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1 Introduction 

Ever since digital systems were created there were problems in making sure 
that the systems are working correctly, i.e. the results offered by the machines are 
accurate and correct. 

With ever growing computing power and memory size this issue has become 
of great importance. Given the fact that in the last years memory size and speed 
were increased considerably and also the memory in a computing system accounts 
for somewhere about 50% of the power that the system uses, and taking into 
account Moore’s law (the number of transistors that can be placed inexpensively on 
an integrated circuit doubles approximately every two years) it is imperative that 
the memory works correctly and without faults. 

The doctoral program addresses the domain of Computer Science, with 
emphasis on Computer Hardware Design and Built-In Self-Test/Repair. In the last 
few decades the main focus in computer systems has shifted from performance 
towards reliability, yield and robustness. As memory systems continue to decrease 
in size an increase in capacity, the probability of hard, permanent faults increases, 
especially in SRAM cells [1]. Due to this fact the usual method: using spare rows or 
columns, for preventing hard faults can become obsolete [1] [2]. The hard or 
permanent errors can appear due to process variation [1] [3] and aging [4]. 

My work focuses on improving the reliability and yield of set associative 
cache memories. In order to address this issue first we will need to present the 
basics of cache memories, memory testing, built-in self-test solutions and graceful 
degradation solutions. 

We propose a new method that can be implemented on any set associative 
cache memory and that provides an increase in reliability, yield and functioning time 
of the memory chip. All of this benefits will be at only a small cost in performance, 
due to the fact that it is a case of graceful degradation [5] [6] [7]. The increase in 
reliability, yield and functioning time is achieved by removing from use any faulty 
cell that has been diagnosed as an incurring hard error [8]. The small cost in 
performance is achieved from the reorganization of the memory cell array, this is 
done both for maintaining a high reliability, yield and functioning time of the 
memory chip. Also it is done for maintaining a relatively high performance of the 
memory, by reducing the number of misses and increasing the number of cache 
hits. To this end, we will assume that the cache memory is equipped with a 
concurrent built in self-test mechanism capable of detecting the hard error that may 
appear during the use of the chip and also during the production stage [8].  
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2 Memory Faults and Testing 

2.1 Basic notions and concepts on faults and dependability 

In this section we will start by giving some general definitions on faults, 
errors, failures; also the basic means for fault detection, correction and fault 
tolerance. 

2.1.1 Failures, Errors and Faults 

A system is an entity that is interacting with other entities, the other entities 
may be: humans, other entities, software, hardware, and the external world or 
physical world [9]. The function of a system is described by the functional 
specification, and it is what the system is intended to do in terms of functionality 
and performance [9]. The service that the system is delivering is its behavior as it is 
perceived by the user, where a user is another system, which receives the service 
provided by the first system.  

In order to be able to define faults, errors and failures we must first state 
what a correct service of a system is. A system is said to deliver a correct service 
when the service implements the system function. A failure or a system failure is an 
event that happens when the delivered service deviates from correct service [9]. A 
system fails in one of two cases: either the specification did not adequately describe 
the system function; or because it doesn’t comply with the functional specification 
[9]. A service failure is a transition from correct service to incorrect service [9]. A 
service outage is the period of delivering an incorrect service, a service restoration 
is the transition from incorrect service to a correct service [9]. 

When a system deviates from the correct service state the deviation is 
called an error. The hypothesized or adjudged cause of an error is called a fault [9]. 
A fault can be either external or internal of the system. An error is the part of the 
total state of the system that can lead to its subsequent service failure [9]. A fault is 
active when it causes an error; otherwise it is called dormant. Many errors don’t 
reach the system’s external state and cause a failure [9]. 

A degraded mode that still offers a subset of needed services to the user is 
when the functional specification of a system includes a set of several functions and 
the failure of one or more of the services implementing the functions may leave the 
system degraded [9]. The specification may identify several such modes, for 
example: limited service, slow service, emergency service, and others [9]. 

The manifestation and creation mechanism of faults, errors, and failures are 
depicted in Figure 2.1, these mechanism presented in Figure 2.1 enable the “chains 
of threads” to be completed, as illustrated in Figure 2.2. 



7 
 

 

Figure 2.1: Error propagation, from [9]. 

 

Figure 2.2: The fundamental chain of dependability and security threads, from [9]. 

Eight basic viewpoints classify all faults that may affect a system during its 
life, leading to elementary fault classes, as depicted in Figure 2.3. 

For a simpler representation we can group the combined fault classes, 
presented in Figure 2.4, into three groups [9]: 

- Interaction faults, that include all external faults 
- Physical faults that include all fault classes that affect hardware 
- Development faults that include all fault classes occurring during 

development 

2.1.2 Dependability and Security 

As presented in [9] there are two valid definitions of dependability, the first, 
and original definition of dependability is the ability of a system to deliver service 
that can justifiably be trusted. The other definition for dependability is the ability to 
avoid service failures that are more frequent and severe than is accepted. The latter 
definition is providing a criterion for making a decision if a system is dependable or 
not, while the first definition is stressing the importance of justification. 

According to [9] the dependability of a system is an integrating concept that 
includes the following attributes: 

- Availability 
- Reliability 
- Safety 
- Integrity 
- Maintainability 
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Figure 2.3: The elementary fault classes, from [9]. 

In the followings we will present the definition of security as illustrated in 
[9]. Security is a composite of the attributes of confidentiality, integrity, and 
availability, requiring the concurrent existence of: availability for authorized actions 
only; confidentiality; and integrity. In Figure 2.5 is summarized the relationship 
between security and dependability. 
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Figure 2.4: The classes of combined faults, from [9]. 

 

Figure 2.5: Dependability and security attributes, from [9]. 

The means to attain dependability and security are: fault prevention, i.e. a 
way to avoid the beginning or happening of faults; fault tolerance, i.e. a way to 
avoid, in presence of faults, the service’s failures; fault removal, i.e. a way to 
reduce the severity and number of faults; and fault forecasting, i.e. a way to 
approximate the current number, the future occurrence, and the likely 
consequences of faults. 

Before passing on to the next subsection we will present two more 
definitions of dependability as they appear in the ISO standards. The first one 
appears in [10]: the collective term used to describe the availability performance 
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and its influence factors: reliability performance, maintainability performance and 
maintenance support performance. The second definition is from [11]: the extent to 
which the system can be relied upon to perform exclusively and correctly the 
system task or tasks under defined operational and environmental conditions over a 
defined period of time, or at a given instance of time. The ISO definition, i.e. the 
first one, is focused mainly on availability [9]. Due to the unavoidable presence of 
faults, no system is totally available, safe, secure, or reliable [9]. 

2.1.3 Means to Achieve Dependability and Security 

From the means to achieve dependability and security listed in the previous 
subsection, in this section we will focus mainly only on fault tolerance and fault 
removal, the other two methods will be given only a short description. 

Fault prevention, as a way to avoid the beginning or happening of faults, is 
a part of general engineering [9], so it is mainly utilized by the manufactures in 
order to increase yield and causes of faults. The faults occurring in a system can be 
recorded by that system and used by the producer to eliminate the fault causes via 
process modification [12] [13]. 

Fault tolerance, which purpose is to avoid failures of the system, is 
implemented via error detection or correction and through system recovery [9] 
[14]. The techniques involved in fault tolerance are presented in Figure 2.6. 

The focus of this thesis will be on isolation of the faults and reconfiguration 
of the system afterward. Also for this we will need an error detection mechanism 
and to be more specific, a mechanism for concurrent fault detection, capable of 
detecting errors and even correcting some of them as they appear. We will also 
provide an option for diagnosis to be sent back to the manufacturer for future 
improvements to their products. 

Many approaches and schemes have been proposed over the decades for 
fault tolerance and for the many parts of fault tolerance. There exist a large number 
of synonymous for fault tolerance: self-repairing and self-healing are just two of 
them. Also in [15] the term recovery-orienting computing has been presented, this 
term defines a fault tolerant method for the goal of overall system dependability. 

The fault removal technique aims at reducing the number of faults and their 
severity. Hardware testing is mainly aimed at removing production faults [9]. An 
important part of fault removal is the fault removal during use. The fault removal 
during use aims at removing the faults without stopping the system for 
maintenance. Also this technique increases a system dependability and functioning 
time. This technique, along with fault tolerance is very useful when a proper 
maintenance of a system cannot be done, for example a deep space probe cannot 
be returned back to earth each time an error occurs, and so that system needs to 
have very efficient fault removal and fault prevention techniques in order to be able 
to function in an inaccessible, for maintenance, environment. 
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Figure 2.6: Fault tolerance techniques, from [9]. 

As a conclusion to this section Figure 2.7 shows a refined dependability and 
security tree, from the definitions and techniques presented in this section [9]. 

2.2 Cache memories 

Since our thesis describes a self-repair method for set associative cache 
memories, in this section we will provide a brief introduction that will contain the 
basics on cache memories. 

First of all we will start by presenting the memory hierarchy that is used in 
modern computers, Figure 2.8. In this hierarchy from top to bottom the storage 
devices get slower in speed, larger in capacity and cheaper in cost per byte. When 
computer system first started to develop only three levels of memory existed: CPU 
registers, DRAM or main memory, and the local hard disk [16]. Since the 1980’s 
when the speed of the CPU registers and the speed of the main memory were 
almost equal, the gap between these two elements of a computer system has 
increased constantly, see Figure 2.9. 
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Figure 2.7: A refined dependability and security tree, from [9]. 

Because of this gap in performance and speed between the main memory 
and CPU registers, in order to increase the performance of the whole computer 
system, producers had to introduce a new level in the memory hierarchy, an SRAM 
memory type, called cache level 1. This level 1 cache was able to increase 
performance but not for too long, because the gap, in speed, between this level and 
the main memory also started to increase. A new cache level was needed, the level 
2 cache. In the last few years producers needed again to introduce the so called 
level 3 cache memory, and probably in another three or four years we will see the 
level 4 and so on. 
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Figure 2.8: The memory hierarchy, from [16] 

 

Figure 2.9: The gap in performance between memory and CPU, from [17] 

So in order to conclude, a definition for cache memory: is a SRAM type 
memory placed between CPU registers and main memory (DRAM), it is superior in 
speed, compared to the main memory, but has a lower capacity. The cache memory 
contains copies of the locations in the main memory in order for the system to gain 
in speed and performance. So every byte that is processed by the CPU is passed 
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through the cache system, for this reason the dependability of the cache system 
becomes crucial. 

2.2.1 Cache memory organization 

Usually the level 1 cache is located on the same chip as the CPU, and can be 
accessed in one or two clock cycles. The cache level 2 is usually placed outside the 
CPU chip, and so it has greater access times, to the order of 10 clock cycles [16]. 
Figure 2.10 shows a typical structure for a computing system with a two level cache 
system. 

 

Figure 2.10: Typical structure for two level cache, from [16]. 

Now we will take a closer look at what is inside a cache memory. Before we 
start we must state the number of bits m that uniquely identifies every line of 
memory in that computer system. This m bits permit access to M=2𝑚 address lines 
or memory locations in the system. A cache memory for this system will have S=2𝑠 
cache sets, within each of these sets there will be a number of E cache lines, each 
line will have a data block of B=2𝑏 bytes, t=m–(b+s) tag bits, that are used to 
uniquely identify the block stored in the cache line, and one valid bit that is used to 
indicate if the cache line either has or hasn’t significant information [16]. An 
example of such a cache memory is illustrated in Figure 2.11. 
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Figure 2.11: General organization of a cache memory, from [16]. 

Usually a cache memory’s organization and size can be characterized by 
these four parameters: S, E, B, and M. Figure 2.12 illustrates the organization of the 
address of such a cache memory with the parameters discussed above. 

 

Figure 2.12: Address organization of a cache memory, from [16]. 

A summary of the most usual cache memory parameters is presented in 
Figure 2.13. 
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Figure 2.13: Cache parameters, from [16]. 

This concludes the present subsection of our thesis; we will not go any 
further in detail, in presenting the organization of cache memories, for this we will 
refer the reader to [16] [17]. 

2.2.2 Set associative caches 

The most usual method to group cache memories is after E, the number of 
lines in each set of the cache memory. After this classification the cache memories 
are split into three major groups: direct mapped cache memories, where E=1; set 
associative cache memories, where E>1, and also S>1; and in the last group are 
fully associative cache memories where S=1, i.e. there is only one set and a 
location from the main memory can be mapped in any line without restriction. An 
example of the differences in mapping between the three groups of cache memories 
is depicted in Figure 2.14. 

We will start by providing the reader with a short description of direct 
mapped cache memories; our focus will mainly be on set associative cache 
memories, them being the object of this thesis. For a more detailed approach to 
direct mapped and fully associative cache memories the reader is referred to [16] 
[17]. 
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Figure 2.14: Mapping differences between groups of caches, from [17]. 

As stated before a direct mapped cache memory is a cache memory that 
only has one line per set, i.e. E=1. Such a memory is depicted in Figure 2.15. This 
type of cache memory is the simplest and easiest to understand [16]. 

 

Figure 2.15: Direct mapped cache, from [16]. 

Set associative cache memories are those caches for which E>1, and also 
S>1, i.e. there is more than one line in each set of the memory. This provides an 
advantage from the direct mapped caches because a location from the main 
memory can be mapped in more than one place in the cache. This is being 
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particularly useful when working with array that have two or more dimensions. In 
Figure 2.16 is presented a 2-way set associative cache memory. 

 

Figure 2.16: Organization of a 2-way set associative cache memory, from [16]. 

The access in a set associative cache memory is similar as in any other type 
of memory. First the set is selected as shown in Figure 2.17. After the set is 
selected the second task is to see if any line in that set matches the tag of the 
address requested by the CPU. If we have a line matching, which is also known as a 
cache hit, we proceed to the extraction of the word from the cache block. This is 
shown as an example in Figure 2.18. 

 

Figure 2.17: Set selection in a set associative cache memory, from [16]. 

We will conclude this subsection with an example of a set associative cache 
memory from the microprocessor Alpha 21264. This is a 2-way set associative cache 
that contain 64KB of data, with the block size of 64 bytes. The organization of this 
memory is presented in Figure 2.19. 
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Figure 2.18: Line matching and set selection in a set associative cache memory, from [16]. 

 

Figure 2.19: The organization of the cache in Alpha 21264 microprocessor, from [17]. 

2.3 Memory testing 
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In this section we will provide our reader with the basics on functional 
models of memory chips, the errors that can appear in accordance with these 
models, and also some test methods that are used for memory testing. 

2.3.1 Functional RAM chip models and faults 

We will first present the functional model for a RAM memory with all of the 
main components, Figure 2.20 illustrates this. 

 

Figure 2.20: DRAM memory model, from [18]. 

Since we will be working with cache memories that are SRAM memory 
types, from the DRAM memory model we will exclude the refresh logic, since the 
SRAM is non-volatile. Figure 2.21 shows a memory model for a SRAM type of 
memory. 

Some of the functional faults that can appear in a RAM memory are 
illustrated in Table 2.1, the list is not complete. Note that we refer to a cell as an 
entity that stores data, and to a line as an entity that is used to transmit data from 
one entity to another. 

As can be seen from Table 2.1, the list not being complete, the number of 
functional faults is very large. Given the large number of functional faults and the 
fact in order to test for each individual group of faults can be very expensive and 
very time consuming we can start grouping some of the elements of the memory as 
shown in Figure 2.22. As can be seen in Figure 2.22 the address latch, column 
decoder, row decoder and the connections between them are grouped in the 
address decoder, the memory cell array remains unchanged and the read/write logic 
has the following elements: write driver, sense amplifiers, data register and the 
connections between them. 

The reduced functional model from Figure 2.22 generated the following 
types of errors: stuck-at faults, transition faults, coupling faults and neighborhood 
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pattern sensitive faults. Table 2.2 presents the reduced functional faults. As can be 
seen in this table the number of potential types of faults is reduced considerably, 
leaving only four categories of faults, that include all the other types of faults. This 
is a clear advantage, because with a smaller number of functional faults it is easier, 
cheaper and faster to test the memory chips. 

 

Figure 2.21: SRAM memory model, from [18]. 

Table 2.1: RAM functional faults, from [18]. 

 Functional Fault 
a Cell stuck 
b Driver stuck 
c Read/write line stuck 
d Chip-select line stuck 
e Data line stuck 
f Open circuit in data line 
g Short circuit between data lines 
h Crosstalk between data lines 
i Address line stuck 
j Open in address line 
k Shorts between address lines 
l Open decoder 
m Wrong address access 
n Multiple simultaneous address access 
o Cell can be set to 0 but not to 1 (or vice versa) 
p Pattern sensitive cell interaction 
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Figure 2.22: Reduced functional model, from [18]. 

Table 2.2: Reduced functional faults, from [18]. 

1.   SAF Stuck-At Fault 
2.   TF Transition Fault 
3a. CF Coupling Fault 
3b. NPSF Neighborhood Pattern Sensitive Faults 

 
We can furthermore group the type of faults from Table 2.2 into three 

categories: faults involving one cell, faults involving two cells, and faults involving n 
cells. The classification is as follows [18]: 

• Faults involving one cell: 
o Stuck-At Faults (SAF) 
o Transition Faults (TF) 

• Faults involving two cells: 
o Coupling Faults (CF) 

• Faults involving n cells: 
o The n cells are allowed to be located anywhere in the 

memory. These are the n-coupling, bridging and the state 
coupling faults 

o The n cells are clustered together in a physical 
neighborhood. These are the Neighborhood Pattern Sensitive 
Faults (NPSF) 

Table 2.3 describes the standard notations used when describing faults and 
types of faults as presented in [18]. 

This concludes this subsection of our thesis. In the following subsection we 
will provide the reader with a short description of each category of the reduced 
functional faults.  
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Table 2.3: Standard fault notations, from [18]. 

0 denotes that the cell is in a logical state 0 
1 denotes that the cell is in a logical state 1 
x denotes that the cell is in a logical state 𝑥, where 

𝑥 ∈ {0,1} 
↑  denotes a write 0 operation to a cell containing 1 
↓  denotes a write 0 operation to a cell containing 1 
↕  denotes a write �̅� operation to a cell containing an x 
→  denotes a write 0 operation to a cell containing an 0 
→  denotes a write 1 operation to a cell containing an 1 
⇒  denotes a write x operation to a cell containing an x 
∀  denotes any operation; ∀∈ {↑, ↓, ↕,→,⇒} 
<...> denotes a particular fault; “...” describes the fault 
<I/F> denotes a fault in a single cell 

        I describes the condition for sensitizing the fault: 
I∈ {↑, ↓, ↕,→,⇒}  
        F describes the value of the faulty cell: F∈ {0,1, ↑, ↓
, ↕} 

<I1, I2, …, In-1; 
In/F> 

denotes a fault involving n cells 
        I1,…, In-1 describes condition on the n-1 cells to 
sensitize the fault in cell n 
        In describes the condition for the fault to be 
sensitized in cell n. It may be empty (In=[]) in which 
case In/F=[]/F can be written as F 

 

2.3.2 Reduced functional faults 

Stuck-At Faults 
 
The most common definition of a stuck-at fault is: the logic value of a stuck-

at line or cell has always the same logic value, either 0 (SA0 faults) or 1 (SA1 
faults) [18]. The notation for a SA0 fault is < ∀/0 >; and for a SA1 fault < ∀/1 >. A 
test that can detect and locate all stuck-at faults in a memory chip has to read a 0 
and a 1 from each memory cell [18]. 

Figure 2.23a shows a state diagram for a healthy memory cell. In Figure 
2.23b and Figure 2.23c are shown the state diagram for SA0 and SA1, respectively. 
A cell has the logic value 0 in state 0 (S0), and the value 1 in the state S1. 
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Figure 2.23: State diagram for SAF, from [18]. 

Transition Faults 
 
The definition of transition faults is: A cell or line which fails to undergo a 

0 → 1 transition when it is written is said to contain an up transition fault; similarly, 
a down transition fault is the impossibility of making a 1 → 0 transition [18]. The 
notation for the up TF, as shown in [18] is <↑/0 >, and for the down TF <↓/1 >. 

The transition faults are a special case of stuck-at faults, in order for a 
better understanding of this we will provide the reader with a short example [18]. 

 
Example 
 
Figure 2.24 shows a Set/Reset (S/R) flip-flop with the Reset stuck-at 0. In 

this situation the fault may be classified as a <↑/1 > fault because the S/R flip-flop 
will fail to make a 1→ 0 transition. 

 
Figure 2.24: A flip-flop as a model for a transition fault, adapted from [18]. 

Transition faults cannot be treated as SAx faults because other faults, such 
as coupling faults, may bring the cell back into state 𝑥� . So in order to test for 
transition faults we have to use a slightly more complex algorithm. A test that has 
to detect and locate al TFs, should satisfy the following requirements, according with 
[18]: Each cell must undergo a ↑ transition (state of the cell goes form 0 to 1), and 
a ↓ transition (state of the cell goes from 1 to 0), and be read after each transition 
before undergoing any further transitions. 

The state diagram of a memory with a <↑/0 > transition fault is illustrated in 
Figure 2.25. The notations are the same as for the stuck-at faults. 



25 
 

 

Figure 2.25: State diagram for TF, from [18]. 

 
Coupling Faults 
 
Coupling faults are grouped according to these assumptions: 
1. A read operation will not cause an error. 
2. A non-transition write operation will not cause a fault. 
3. A transition write operation may cause a fault. 
The coupling faults that involve two cells, and that is used in [18] [19] [20] 

[21], has a definition as follows: a write operation which generates a ↑ or a ↓ 
transition in one cell changes the contents of a second cell. 

The coupling fault that involves two cells is a special case of the more 
general case k-coupling fault that involves k cells and is defined as follows: is the 
same as the two coupling fault, but in addition the transition is only performed when 
the other k-2 cells are in a certain state [20]. If there is no restriction on the 
placement of the k cells the k-coupling fault is very complicated to test for [22]. 

The two coupling faults can be grouped in two types: inversion coupling 
faults and idempotent coupling faults, which will be briefly discussed. Special cases 
of coupling faults are state coupling faults and bridging faults, for detailed 
perspective these types of coupling faults we refer our reader to [18]. 

The inversion coupling faults (CFin) has the following definition: a ↓ (or ↑) 
transition in one cell inverts the contents of a second cell [18]. 

A test that detects all CFins must satisfy the following: “for all cells which 
are coupled cells, each cell should be read after a series of possible CFins may have 
occurred (by writing into the coupling cells), with the condition that the number of 
transitions in the coupled cell is odd (i.e. the CFins do not mask each other)” [18]. 

The idempotent coupling faults (CFid) has the following definition: A ↓ (or ↑) 
transition in one cell forces the contents of a second cell to a certain value, 0 or 1 
[18]. 

A test that detects all CFids must satisfy the following: “for all cells which 
are coupled cells, each cell should be read after a series of possible CFids may have 
occurred (by writing into the coupling cells), in such, a way that the sensitized CFids 
do not mask each other” [18]. 

As a conclusion to the state coupling faults Figure 2.26 illustrates the state 
diagram of two good cells (a), the state diagram of a <↑; ↕> CFin (b); and the state 
diagram of a <↑; 1 > CFid (c). 
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Neighborhood Pattern Sensitive Faults 
 
The neighborhood pattern sensitive fault is a special case of the k-coupling 

fault, in the sense that the k-1 cells, beside the base cell are in the immediate 
vicinity of the base cell. In Figure 2.27 the NPSF terminology, as presented and 
used in [18], is depicted. There are three cases of NPSF: ANPSF (Active 
Neighborhood Pattern Sensitive Faults), PNPSF (Passive Neighborhood Pattern 
Sensitive Faults), and SNPSF (Static Neighborhood Pattern Sensitive Faults). In the 
following we will present a short description of each of these types of NPSF along 
with a testing requirement for each one, again for a more ample description we 
refer our readers to [18]. 

 

Figure 2.26: State diagrams involving two cells, from [18]. 
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Figure 2.27: NPSF terminology, from [18]. 

In ANPSF due to a change in the deleted neighborhood pattern the base cell 
changes its contents. The change in the deleted neighborhood is a transition while 
the rest of the deleted neighborhood cells and the base cells have a certain pattern. 
In order to detect and locate ANPSFs a test must satisfy the following requirement: 
“each base cell must be read in state 0 and in state 1, for all possible changes in the 
deleted neighborhood pattern” [18]. 

In PNPSF due to a certain neighborhood pattern the content of the base cell 
cannot be changed. In order to detect and locate PNPSFs a test must satisfy the 
following requirement: “each base cell must be written and read in state 0 and in 
state 1, for all permutations of the deleted neighborhood pattern” [18]. 

In SNPSF a state of the deleted neighborhood pattern forces the content of 
the base cell to a certain value. In order to detect and locate SNPSFs a test must 
satisfy the following requirement: “each base cell must be read in state 0 and in 
state 1, for all permutations of the deleted neighborhood pattern” [18]. 

With this we conclude the present subsection dedicated to describing the 
most important possible types of faults. The next and last subsection of this chapter 
is dedicated to describe some traditional tests and some march tests along with 
their test times. 

2.3.3 Traditional and March Tests 

In this subsection of our thesis we provide our reader with a brief 
description of the traditional test: zero-one, checkerboard, GALPAT and Walking 
1/0, sliding diagonal, and butterfly. Also we will provide a short description of the 
march test MATS and MATS+, concluding this subsection with a comparison 
between the traditional tests and a couple of march tests. Table 2.4 summarizes the 
notation used throughout this subsection. 
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Table 2.4: Notation and abbreviations used in memory testing 

B The number of bits (cells) in a memory word, thus the width of the memory 
N  The number of address bits; the number of addresses will thus be 2N 
n The total number of bits (cells) in the memory, which equals B∙2N 
k The size of the neighborhood 
A An address 
C A cell 
M A set of cells, words or addresses 
r A read (operation) 
w A write (operation) 

 
Zero-One 
 
This is the simplest test for a memory chip. It consists of writing 1s and 0s 

in the memory cell array. The algorithm consists of four steps, see Figure 2.28. This 
algorithm is also known as MSCAN (Memory Scan) [18] [23]. 

 

Figure 2.28: Zero-One test algorithm, from [18]. 

This test detects all SAF, and also it detects some TF, and some CF. The test 
has a length of 4 ∙ 2𝑁, and it is of order O(n) [18]. 

 
Checkerboard 
 
For this test we first need to split the memory in two groups: group 1 and 

group 2, in a checkerboard pattern, as shown in Figure 2.29. Figure 2.30 presents 
the algorithm of the checkerboard test. The fault coverage is similar with the zero-
one test, and also the number of operations is the same as the zero-one test, giving 
the checkerboard test an order of O(n) [18]. 
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Figure 2.29: Cell numbering for checkerboard algorithm, from [18]. 

 

Figure 2.30: Checkerboard algorithm, from [18]. 

 
GALPAT and Walking 1/0 
 
These two tests are similar, that is why we present them together. First the 

memory is filled with 1s (or 0s), except for one cell, called the base cell that has the 
opposite value. For both these tests the base cell covers the whole memory. The 
difference between these two tests appears when the base cell is read: in GALPAT 
the base cell is read after each cell is read, while in Walking 1/0 the base cell is read 
only once after all the other cells have been read. This is depicted in Figure 2.31. 
The fault coverage for both these test, according with [18] is: all SAF, TF, CF are 
detected and located. Note that the tests are performed twice once with a 0 
background and the second time with a 1 background. The order of both these test 
is O(n2) [18] [24]. 

 

Figure 2.31: Read actions for GALPAT and Walking 1/0, from [18]. 

 
Sliding Diagonal 
 
The sliding diagonal has been developed as a shorter alternative to GALPAT, 

so instead of a single base cell as in GALPAT the sliding diagonal test uses an entire 
diagonal of base cells, making it faster but less efficient. Figure 2.32 shows the read 
actions for the sliding diagonal test. As stated before the fault coverage is smaller 



30 
 

than the GALPAT: some CF are detected and located, but not all of them; also this 
test detects and locates all SAF and TF. Due to the fact that sliding diagonal uses an 
entire diagonal instead of a single base cell the time order of this test is reduced to 
O(n3/2) [18]. 

 

Figure 2.32: Read actions for sliding diagonal, from [18]. 

 
Butterfly 
 
The butterfly test has been designed in order to reduce even more the test 

time of the GALPAT test, but with the purpose to only find SAF [18]. We will not go 
in detail with this algorithm, providing only a very short description of the reading of 
the cells. From GALPAT, only the reading of the cells differs, in that only the 
neighboring cells with the base cell are read. So the algorithm can detect and locate 
all SAF. The test order of the butterfly is O(nlogn) [18]. 

Before moving on to MATS and MATS+ test we will make a short 
observation regarding all of the march type tests. These tests are called march test 
because they “march” throughout the memory. A march element as described in 
[18] is “a finite sequence of the operations applied to every cell in the memory 
before proceeding to the next cell”. The order of the addresses can either be 
increasing (⇑), decreasing (⇓), or unimportant (⇕). An example of a march element 
can be ⇓(w1,r1), that means that in every cell of the memory starting with the 
highest address and deceasing is first written a 1 and immediately is read a 1. 

 
MATS 
 
The MATS test or Modified Algorithm Test Sequence is the shortest march 

test [18], it detects all SAF. This test requires a number of 4n operations, having 
the test time order O(n). The basic scheme of the MATS test is illustrated in Figure 
2.33. 

 

Figure 2.33: MATS test scheme, from [18]. 

Looking at the MATS in comparison with Zero-One or Checkerboard, which 
have the exact same number of operations performed on the memory cell array we 
can see a net superiority of the MATS test in the fault coverage [18]. 
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MATS+ 
 
MATS+ is a special version of the MATS test, used when the technology of 

the memory chip is unknown [18] [25]. This test uses 5n operations, so has an 
order of O(n). The fault coverage is the same as the MATS test. The scheme of the 
algorithm is depicted in Figure 2.34. 

 

Figure 2.34: MATS+ test scheme, from [18]. 

We will conclude this section with a summary of the tests described in this 
section alongside with some other march tests described in [18]. This summary is 
presented in Table 2.5. As can be observed from Table 2.5 the test times for even a 
small memory chip can be very high. Also in order to be able to apply these tests 
there are necessary special equipment outside the memory chip, these test 
equipment are very expensive because they are usually used only in one generation 
of chips, needing change after each technological improvement. Also in the last 
years the size of the memory has increased considerably without a corresponding 
increase in speed, this making the tests lengthy and sometimes even obsolete. Due 
to these facts and many other disadvantages the producers have started exploring 
alternatives to the old testing methods, these alternatives have developed in a 
general method called Built-In Self-Test that is integrated on the memory chip and 
permits the test of the chip, only by adding some extra pins, without the special 
equipment, or with some equipment that permit the production cost to be reduced. 
The Built-In Self-Test methods along with others of similar type will be presented in 
the next chapter. 
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Table 2.5: Comparison of memory test algorithms, from [18]. 

Algorithm 
Fault Coverage Test Time 

AF SAF TF CF Others Order 1Mb 
Zero–One – L  – –     n 0.42s 

Checkerboard – L  – – Refresh    n 0.52s 
Walking 1/0 L L  L L Sense amplif. rec.    n2 2.5day 

GALPAT L L  L L Write recovery    n3 5.1day 
GLAROW LS L  L L Write recovery    n√𝑛 7.2day 
GLACOL LS L  L L Write recovery    n√𝑛 7.2day 

Sliding Diag. LS L  L –     n√𝑛 10s 

Butterfly – L  – –     2n 3.6m 
MATS DS D        n 0.42s 

MATS+ D D  – –     n 0.52s 
Marching1/0 D D  D –     n 1.5s 

MATS++ D D  D –     n 0.63s 
March X D D  D D Unlinked CFins    n 0.63s 
March C- D D  D D Unlinked CFins    n 1.0s 
March A D D  D D Unlinked CFs    n 1.6s 
March Y D D  D D Linked TFs    n 0.85s 
March B D D  D D Linked CFs    n 1.8s 

L=Locate    LS=Locate Some   D=Detect     DS=Detect Some 
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3 Built-In Self-Testing and Graceful 
Degradation 

Throughout this chapter we will discuss the various methods used for Built-
In Self-Test (BIST) for memory testing. Also we will provide a description of a 
method called graceful degradation, which, as its name suggests, allows the 
memory to continue functioning even after faults appear. 

3.1 Memory Built-In Self-Test 

We will start this section with a basic description of what BIST means and 
implies, and we will continue with a more detailed presentation of BIST methods 
used for memory testing. 

3.1.1 Introduction to BIST 

In the digital world everything eventually breaks down and stops functioning 
correctly. The most important thing to know is when to trust the result that a digital 
device provides to be correct and when not. The methods described in the previous 
section, though useful, are not practical because they need special equipment in 
order to be able to test a device. In order to eliminate this inconvenient the industry 
has provided a solution called Built-In Self-Test, which adds the extra logic needed 
for the test sequence on the chip of the circuit under test (CUT). The first digital 
systems to have a BIST were two Hewlett-Packard digital voltmeters, as described 
in [26]. The development cost and time increased by 1%, also there was a 1% 
increase in part costs, but the total costs dropped by 5% because the modularity of 
the system was no longer needed. Frohwerk describes in [27] a method for 
determining the correctness of a circuit by analyzing a signature. A signature is a 
statistical property of a circuit. In order to built BISTs for integrated circuits he 
applied the work of Peterson and Weldon [28] and Golomb [29] on error correcting 
codes and shift registers [30]. 

A digital system is diagnosed and tested during its lifetime on countless 
occasions. The tests and diagnosis must be quick and they need to have a very high 
fault coverage [30]. A way to ensure these restrictions is to specify a test as one of 
the system functions, so it becomes a self-test [30]. Many of the digital systems 
designed at AT&T around 1987 had self-tests, usually implemented in the software 
[30] [31]. Although this approach provided flexibility and its fault coverage and 
diagnosis weren’t as high as expected [30]. This led to the building of the self-test 
function into the hardware [32] [33]. The earlier in the design stage the testing is 
considered the more efficient it is and the more the cost is reduced, this is because 
of the reduced number of prototypes and re-fabrications that are needed. 
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In the last few years due to the large integration the need for testing is 
greater than ever, that is why the great majority of the manufacturers, if not all of 
them, use BIST methods on a very large scale. The BIST solutions for testing can be 
applied to any digital system, but due to the fact that in our thesis we only discuss 
memory testing we will stop with this general introduction of BIST here, refereeing 
the reader for a more detailed description to [18] [30] [34]. 

3.1.2 Memory Built-In Self-Test 

Random Access Memories (RAM) memories are perhaps the hardest 
elements in digital systems to test; this is because memory testing requires delivery 
of a huge amount of pattern stimuli to the memory. Also it requires the readout of 
an enormous amount of information [30].With the memory Design for Testability 
(DFT) the most time consuming part is implemented on-chip, and it reduces the 
order of test time by a magnitude order [18]. The area overhead for memory DFT 
for a 4Mb DRAM is 1% [35]. The area overhead for memory BIST can be expected 
at around 2% [30]. 

The most important difference between memory BIST and memory DFT is 
that the memory BIST is completely self-contained, which means that all the 
functions required for the BIST are contained in the chip such that the test can be 
performed autonomously [18]. For DFT parts of a test are implemented on chip, 
these are the ones that provide with the largest reduction in test time. So this way 
the inner loops of a test algorithm can be executed by the DFT on the chip, while 
the other parts of the algorithm are executed, by externally providing certain control 
and test data and/or observing certain response data [18]. This is why the test 
times are in favor of the BIST when compared to DFT [35]. 

The most important advantages of BIST are: the test time, which is 
minimized (i.e. it is from 2 to 3 orders of magnitude faster than the conventional 
tests [18]); and the test is completely contained on the memory chip. The 
disadvantages of the BIST are: the area overhead is larger than DFT, usually with a 
factor of 2 [18]; it is only capable of implementing the tests for which it was 
designed. 

The types of memory BIST are: 
• Concurrent BIST 
• Non-Concurrent BIST 
• Transparent Testing 

The concurrent BIST is a memory test mechanism where the memory can 
be tested concurrently with the normal system operation. This means that faults 
occurring during normal use of the memory can be detected, and depending on the 
complexity of the test even be corrected. For this type of BIST usually a form of 
information redundancy is used in the form of a parity bit or an error correcting 
code (ECC), which also increase the area overhead due to the extra information that 
has to be stored. The advantages for the concurrent BIST are that all faults, within 
the restrictions of the method used, are detected and/or corrected. This means that 
all permanent and transient faults are detected and/or corrected when they appear. 
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The disadvantages for the concurrent BIST are: the large area overhead 
needed, the performance penalty because of the constant need of checking the ECC, 
also the number and type of faults that can be corrected is limited, and so even if 
we have a complex concurrent BIST we cannot guarantee that the memory will be 
completely fault free. Note that the 100% certainty that the memory is fault free 
cannot be achieved by any kind of test. 

The non-concurrent BIST is a memory test mechanism that requires 
interruption of the normal system function in order to perform the testing. The 
original memory contents are lost. The advantages of this kind of BIST are: 
maximum freedom in the data pattern used, more complex fault models can be 
detected. The disadvantages of the non-concurrent BIST are: the faults not covered 
by the BIST algorithm are not detected; the transient faults that occur between 
BIST periods are not detected, so only the permanent faults can be detected by this 
kind of BIST. 

Transparent testing is a memory test mechanism that requires interruption 
of the normal system function for testing. The original memory contents are 
preserved in the memory after the testing is finished. Due to the fact that this is a 
particular method of non-concurrent BIST the advantages and disadvantages of the 
non-concurrent BIST also apply. 
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4 Self-Adaptive cache Memories 

In this chapter we discuss an original graceful degradation method applied 
to k-way set associative cache memories. The method is called “Self Adaptive cache 
Memories” (SAM); it works by removing the faulty locations from use, while 
reorganizing the memory to maintain a high performance. For the proposed 
contribution, the analysis provided herein reveals a significant reliability increase for 
the cache memory, while the entailed overhead remains small in comparison with 
the attained goals. 

4.1 Introduction 

As memory systems continue to decrease in size, the probability of hard, 
permanent faults increases especially in SRAM cells [1]. Due to this fact the usual 
method, using spare rows/columns, for preventing hard faults can become obsolete 
[1] [2].  The hard errors can appear due to process variation [1] [3] and aging [4]. 

We propose a new method called SAM (Self Adaptive cache Memories), 
which is used to disable from use the faulty cells that have been diagnosed as 
incurring hard errors. To this end, we will assume that the cache memory has a 
concurrent built in self-test (BIST) capable of detecting the errors may occur. Being 
a case of graceful degradation, this method will have a loss in performance because 
the size of the cache memory is decreasing [5] [6] [7]. The research presented 
herein aims at reducing that loss to a minimum by remapping some memory 
locations, and by the fact that the memory will be continuously adapting to new 
fault locations. 

4.1.1 L-Zone 

First we need an extra bit for each memory cell; we will call this bit an ‘L’ 
bit. This bit allows us to separate the faulty cells from the non-faulty cells: if the L-
bit of a cell is ‘1’ it means that the cell is faulty and if the L-bit is ‘0’ it means that 
the cell is working correctly. 

For a simpler representation of the memory, we will separately present the 
L-Zone from the memory cell array. Taking a k-way set associative cache memory 
with n locations in each set; we consider having 5 faulty cells – represented by 
shaded cells in Figure 5.1 (a). Figure 5.1 (b) represents the corresponding L-Zone of 
the memory cell array. 

The L-Zone is filled with zeros when the entire memory works correctly. 
When a hard error that cannot be corrected appears in a memory cell, the cell’s 
corresponding L-bit becomes 1. An error is dealt with in the following way: if the 
concurrent BIST detects an error which it cannot correct, then the error type (hard 
or soft) will subsequently be determined; this can be done as simple as another 
read/write from/to the same cell. If it was a soft error, then at the next access of 



37 
 

the cell it has a very high probability of disappearing. If it disappears, it means that 
we don’t have a hard error, so the memory can resume its normal functions. If at 
the next access the error persists, this means that we have to deal with a hard error 
and that particular memory cell can’t be used any longer without possible data 
corruption. This is the point where the actual SAM method is taking over. If the 
BIST logic of the memory chip has a non-concurrent testing option and if the system 
in which the cache memory is working in allows it to be shut down for a period of 
time, than the non-concurrent BIST can be used as the next two (optional) steps of 
the algorithm: they consist of shutting down the memory for some time, so a non-
concurrent test can determine the type of error that has been found and can 
generate a report to be processed by the CPU; this feature can be used by the 
manufacturer to make future improvements of the product. The final step is to make 
the cell’s corresponding L-bit ‘1’. This step triggers the following operations: 

• Checking if more than one location in a “line” is faulty. We refer to a line 
as all of the cache locations in which a main memory location can be 
mapped (see 5.1.2). 

• Taking the preemptive measures in order to assure that no more than 
one location per line will be faulty (5.2.1). 

• If there is no way that we can avoid more than one faulty location per 
line, then we have to decrease the set associativity of the cache. See 
5.2.2 for details. 

• In 5.2.3 we’ll propose a method of reorganizing the memory in order to 
eliminate from use the faulty locations 

 

Figure 4.1:  SAM description. (a) Memory cell array; (b) L-Zone; (c) MTO column and counter, 
from [8]. 

4.1.2 “More Than One” column 

If we have only a faulty cell on a line that means that the set associativity of 
that line is reduced by one, and we will encounter a problem if in some lines all the 
locations work correctly while in other lines we face two or more faulty locations. A 
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method for avoiding this situation will be discussed in section 5.2. In this section we 
will provide MTO (More Than One) column, as an instrument for preventing the 
problems listed above, which consists of one extra bit for each line of the cache 
memory, the so called MTO-bit. 

Besides this column we need a counter to keep track of the numbers of 1s in 
the MTO column with the maxvalue=n, where n is the number of locations per set, 
n=(number of locations in cache)/k with the cache being k-way set associative. This 
counter will hold the number of encountered faults. We could use another method: a 
cascade of AND gates from the MTO column which will indicate if all MTO-bits are 
‘1’; this can reduce the logic of the circuit, but it has a downfall: the exact number 
of faults that had occurred will be unknown, see Figure 5.1 (c). 

The MTO-bit of a line becomes ‘1’ when an error is found on that line, and it 
stays ‘1’ until all of the MTO-bits are ‘1’ and an error is discovered, then the whole 
MTO column will be reset to ‘0’. The MTO column along with the hard error signal 
will generate the following behavior: if the MTO-bit is ‘0’ then it becomes ‘1’; else if 
the MTO-bit is ‘1’ and we don’t have an overflow from the counter, the MTO will 
generate a signal called L-Zone_output which will indicate that we have more than 
one error in a line. 

4.2 Modifications of the Set Associativity 

4.2.1 Maintaining the set associativity 

Maintaining the set associativity in a continuously degrading memory is a 
difficult task even if we can eliminate the faulty cells from use, because if – for 
instance – an entire line is eliminated the memory, it will work slowly or it won’t 
work at all. 

If we take the example described above, depending on the write policies we 
can have a very slow working system in case of a look-aside policy, and a faulty 
system in case of a look-through policy. In order to avoid such a case we 
implemented a replacement policy; see the algorithm in Figure 5.2. 

We will focus on the “modify_address_to_first_not_0_in MTO_column” 
instruction for this we will use an example. Considering the situation from Figure 5.3 
(a) and we have a new uncorrectable error in line two set two. The memory 
contents will look like in Figure 5.3 (b), which will decrease the set associativity of 
line two with two while we still have lines with an intact set associativity; this is 
unacceptable. Therefore we search for the first line with the MTO-bit ‘0’, in this case 
this is line one, and we’ll need to “switch” the faulty cell with a healthy cell from the 
same line, in which case the transformation of the memory will look like Figure 5.3 
(c). 
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Figure 4.2: SAM algorithm, from [8]. 

The “modify_address_to_first_not_0_in_MTO_column” instruction does the 
followings: it searches for the first ‘0’ in the MTO column (it is found because the 
counter hasn’t reached an overflow), and it makes a “switch” between the last 
available memory location in that line with the faulty location. Note: the actual 
memory doesn’t switch the locations physically, so the memory still looks like Figure 
5.3 (b) for the considered example; it is a virtual switch because the faulty location 
cannot actually be replaced with the healthy location, but instead all of the 
operations on the faulty cell will be performed on the healthy cell. Section C explains 
the way to implement the switch. 

4.2.2 Reducing the set associativity 

If we encounter a number of m faulty locations, where m is a multiple of the 
number of locations per set, n (i.e. m=n∙l, l∈{1, ... ,k}, where k is the number of 
sets), in order to maintain a stable performance we are obliged to reduce the set 
associativity of the cache memory. This varies from cache memory to cache 
memory, mainly depending on the replacement policy that is being used. In this 
paper we will only discuss the reducing of set associativity for cache memories that 
use LRU (Last Recently Used) as replacement policy. A similar method can be used 
for FIFO (First In First Out) replacement policy, due to their similar implementation. 

One of the implementations of the LRU algorithm is depicted in Figure 5.4 
(a). The main idea is to maintain a list of cache set indices sorted from LRU to MRU 
(Most Recently Used) [8]. When a cache set is accessed its set index s is presented 
to the list, and that index is rotated to the MRU position at the end. 
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Figure 4.3: SAM remapping. (a) initial memory; (b) unacceptable error distribution;  

(c) acceptable error distribution, from [8]. 

 
For using the SAM method it is more convenient to reduce the set 

associativity of each line, instead of just waiting until we encounter n errors. The 
reduction will be performed by moving the faulty cell address in the LRU index and, 
after that, the LRU-1 will become the LRU column, as in Figure 5.4 (b). 

4.2.3 Reorganizing the memory 

One final step that we have to discuss is the “switching” of the locations. 
The proposed method is somehow similar to the TLB (Translation Lookaside Buffer), 
meaning that we have a table with two columns: within the first we have the 
address of the faulty location, whereas within the second one we have an address of 
a healthy location which is taken from the first line in the memory cell array with 
the MTO-bit equal to ‘0’. See Figure 5.5, which is a simple example of cache 
memory with faulty locations. 

The actual switching doesn’t occur until the memory location (2,4) is 
accessed; then its L-bit being ‘1’ and the address being found in the table, the 
location (4,4) is used instead. 

 

Figure 4.4: (a) LRU algorithm (b) reducing the set associativity, from [8]. 

4.3 Overhead 

Giving the fact that the SAM method eliminates faulty memory cells from 
use, it is no reason to worry about encountering any other faulty locations besides 
the ones already eliminated. Our main concern is to find the most efficient size for 
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the switching table. To this end, we need to take into consideration the overhead 
that the table is generating and the number of faults that need to be tolerated. 

 

Figure 4.5: Switching table, from [8]. 

In order to find the most efficient size of the switching table we resort to 
some probabilistic calculations. It is necessary to find the most probable distribution 
of the errors in the memory, after a number of l errors already occurred. We will 
consider that a new faulty location can appear anywhere in the memory with the 
same probability. 

If we have a memory like the one in Figure 5.6, after l errors the possible 
locations in the faulty lines becomes: possibleF=x∙k−l while the one in the healthy 
locations: possibleH=(n−x)∙k, in order to be in the most probable case scenario, 
after n errors, the two would have to be equal: possibleH=possibleF which implies 
that: 

x=(n(k+1))/(2∙k)    (5.1) 

 

Figure 4.6: Faulty/healthy cells memory organization, from [8]. 

Example. Consider a L2 cache, 2MB 8-way associative, with 256B block 
size, as described in [5]. We will calculate the overhead for this memory, for the 
case of the most probable scenario, as discussed above. The number of bits in the 
switching table will be log2(1024∙8)=13, thus making the size of the switching table 
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equal to 2∙13=26 bits. This number will be multiplied by the number of locations 
necessary in the switching table. We will calculate the overhead necessary in order 
to reduce the cache from an 8-way to a direct mapping. There are 
448+439+427+410+384+342+256=2706 locations necessary in the switching 
table, thus making its size 2706∙26=70356 bits, see Table 1. These bits are added 
to the ones from the MTO and L-Zone: n(k+1)=9216 bits, resulting in 79572 
overhead bits. This will result in an overhead of 0.474% without taking into 
consideration the valid bit and the tag bits, see Figure 5.7. 

Table 4.1: Numbers of locations required in the switching table, from [8]. 

 
Compared to the method described in [8], where if a whole row becomes 

faulty, the yield will be decreased, SAM can maintain a cache memory working even 
if a whole line becomes faulty; this is done by the use of the switching table. 

 

Figure 4.7: Overhead for each reduction of the set associativity, from [8]. 

4.4 Conclusions 

The main goal of this chapter was to establish the theoretical foundations of 
the SAM method. By applying the SAM BIST method to a cache memory we increase 
its reliability by eliminating the faulty cells from the memory. 
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In order to give a rough estimate of the reliability of the memory we make a 
set of assumptions: the faults appear independent within the memory, without 
correlation, we take into consideration only the memory cell array; the SAM method 
is applied in order to sustain the reduction of the set associativity until direct 
mapping. We can say that the memory will stop working correctly after a number of 
(k−1)∙n+1  faults. A fault in the memory appears with a p probability, so instead of 
a reliability R=1-p [36], we obtain a reliability R=1-p(k-1)∙n+1, which means that we 
obtain a much more reliable memory system. Considering that a fault appears every 
10 hours of continuous memory functioning, after introducing a concurrent BIST to 
the memory we increase that period to 100 hours. This can suffice to an application 
in which the reliability isn’t as important as the performance but, for an application 
where the importance of reliability is paramount, this doesn’t suffice. After 
introducing the SAM method to that memory system we can keep the memory 
functional not for 100 hours but for 100∙((k−1)∙n+1) hours (e.g. k=8, n=1024 
⇒100∙((k−1)∙n+1)=716900 hours, which means an improvement of 7169 times. 
This improvement is created at the cost of reducing the capacity of the memory. It 
is necessary to find a critical point at which the performance will decrease too much 
and the memory chip will need to be replaced. This critical point will differ from 
application to application. 

By introducing a BIST which detects and corrects more errors, we can avoid 
eliminating some of the healthy cells in the memory; this can happen if another soft 
fault appears in the re-reading of the memory cell. Another way we can reintroduce 
some cells in the normal use is by a non-concurrent BIST test which determines if 
the cells in the L-Zone are truly faulty or have been eliminated by mistake. If any 
cells like this exist they can be taken out of the L-Zone and re-possess their place in 
the memory, hence increasing the reliability and the performance of the system. 

The overhead introduced by the SAM method can be considered as small 
given the reliability which it provides, as it is presented in section 5.3. Because we 
seldom need to reduce the performance of the cache memory to a direct mapping, 
the overhead can be approximated by the one obtained at k/2 set associativity for 
which the overhead in the example proposed is 0.32%. 

In short, the advantages brought by the SAM method greatly exceed the 
disadvantages and the shortcomings that were also identified in this paper. Another 
perspective on the contribution is that by creating a few extra misses in the memory 
cache we obtain a huge increase of the reliability of the memory. 
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5 Improving the Self Adaptive cache Memories 
Mechanism 

In this chapter we provide our readers with two ways of improving the 
performance and reducing the overhead of the self-adaptive cache memory 
mechanism. The first method introduces an extra bit for both the L-Zone and the 
MTO column, and even though it might seem counterintuitive by adding these extra 
bits we will both reduce the overhead and increase the performance. The second 
method that we will describe is one that reorganizes the switching table and keeps 
the records within the switching table to a minimum. The last section of this chapter 
will provide a merge between these two methods in order to achieve an even 
greater increase in performance and smaller overhead. 

 

5.1 Algorithm Description for Switching Bits 

A major disadvantage of using the switching table in SAM is that every time 
a faulty cell is accessed, a search in the switching table is performed, and that 
means a process that induces a significant time penalty. In this section we describe 
a method of further reducing the number of accesses in the switching table. We also 
present a snapshot before and after the switching bits are introduced in the cache 
memory. 

5.1.1 Switching Bits 

In order to be able to reduce the number of accesses in the switching table, 
more information is required for the case when a faulty cell is accessed. For each 
line, besides the L-bit, we will add an extra bit called Switching Bit (SB); for each 
set, besides the MTO bit, we will add an extra bit called Set Switching bit (SSB), as 
presented in Figure 6.1. These added bits encode, for each line and set, four 
functioning states, instead of the two that were acknowledged within SAM (faulty 
and healthy). Table 6.1 summarizes the four functioning states along with a short 
description. 

5.1.2 Before Introducing the Switching Bits 

In this subsection we present the algorithms used by SAM for accessing the 
memory. First, we will present the algorithm that is used in the case of no error 
being detected by the concurrent BIST (see Figure 5.2).  

If the L-bit of the cache line is 0 – meaning that the line is healthy – then 
the access is normal, i.e. SAM doesn’t insert any changes to the memory access. 
But if the L-bit is 1 – meaning the cell is faulty – then a search is performed in the 
switching table. If the location is found in the switching table’s faulty part (that is 
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the only place we are looking for it) then the location from the healthy part of the 
switching table will be used instead. If the location is not found in the switching 
table, this means that either the location is faulty or it is substituting a faulty 
location; either way we will have a miss in the cache memory and we will have to 
choose some other location from the same set instead. 

 

Figure 5.1: Cache memory, after introducing the switching bits 

Table 5.1: Description of Switching Bits 

 Bits 
value 

Description 

S
et

 S
ta

te
s 

MTO=0 
SSB=0 

Healthy set 

MTO=0 
SSB=1 

Switched set (healthy set that has to be used 
to maintain performance in a faulty set) 

MTO=1 
SSB=0 

Faulty set (at least one cell in that set is set 
is faulty) 

MTO=1 
SSB=1 

Set with a double switched cell 

Li
n

e 
S

ta
te

s 

LB=0 
SB=0 

Healthy cell 

LB=0 
SB=1 

Switched cell (faulty cell that has to be 
maintained functional) 

LB=1 
SB=0 

Faulty cell (it is usually the first faulty cell 
encountered when the MTO of the set is 0) 

LB=1 
SB=1 

Switched cell (healthy cell that has to replace 
a faulty cell from another set) 

 
Now we will present the algorithm that is used if an error is encountered, a 

situation that can be seen in Figure 5.3. First we look at the L-bit: if it is 0, meaning 
that we are dealing with a healthy cell, then we take into consideration the values of 
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the MTO-bit and the overhead used for the reduction of the set associativity, as 
described in [8]. If the value of the pair (MTO-bit, overhead) is (0, 0) then the L-bit 
of the cache line becomes 1 and the MTO-bit of the set also becomes 1. If the pair 
(MTO-bit, overhead) is (0, 1) then the L-bit of the line becomes 1 and a reduction of 
the set associativity is performed. If the value of the pair (MTO-bit, overhead) is (1, 
0) then the L-bit of the line becomes 1 and a new entry is added to the switching 
table, thus making this line available for future accesses. The last case is when the 
pair (MTO-bit, overhead) has the value (1, 1), which means that the L-bit becomes 
1 and a reduction of the set associativity is performed.  

The second case is when the L-bit is already 1, which means that the cache 
line is already substituting a faulty cache line or it is a faulty cell. For this case we 
have to perform a search in the switching table within the faulty part. If the cache 
line is found then this means it is substituting a faulty line. In this case, depending 
on the value of the pair (MTO-bit, overhead), we have the following two cases. If 
the pair is (0, 0) or (1, 0) then a new entry is created in the switching table. If the 
pair (MTO-bit, overhead) is (0, 1) or (1, 1) then a new entry is created in the 
switching table, followed by a reduction of the set associativity, as described in [8]. 
The second case only appears if the cache line wasn’t found in the switching table’s 
faulty part, which means that the cell was already found as faulty (it was not a new 
error) and, in order to access it, we have to use some other location from the same 
set instead. 

As a conclusion to this subsection we provide some notes on the 
disadvantages of this algorithm. First, if an error isn’t found and a location is faulty 
then searches that aren’t necessary will be performed in the switching table, thus 
introducing a time penalty. Second, there are a couple of new entries in the 
switching table that can be avoided, e.g. a new entry isn’t required always when 
(LB, MTO-bit, overhead) is (1, 1, 0); a more detailed explanation of this case will be 
presented in Section 5.1.5. Third, the searches in the switching table aren’t always 
required if an error is found and the LB is 1; in order to fix this drawback, by adding 
the so-called switching bits, we can know if that particular location is in the 
switching table or not. 

5.1.3 Algorithms after the Switching Bits 

In this subsection we present the algorithms described in Section 5.1.2 
which were modified to accommodate the newly added switching bits. The first one 
is the algorithm used when the concurrent BIST does not detect any error, as 
depicted in Figure 5.4. 
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Figure 5.2 

 

Figure 5.3 

 

Figure 5.4 

 

Figure 5.5 

In order for the algorithm to make a decision, it has to check the value of 
the (LB, SB) pair. If the value of this pair is (0, 0) the algorithm proceeds to the 
normal access of the memory location. If the (LB, SB) pair has the value of (0, 1), it 
means that we are dealing with a switched cell, as it can be seen from Table 5.1, 
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and therefore we have to perform a search in the switching table in order to find a 
healthy location to use instead. If the (LB, SB) pair has a value of (1, 0), this 
indicates a faulty cell that cannot be accessed (a situation that is also present within 
Table 5.1), and we have to use a healthy cell from the same set instead. If the (LB, 
SB) pair has the value of (1, 1), this also points to a switched cell (see Table 5.1), 
but in this case we also have to check the MTO-bit and the SSB. If at least one of 
these bits is 0 then we have to look for a new cell to be used in the same set; this 
means that the current cache line cannot be accessed. If both the MTO-bit and the 
SSB are 1 then we have to access the switching table for a new location to use it 
instead of this one. This last case is quite rare and improbable because this means 
that the location used to replace a faulty cell becomes faulty itself, for example if 
the probability for a hard error is p then for this case the probability becomes 
p2 ∙ (k-r)/(n ∙ k-l), where k is the set associativity, r is the number of reductions of the 
set associativity, n number of sets, and l total number of hard errors. 

The second proposed algorithm is depicted in Figure 5.5 and presents the 
case when a hard/permanent error is encountered at an access. First we must state 
that regarding the (LB, SB) pair, there can be only two cases: (0, 0) and (1, 1). The 
other cases will not be treated the same, because in the case of (0, 1) it means that 
the cell is already faulty and it becomes redundant to find it as faulty for a second 
time; and the case of (1, 0) means that the cell is taken out of use, and therefore a 
new cell in the same set must be accessed instead. 

If both LB and SB are 0 we will have the possibilities created according to 
the (MTO-bit, SSB, overhead) triplet, as presented in Figure 5.5. If this triplet is (0, 
0, 0) or (1, 1, 0) then the L-bit of the cache line detected as faulty becomes 1. In 
the first case the MTO-bit becomes also 1, in the second case the MTO-bit is already 
1. If the triplet (MTO-bit, SSB, overhead) is (0, 0, 1) or (1, 1, 1) then the L-bit of 
the cell becomes 1 and a reduction of the set associativity, as described in [8], is 
performed. If the (MTO-bit, SSB, overhead) triplet is (0, 1, 0) then the SB of the 
cache line becomes 1 and a new entry to the switching table is added. If the value 
of the (MTO-bit, SSB, overhead) triplet is (0, 1, 1) then the L-bit becomes 1 and a 
reduction of the set associativity is performed, as described in [8]. If the triplet 
(MTO-bit, SSB, overhead) is (1, 0, 0) then both SB and SSB become 1 and a new 
entry in the switching table is made. The last case is when the triplet (MTO-bit, SSB, 
overhead) is (1, 0, 1), therefore the L-bit becomes 1 and a reduction of the set 
associativity is performed [8]. 

The other case is when both SB and LB are 1. As in the previous cases, we 
have to act according to the value of the (MTO-bit, SSB, overhead) triplet. The 
cases of (MTO-bit, SSB, overhead) being (0, 0, 0), (0, 0, 1), (1, 0, 0) and (1, 0, 1) 
are not possible. This means that we are left with only four cases, which can be 
grouped in two parts. If the (MTO-bit, SSB, overhead) triplet is (0, 1, 0) or (1, 1, 0) 
then the MTO-bit becomes 1 and a new entry in the switching table is added. The 
last two cases are defined by the values of (1, 1, 1) or (0, 1, 1) for the (MTO-bit, 
SSB, overhead) triplet; in this situation SB becomes 0, and the set associativity is 
reduced [8]. 
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5.1.4 Advantages of Using Switching Bits 

This subsection presents the basic theoretical advantages and gains from 
the use of the switching bits. First of all, even though it seems a paradox, the 
introduction of the switching bits decrease the area overhead with over 35%, this is 
achieved by the modification of the algorithm presented in section III.C. Another 
advantage is the huge increase in performance, this is also due to the modification 
of the algorithm by adding the switching bits; the increase in performance can be of 
over 75%. Also for the first n/2 hard error the probability of adding a new entry in 
the switching table decreases significantly from the previous version of SAM. 

Each of these improvements is endorsed by simulation results that are 
presented in Sections 5.1.5 and 5.1.6. 

5.1.5 Theoretical results 

We start this subsection with some very important remarks. First, we note 
that the value of the L-bit before adding the switching bits is given by the logical OR 
between the L-bit after adding the switching bits and the switching bit, as in 
Equation 5.1. Second, the value of the MTO-bit before the switching bits were added 
is also a logical OR between the MTO-bit after adding the switching bits and the set 
switching bit, see Equation 5.2. 

 

 𝐿𝐵𝑎𝑓𝑡𝑒𝑟  𝑂𝑅 𝑆𝐵 =  𝐿𝐵𝑏𝑒𝑓𝑜𝑟𝑒 Equation 5.1 

 

 𝑀𝑇𝑂 − 𝑏𝑖𝑡𝑎𝑓𝑡𝑒𝑟  𝑂𝑅 𝑆𝑆𝐵 =  𝑀𝑇𝑂 − 𝑏𝑖𝑡𝑏𝑒𝑓𝑜𝑟𝑒 Equation 5.2 

Taking all these aspects into consideration, we will now analyze the number 
of entries added in the switching table, before and after the adding of the switching 
bits. Before adding the switching bits there were two cases to deal with when a new 
location was added in the switching table. As Table 5.2 summarizes, after the 
switching bits are added, the number of cases to deal with becomes four. 

Even though the number of cases where a new location is added to the 
switching table becomes bigger after adding the switching bits, according to the 
observations made at the start of this subsection, the number of entries in the 
switching table actually decreases. This is because case 1B, from Table 5.2, includes 
cases 1A and 2A, and case 2B, from Table 5.2, includes cases 3A and 4A. Table 5.3 
presents the cases for which, after adding the switching bits, a new entry in the 
switching table is not required. 

Because of the random distribution of errors in the memory cell array, one 
cannot determine the exact amount gained in terms of locations in the switching 
table. In order to provide an estimate we will resort to some probabilistic 
computations. Table 5.4 presents the probabilities of the SAM method situations 
without the switching bits, while Table 5.5 will present the probabilities of the SAM 
method after adding the switching bits. Note that, in order to save space, we have 
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separated the probabilities in Table 5.4 and Table 5.5 into three parts, and – in 
order to get the overall probability – we just need to multiply the probabilities from 
the three parts. Throughout Table 5.4 and Table 5.5 the following notations have 
been used: n for the number of sets, k for the number of lines per set, l as the total 
number of errors, r as the number of reductions of the set associativity, x as the 
number of faulty lines since the last reduction of the set associativity, STtotal as the 
total number of entries in the switching table, and STi as the number of entries in 
the switching table since the last reduction of the set associativity. 

Table 5.2: Cases for new entries in the switching table 

 (LB, MTO-bit, overhead)  (LB, SB, MTO, SSB, ov.) 
1B (0, 1, 0) 1A (0, 0, 0, 1, 0) 
2B (1, x, x) 2A (0, 0, 1, 0, 0) 

3A (1, 1, 0, 1, 0) 
4A (1, 1, 1, 1, 0) 

 

Table 5.3: Cases for new entries in switching table 

 LB SB MTO-bit SSB ov. 
1B 0 0 1 1 0 
2B 1 0 0 0 x 

0 1 0 0 x 
1 1 0 0 x 
0 1 (0, 1, 1) (1, 0, 1) 1 
1 0 (0, 1, 1) (1, 0, 1) 1 
1 1 (0, 1, 1) (1, 0, 1) 1 
0 1 (0, 1, 1) (1, 0, 1) 0 
1 0 (0, 1, 1) (1, 0, 1) 0 
1 1 1 0 0 

 
The ratio between the probabilities of having an entry in the switching table 

before and after introducing the switching bits is given in Equation 5.3. These 
equations are deducted from the changes that were made in the algorithm 
presented throughout the sections from 5.1.1 to 5.1.4. 

 𝑎𝑓𝑡𝑒𝑟
𝑏𝑒𝑓𝑜𝑟𝑒 =

𝑆𝑇𝑖 ∙ 𝑆𝑇𝑡𝑜𝑡𝑎𝑙 + (𝑛𝑘 − 𝑙 − 𝑆𝑇𝑡𝑜𝑡𝑎𝑙)�𝑙 − 𝑛𝑟 − 𝑆𝑇𝑖2
𝑛 ∙ 𝑘�

𝑛𝑘(𝑙 − 𝑟𝑛)  
Equation 5.3 

The ratio between the accesses in the switching table before and after 
adding the switching bits is presented in Equation 5.4. 

 

 
𝑎𝑓𝑡𝑒𝑟
𝑏𝑒𝑓𝑜𝑟𝑒 =

𝑆𝑇𝑡𝑜𝑡𝑎𝑙
𝑙 + 𝑆𝑇𝑡𝑜𝑡𝑎𝑙

∙ �1 +
𝑆𝑇𝑖2

𝑛2 ∙ 𝑘� Equation 5.4 
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5.1.6 Simulation results 

The simulations results are based on the probabilistic computations 
presented in section IV.A and are applied to the same cache memory as in [8] and 
[5]. The cache memory is a 2MB, 8-way set associative, with the block size of 256B. 

The overhead added by the introduction of the switching bits is small for the 
above described cache memory; the area overhead is of less than 1.2 KB, which 
means 0.05% of the total memory size. But even if we add these bits, the overall 
overhead decreases because of the reduction of the size required by the switching 
table. This happens because, due to this extra logic, some of the locations will not 
require a new entry in the switching table. The corresponding ratio is presented in 
Equation 5.3. On the other hand, Figure 5.6 presents the comparative analysis of 
the overhead before and after the switching bits were added. 

Even though the overhead gains are modest, the performance gains become 
quite notable, a reduction of the switching table accesses of over 75%. This 
happens because the access in the switching table will not be made every time an L-
bit has the value 1. The switching table will be accessed in two instances. The first 
one, which is the most probable, is when the pair (LB, SB) has the value of (0, 1). 
The second case, and this has a very low weight with regards to the first case, if the 
quadruple (LB, SB, MTO-bit, SSB) has the value (1, 1, 1, 1), which means that we 
have to deal with a location that is switched more than once. 

Table 5.4: Probabilities for regular SAM 

LB probability MTO probability ov. prob 
0 𝑛 ∙ 𝑘 − 𝑙 − 𝑆𝑇𝑡𝑜𝑡𝑎𝑙

𝑛 ∙ 𝑘  0 𝑛(𝑟 + 1) − 𝑙
𝑛  0 𝑛 − 1

𝑛  

1 𝑙 + 𝑆𝑇𝑡𝑜𝑡𝑎𝑙
𝑛 ∙ 𝑘  1 𝑙 − 𝑛 ∙ 𝑟

𝑛  1 1
𝑛 

Table 5.5: Probabilities for SAM with switching bits 

LB SB probability MTO SSB probability ov prob 
0 0 𝑛 ∙ 𝑘 − 𝑙 − 𝑆𝑇𝑡𝑜𝑡𝑎𝑙

𝑛 ∙ 𝑘  0 0 𝑛(𝑟 + 1) − 𝑙
𝑛   

0 
 
𝑛 − 1
𝑛  0 1 𝑆𝑇𝑡𝑜𝑡𝑎𝑙

𝑛 ∙ 𝑘  0 1 𝑆𝑇𝑖
𝑛 ∙

𝑛 ∙ 𝑘 − 𝑆𝑇𝑖
𝑛 ∙ 𝑘  

1 0 𝑙 − 𝑆𝑇𝑡𝑜𝑡𝑎𝑙
𝑛 ∙ 𝑘  1 0 𝑥

𝑛 
 
1 

 
1
𝑛 1 1 𝑆𝑇𝑡𝑜𝑡𝑎𝑙

𝑛 ∙ 𝑘  1 1 𝑆𝑇𝑖
𝑛 ∙

𝑆𝑇𝑖
𝑛 ∙ 𝑘 

 
The gain in terms of performance is presented in Figure 5.8. In Figure 5.8 

the performance is plotted in terms of accesses in the switching table for the SAM 
method, with and without the switching bits. Figure 5.7 presents the gains both in 
terms of overhead and performance percentagewise. 
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Figure 5.6: Probability for new entry in switching table 

 

Figure 5.7: Improvement from original SAM 
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Figure 5.8: Probability for accessing the switching table 

5.1.7 Conclusions 

The first goal of this first section of this chapter was to perform an analysis 
of the SAM method [8], in terms of overhead and performance. This analysis was 
performed throughout sections II, III and IV. As a conclusion to our analysis, we 
have observed that the previous version of SAM has some shortcomings, of which 
the main one was the large loss in performance (every time the L-bit is 1 an access 
in the switching table is required). 

The second goal of this first section of this chapter was to introduce the 
switching bits to the SAM mechanism in order to improve the performance cost of 
this method. We have succeeded to also improve the overhead added by the 
switching table, the overall area overhead actually decreasing with over 35%; this 
figure is supported by theoretical calculations and simulations, for more details see 
Sections 5.1.5 and 5.1.6 and Figure 5.6. The performance gains on the other hand 
are really significant. We have a mean of over 75% reduction in the number of 
accesses in the switching table, as it can be rendered by examining Figure 5.7 and 
Figure 5.8, and for some cases they can be completely eliminated, as seen from 
section 5.1.4. The cases for which the accesses are most probable to disappear are 
the first n/2 hard errors that appear in the cache memory, where n represents the 
number of sets in the cache memory. 
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5.2 Methods for Reducing the Switching Table 

This section proposes an analysis for the Self Adaptive cache Memory (SAM) 
mechanism, in the context of employing a set of improvements aimed at decreasing 
the size of SAM’s switching table. This objective is achieved by eliminating some of 
the switching table redundant/idle entries, which generate unnecessary performance 
degradation and unnecessary increase of the area overhead. We also present a 
comparative analysis for the SAM method with and without these improvements, in 
terms of overhead reduction and performance increase. The simulation results have 
shown that the number of entries in the switching table can be reduced with up to 
68%. Simulation also reveals that the time penalty can be reduced by over 80%. At 
the same time, we describe how SAM can also be used for yield improvement. 

New entries in the switching table are created every time a remapping is 
necessary. In this context, the switching table is never searched for idle or 
redundant entries. This complicates the switching table and reduces its performance 
by increasing its access time. 

From here on, for a more suitable description we will refer to a cell’s address 
not by its physical location, but as a pair made of its set and line numbers. For 
example, the address of line 2 in set 0 will be given as (0, 2). We call an idle entry, 
a switching table entry that is never used and which only occupies space. We call a 
redundant entry, an entry that is not compulsory, and therefore consumes both 
time and space. For example, if location (1,0) is remapped to (3,1) and then 
location (3,1) is remapped to location (4,3), then (3,1) becomes redundant. If we 
have location (2,3) remapped to location (4,7), and afterwards location (2,3) 
becomes faulty, then location (2,3) is no longer necessary; this is the case of an idle 
location in the switching table.  

In this section, we will discuss three cases where the contents of the 
switching table are changed. There are other cases for which the reduction of the 
switching table is possible, as the SAM method is developed right now, the ones 
presented here will produce the best results in terms of interventions over gains. 

Each of these three cases of switching table modifications will be 
accompanied by a description and an example of its use.  

a. First case: the healthy cell in the second column becomes faulty. This 
case produces redundant entries.  

b. The second case: reduction of the set associativity. This case produces 
idle entries.  

c. The third case: another location in the same set with the healthy cell 
becomes faulty. This produces redundant entries. 

Note that in all the examples provided throughout this section the cache 
lines depicted in dark grey are the ones that have been faulty before the 
modification of the switching table was necessary. On the other hand, those 
depicted in light grey are the last ones to become faulty and require the 
modifications in the switching table accordingly. 
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5.2.1 First case 

For case a. from section 5.2 we have to search the switching table every 
time a new faulty cell appears in the memory, in order to see if it is located in the 
healthy part of the table. If this is not the case, applying the standard algorithm 
suffices. If it is found, instead of adding a new entry in the switching table, we can 
modify the existing entry and simply mark this cell as being faulty afterwards. This 
will lead to discarding a redundant entry from the switching table. An example of 
this case is illustrated in Figure 5.9, while the algorithm used in case a is depicted in 
Figure 5.10. 

 

 

Figure 5.9: First case example 

 

5.2.2 Second case 

For case b., referring to the reduction of the set associativity of the cache 
memory, which is quite rare (once every n hard faults), we can look in the switching 

if (new fault at line j in set i) {  
        t= – 1; 
        for (l=0; l<Switching Table size; l++) { 
                if ((i,j) in Switching Table Healthy part) { 
                        t=l; 
                        exit loop; 
                } 
        if (t != – 1) 
                modify entry t’s healthy part from Switching Table to  
                a location in first set with MTO =0; 
} 

Figure 5.10: First case algorithm 



56 
 

table and reorganize it by removing the newly formed idle locations, that will never 
be accessed again. In the following, we will present an example of the advantages 
brought by this reorganization of the switching table. To this end, we will need an 
extra counter to inform on how many reductions of the set associativity have been 
performed so far, including the current one. The algorithm required for the 
reorganizing the switching table is depicted in Figure 5.12, together with a 
corresponding example, Figure 5.11. 

 

 

Figure 5.11: Second case example 

 
 

5.2.3 Third case 

Case c., when a different location from the same set as the healthy cell 
becomes faulty is the simplest of the three. This is because when we encounter a 

if (overflow_counter_n) { 
        for (i=0; i<n; i++) { 
        counter = 0; 
                for (j=0; j<k; j++) 
                        if ((i,j) in Switching Table) counter ++; 
                if (counter <= counter_k)  
                        remove all entries in ST with i in the faulty column; 
                else  
                        remove k entries from the ST that have i in  
                        the faulty column 
        } 
} 

Figure 5.12: Second case algorithm 
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faulty cell that needs a new entry in the switching table, we only have to look in the 
table to see if there is an entry in the healthy column part of the switching table 
that belongs to the same set with the currently detected faulty cell. If such an entry 
exists, we simply modify that entry with another one from a healthy set. The 
healthy set is chosen according to the principles stated in [1] as the first set that 
has the MTO-bit 0, where the line is the last one that is available in that set. An 
example of this case is depicted in Figure 5.13, along with the employed algorithm 
in Figure 5.14. 

 

 

Figure 5.13: Third case example 

 

5.2.4 Improvements 

Table 5.6 provides the number of locations in the switching table, 
determined probabilistically, as it was performed in [8]. In order to present the 
analysis results, we consider a L2-cache memory of 2MB capacity, 8-way set 
associative with the block size of 256B, same as the ones described in [8] and [5]. 

if (entry in Switching Table of line j in set i) {  
        counter=0; 
        ok=0; 
        t= – 1; 
        for (l=0; j<Switching Table size; l++) { 
                if (t == – 1) 
                        t=l; 
                counter++; 
        } 
        if ((counter – counter_k)>0) 
                modify entry t’s healthy part from Switching Table to  
                a location in first set with MTO =0; 
} 

Figure 5.14: Third case algorithm 
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Note that case a. from section III refers only to a cell in a set, and case c. 
from section III refers to a set without a cell. From this, it becomes obvious that the 
proportion between their corresponding gains will be of degree k, where k is the set 
associativity left of the cache memory (i.e. the gain for case c. is k time more 
probable then the gain from the case a.). This discrepancy in gain holds true both in 
the number of switching table entries and in speed. 

Table 5.6: Results obtained using the described improvements 

k 8 7 6 5 4 3 2 
Number of faulty 

locations 
1024 2048 3072 4096 5120 6144 7168 

Locations needed in 
Switching Table before 

improvements 
448 997 1500 1941 2325 2667 2923 

Locations needed in 
Switching Table after 

improvements 
444 981 1423 1668 1667 1399 835 

Difference in number 
of locations 

4 16 77 273 658 1268 2088 

Reduction of time 
penalty [%] 

38.5 39 41.2 46.7 55.5 67.5 82.3 

Mean time penalty per 
access before 
improvements 

0.06τ 0.16τ 0.29τ 0.47τ 0.75τ 1.30τ 2.85τ 

Mean time penalty per 
access after 

improvements 
0.06τ 0.15τ 0.27τ 0.40τ 0.54τ 0.68τ 0.85τ 

 
 

5.2.5 Overhead Gains 

As presented in Section 5.2, in each of the three cases we can reduce the 
number of entries in the switching table. The first and third cases have the potential 
of reducing the switching table by one entry at a time. The second case has a 
superior potential of reducing the number of entries, as presented in this 
subsection. 

In order to be able to determine the overhead improvement, we will resort 
to probabilistic computations, using a method that is similar to that from [8]. To this 
end, we will look at the memory as being split in two parts: a part that contains sets 
with faulty cache lines and another part that contains only healthy sets. In order to 
simplify the computations, we consider that an error can occur anywhere in the 
memory with the same probability. We need this partitioning of the cache memory 
in order to determine the most probable distribution of the faults in the cache lines 
and sets. Therefore, in order to have the most probable distribution of faults, we 
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need to have an equal or almost equal probability of fault occurrence within one of 
the two partitions. In that respect, the two partitions of the cache memory need to 
have the same number of healthy cells (or, at least, to differ with no more than 
one). 

After writing the equations, we obtain that after l errors in the cache 
memory we have x as the number of sets with faulty lines, as in Equation 5.5. 

 𝑥 =  
𝑛 𝑘 + 𝑙

2 𝑘  Equation 5.5 

In Equation 5.5 n is the number of sets in the cache memory, k is the 
number of lines per set, or the set associativity. An example of how the L2-cache 
memory, which was described above, is most probable to look after 2048=2n errors 
is illustrated in Figure 5.15. After applying Equation 5.5 to this cache memory, we 
obtain the results depicted in Table 5.6. Figure 5.16 illustrates a comparison in 
terms of overhead between the original SAM [8] and its improved version which is 
described in this paper.  

 

Figure 5.15: Example of fault distribution 

5.2.6 Performance Gains 

The gain in performance will be obtained from the redundant cases (first 
and third), because the number of accesses in the switching table will be reduced, 
thus speeding-up the memory access. The gain from the second case can be 
translated into performance gain by achieving overall reduction of switching table 
size. This reduction of table size will translate into faster table access, thus reducing 
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the time penalty of every switching table access, as presented in Table 5.6. Table 
5.6 contains the results obtained by simulations for the same fault distribution as in 
the previous subsection. In these computations, we take into consideration both the 
lost time due to the increased algorithm complexity, and the speed gain generated 
by the size reduction of the switching table. Without losing generality, for our 
evaluation purposes we consider that the reduction in access time is proportional 
with the size of switching table reduction. 

 𝑎𝑛𝑘𝜏𝜉 Equation 5.6 

 

 𝑎′𝑛𝑘𝜏′𝜉 Equation 5.7 

 
Equation 5.6 shows the time penalty of the switching table before improving 

SAM, while Equation 5.7 illustrates it afterwards. In these expressions 𝑎 and 𝑎’ are 
the number of entries in the switching table before and after respectively, 𝑛 the 
number of sets, 𝑘 the number of lines per set, 𝜏 and 𝜏′ are the access times of the 
switching table before and after the improvements respectively, and 𝜉 is the mean 
number of accesses in the cache memory between finding two consecutive faults. 

The difference in performance can be proven as being even bigger, because 
for simpler simulations we ignored some gains obtained from our improvements, 
like the size of the switching table at all times (i.e. we have only taken into 
consideration its final size). 

Table 5.6 presents the reduction of time penalties as percentages. It also 
shows that the time penalty reduction obtained by the modifications of the switching 
table is up to over 80%. Figure 5.17 illustrates the two time penalties; before and 
after our improvements; due to the reduction of switching table size, the 
improvements can be observed even from the first errors. 

In Figure 5.18 we have summarized the improvements brought by our 
method percentage-wise, both in overhead and in performance. As it can be seen in 
Figure 5.18, the performance improvement varies from 37% to over 80%, while the 
improvement in the number of switching table required locations can reach a 
maximum of 68%. 

5.2.7 Using SAM for Yield Improvement 

Another useful feature of the SAM method consists of improving the chip 
yield. In order to be able to use SAM for this purpose, the method is can be 
maintained as it is and run before the manufacturer delivers the chip, or it can be 
simplified by reducing the size of the switching table. We present an analysis for 
using a reduced version of SAM in order to deliver a better chip yield. 

Due to the fact that errors in a chip tend to cluster [37] a method for yield 
improvement like the one proposed in [1] for direct mapped caches is not very 
efficient. The method from [1] is also based on the principles of graceful 
degradation, and relies on the cache memory architecture in order to replace faulty 
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cache blocks with their neighbors. The neighbors are selected as blocks that are 
physically mapped on the same row as the faulty block. Because of the fault 
clustering, there is a higher probability for the neighbors of a healthy block to 
become faulty themselves. The method proposed in [1] resembles SAM in that it 
also uses an extra bit (like SAM’s L-bit) for the identification of the faulty block. 

By using the switching table, SAM avoids relying on the neighbors of a faulty 
cache block, as it can be seen in section II’s presentation. The only problem of the 
SAM method with respect to reliability is the use of the MTO-bit and the switching 
table, which are unprotected and thus susceptible to errors. A 4-way set associative, 
64kB cache memory, with a block size of 32 Bytes would be similar to the one 
described in [1], with the exception that it is a set associative cache memory. 
Moreover, although the memory from [1] uses direct mapping, it provides four 
blocks in a row in order to be used for remapping, thus resembling a set-associative 
organization. The SAM algorithm with a switching table capable of sustaining 1536 
faulty blocks (75% of the whole memory) introduces an overhead of 10062 bits, 
which represent less than 1.92% of the size of the cache memory. 

 
 

 

Figure 5.16: Overhead improvement 
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Figure 5.17: Performance improvement 

 

 

Figure 5.18: Improvements obtained 

One potential disadvantage of using the SAM method is the vulnerability to 
errors of the L-bits, MTO-bits and Switching Table, because they have no 
redundancy support. This can be corrected by the use of even a triple modular 
redundancy for the vulnerable elements, with a total area overhead of under 6%, 
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which will further improve their reliability. This disadvantage is not particular to 
SAM: every chip that has an integrated BIST with no self-testing capabilities has the 
same vulnerability. 

The advantages of using SAM for Yield improvement instead of that 
presented in [1] are: 

• Knowledge regarding the physical architecture is not required in order to 
implement the method 

• SAM can be applied to any physical implementation of a memory chip 
• SAM is able to deal with clustering faults 
• The worst case scenario for SAM depends on the switching table size and 

can be avoided by increasing the size of the switching table. In a worst-
case scenario the method described in [1] can fail after a just 4 errors for 
the above-described memory 

As a comparative analysis between these two methods (SAM and [1]), in 
terms of yield improvement without taking into consideration the logic overhead, we 
can say, based on [8] and [1], that for a cache memory as the one described in 
section IV.C, the method described in [1] can sustain a maximum of about 800 
faulty cache blocks with no added redundancy, while SAM can sustain a number of 
1536 faulty blocks (an almost double quantity). The only potential drawback 
consists of introducing the switching table that is susceptible to errors. 

By reducing the number of switching locations, we can still maintain a high 
yield and decrease the area that is vulnerable to errors. For the memory described 
in section 5.2.5, as can be seen by inspecting Figure 5.16, if we limit the number of 
locations in the switching table to 1000 we can assure that even in the presence of 
2000 faulty blocks the cache is still functional. This is, of course, not the worst case 
scenario, because we still have a probability that the faults that will appear 
afterwards can still be mapped; this way, the number of supported faulty blocks can 
be further increased. The number of faults is taken according to a uniform fault 
distribution within the memory, which usually provides a lower yield for a 
mathematical analysis [37]. 

5.2.8 Conclusions 

The main contribution of this section consists of introducing three methods 
for reducing the negative impact of the switching table for the Self Adaptive Cache 
Memory (SAM) method, in terms of overhead and performance. We change the 
switching table when encountering one of the following three cases: if the healthy 
cell in the second column becomes faulty, if there is a reduction of the set 
associativity, and if a faulty cell appears in the same set as a location from the 
second column of the switching table. 

The simulation results have shown that the number of entries can be 
reduced up to 68%, with an actual reduction of the switching table size of over 
37%. Accordingly, we have achieved an improvement in both the size and speed of 
the switching table. With regard to performance gains and reduction of time penalty 
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introduced by the switching table, we have shown that we can reduce the time 
penalty with up to over 80% in comparison with the SAM version presented in [8]. 

The reliability improvement of SAM with these modifications of the switching 
table remains the same as in [8]. As described in [36] for a memory without SAM 
the cache system reliability is R=1–p, where p is the probability of a faulty block. 
Whereas if the SAM mechanism is added, the reliability becomes R=1-p(k-1)∙n+1 [8], 
where n is the number of sets in the cache memory, and k is the numbers of lines 
per set. 

Also we have shown that the application of SAM is not limited to the 
increase of reliability of a cache memory, it can also be used to increase the yield of 
the memory chips. 
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