗∑ i

f u

3. max:= random integer, so that 2M+1≤max≤2M+2-1
4. For i:=0 to m-1 loop

a. Apply the oracle. Therefore, if

fit () maxfit

i
f u > then corresponding fit () max fit

i
f u −

basis states are marked
b. Use Grover’s algorithm for finding marked

states in the fitness register after applying
the oracle. We find one of the marked basis

states fit () max fit

i
p f u= − , with fit () max 0f u − ≥

c. max:=p+max+1
5. Having the highest fitness value in the 1

fit

m−
• regis-

ter, we measure the
1

ind

m−
• register in order to obtain

the corresponding individual (or one of the corre-
sponding individuals)

4 Conclusions

This paper described a methodology for running Genetic Algorithms on a Quantum
Computer. By taking advantage of the quantum computation features, all the possible
chromosome binary representations can be encoded in just one individual quantum
register. This register is correlated with its pair (fitness) register, which contains a
superposition of all corresponding fitness values. Due to quantum mechanical proper-
ties, measuring the highest fitness value in the fitness register, leads to a post-

measurement state of the corresponding individual register that contains superposed
basis state(s) encoding the individual(s) with the highest fitness.

Therefore, the initial problem is reduced to finding the best fitness value without
destroying the individual-fitness register correlation. This objective is achieved by
adapting an existing quantum algorithm for finding the maximum. Without loosing
the generality of the solution, the adaptation requires that a specific structure be
adopted for the fitness register, and a special oracle be defined by employing two’s
complement integer representation. As a result, the problem of finding the highest
fitness value can be solved by Grover’s algorithm without employing any genetic
operators such as crossover and mutation.

Because the complexity of our algorithm adaptation is identical with its original
form, and based on the analysis provided by [1], we reached the conclusion that any
GA can be performed on a Quantum Computer in (NO) steps (Grover iterations in
our case). This consequence broadens the area of computational problems where the
quantum solutions outperform the classical ones.

References

1. Ahuja, A., Kapoor, S: A Quantum Algorithm for Finding the Maximum. ArXiv:quant-
ph/9911082 (November 1999)

2. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D., Margolus, N., Shor, P., Sleator, T.,
Smolin, J., Weinfurter, H. Elementary gates for quantum computation. Phys. Rev. A 52,
3457-3467 (1995).

3. Durr, C., Hoyer, P.: A Quantum Algorithm for Finding the Minimum. ArXiv:quant-
ph/9607014 (July 1996)

4. Giraldi, G.A., Portugal, R., Thess, R.N.: Genetic Algorithms and Quantum Computation.
ArXiv:cs.NE/0403003 (March 2004)

5. Grover, L.: Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev.
Lett. (79), pp. 325-328, (1997).

6. Han, K-H., Kim, J-H.: Genetic Quantum Algorithm and its Application to Combinatorial
Optimization Problem. In Proc. of the 2000 Congress on Evolutionary Computation, cite-
seer.nj.nec.com/han00genetic.html, (2000)

7. Han, K-H., Kim, J-H.: Quantum-Inspired Evolutionary Algorithm for a Class of Combinato-
rial Optimization. IEEE Transactions on Evolutionary Computation, vol. 6, No. 6, pp.580-
593 (2002)

8. Lukac, M., Perkowski, M., Goi, H., Pivtoraiko, M., Chung, H.-Y., Chung, K., Jeech, H.,
Byung-Guk, K., Yong-Duk, K.: Evolutionary Approach to Quantum and Reversible Circuits
Synthesis, Artificial Intelligence Review, Vol. 20 , Issue 3-4, pp. 361-417 (2003)

9. Narayanan, A., Moore, M.: Quantum-Inspired Genetic Algorithms. IEEE International Con-
ference on Evolutionary Computation (ICEC-96), Nagoya, Japan (May 1996) 61-66

10. Nielsen, M.A., Chuang, I.L. Quantum Computation and Quantum Information. Cambridge
University Press (2000)

11. Omer, B.: Quantum programming in QCL. Technical Report, Institute of Information Sys-
tems, Technical University of Vienna (2000)

12. Oskin, M., Chong, F., Chuang, I.: A Practical Architecture for Reliable Quantum Com-
puters. IEEE Computer, 35(1): 79-87 (2002).

13. Parhami, B.: Computer Arithmetic. Algorithms and Hardware Designs., Oxford University
Press (2000)

14. Rylander, B., Soule, T., Foster, J.: Computational complexity,genetic programming, and
implications. Proc. 4th EuroGP, pp . 348-360 (2001).

15. Rylander, B., Soule, T., Foster, J., Alves-Foss, J.: Quantum Evolutionary Programming. In
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001),
Morgan Kaufmann (2001) 1005–1011.

16. Shor, P.W.: Algorithms for Quantum Computation: Discrete Logarithms and Factoring.
Proc. 35th Symp. on Foundations of Computer Science, pp.124-134 (1994).

17. Spector, L., Barnum, H., Bernstein, K.J., Swamy, N.: Quantum Computing Applications of
Genetic Programming. In Advances in Genetic Programming, volume 3. (1999)

18. Spector, L., Barnum, H., Bernstein, K.J., Swamy, N.: Finding a Better-than-Classical Quan-
tum AND/OR Algorithm Using Genetic Programming. In Proceedings of 1999 Congress of
Evolutionary Computation, Piscataway, NJ, IEEE Press vol 3 (1999) 2239-2246

19. Spector, L.: Automatic Quantum Computer Programming: A Genetic Programming Ap-
proach, Kluwer Academic Publishers, Boston, MA, (2004).

20. Vedral, V., Barenco, A., Ekert, A: Quantum Networks for Elementary Arithmetic Opera-
tions. quant-ph/9511018, (1996).

