

“Politehnica” University of Timisoara

Distributed Mailing System

PhD Report I

Patrik Emanuel Mezo PhD Student

Prof. Dr. Ing. Mircea Vladutiu PhD Coordinator

Patrik Emanuel Mezo Distributed Mailing System

Patrik Emanuel Mezo Distributed Mailing System

 I

ABSTRACT

This PhD Report describes the research activity carried on as part of the

doctoral program entitled “Distributed Mailing System”. It describes the

research activity carried on as part of the second year of the PhD program.

Peer-to-Peer network infrastructure lies between the communication layer

(network protocols) and the complex architectures that combine several

standards in achieving structural stability in such unpredictable environment.

This Report work presents the research directions of handling email

architectures over the Peer-to-Peer network infrastructure. Traditional email

architectures rely on server-centric design, having dedicated buildings for

storage and trained personal for managing such complex system designs,

resulting in high service costs. We intend to build an alternative for this

architecture implementation, which relies on personal computing resources

such as: bandwidth, computing pow er, storage space, etc. This enables each

peer to effectively contribute to the mailing system according to the real

evaluation of its resources, therefore increasing overall application performance

and reliability.

Patrik Emanuel Mezo Distributed Mailing System

 II

TABLE OF CONTENTS

1. Introduction ... - 1 -

2. Peer-to-Peer ... - 3 -

2.1 Peer-to-Peer Framework .. - 4 -

2.1.1 Peer-to-Peer Overlay Framework .. - 4 -

2.2 Peer-to-Peer Mailing Architectures .. - 6 -

3. Distributed Mailing System (DMS) .. - 9 -

3.1 Preliminary Assumptions ... - 9 -

3.1.1 Architectural Preliminaries .. - 9 -

3.1.2 Metrics Preliminaries ..- 10 -

3.1.3 Service Primitives ...- 12 -

3.1.4 Store Primitive ...- 13 -

3.1.5 Delete and Garbage Collection Primitives ..- 14 -

3.1.6 Fetch and Append Primitives ...- 15 -

3.1.7 Read Inbox Primitive ...- 16 -

3.2 P2P Email Mechanism ... - 16 -

4. Interoperability solution between Peer-to-Peer and Client-Server based

mailing systems ... - 19 -

4.1 Architecture Implementation ... - 20 -

4.1.1 RFC Connector ..- 21 -

4.1.2 Peer Connector ...- 22 -

4.1.3 Address Store Centralization Unit..- 23 -

5. Conclusions ... - 25 -

5.1 Experimental Results ... - 25 -

5.2 Conclusions .. - 26 -

References………………………………………………………………….- 29 -

Patrik Emanuel Mezo Distributed Mailing System

 III

TABLE OF FIGURES
FIGURE 1 OVERLAY TRANSPARENCY FOR OTHER APPLICATIONS .. - 4 -
FIGURE 2 DMS ARCHITECTURE OVERVIEW .. - 10 -
FIGURE 3 UPTIME PREDICTION EVALUATION ... - 12 -
FIGURE 4 INTEROPERABILITY SCENARIO BETWEEN P2P AND CLIENT – SERVER BASED MAILING SYSTEMS

 ... - 20 -
FIGURE 5 INTEROPERABILTIY INTERFACE BETWEEN P2P AND CLIENT-SERVER BASED MAILING SYSTEMS -

21 -
FIGURE 6 NUMBER OF EMAIL REPLICAS, N = 10000 .. - 25 -
FIGURE 7 AVERAGE EMAIL AVAILABILITY/DAY .. - 26 -
FIGURE 8 DOWNLOAD SPEED ... - 26 -

file:///C:/Documents%20and%20Settings/Administrator/Desktop/raport%20v2.docx%23_Toc310970412
file:///C:/Documents%20and%20Settings/Administrator/Desktop/raport%20v2.docx%23_Toc310970413
file:///C:/Documents%20and%20Settings/Administrator/Desktop/raport%20v2.docx%23_Toc310970414
file:///C:/Documents%20and%20Settings/Administrator/Desktop/raport%20v2.docx%23_Toc310970415
file:///C:/Documents%20and%20Settings/Administrator/Desktop/raport%20v2.docx%23_Toc310970415
file:///C:/Documents%20and%20Settings/Administrator/Desktop/raport%20v2.docx%23_Toc310970416

Patrik Emanuel Mezo Distributed Mailing System

 IV

Patrik Emanuel Mezo Distributed Mailing System

 Page - 1 -

1. Introduction

 Originally the internet was shaped in a Peer-to-Peer (P2P) manner,

where every participant to the network was treated as equally, not in a

master/slave or client/server relationship [1]. The first breakthrough that made

internet possible was the ARPANET design in the late 1960’s. The goal of this

network was to share computing resources over the U.S. The challenge was to

integrate different kinds of network to a single one network architecture.

 Now, the internet is a shared resource, a cooperative network built out

of millions of hosts all over the world. There are millions of applications that

want to use the network, placing strain on the most basic of resources:

bandwidth [2].

 An important element of our society is communication. Since the

beginning of men kind, people have been trying to develop new ways to

interact. As society evolved, so did communication skills. A definition of

communication, suggest that it is a process of transferring information from a

person to another. The tools of communication may involve writing, drawing,

sound or even gestures.

 Nowadays one of the most common communication tools is electronic

mail (e-mail or email). Built on a server – centric architecture [3], the mailing

system relies on two concepts: client and server. An email client is a front-end

application that connects to an email server facilitating the operations of

reading, sending and deleting email content. The term server describes here a

complex architecture, where several entities are grouped together to coordinate

processes such as: receiving, storing, replicating and delivery of email content.

Managing modern mailing architectures implies also an increased cost in terms

of: dedicated buildings distributed geographically and specialized trained

personnel for maintenance and quality of service.

 Considering the overview presentation, we propose new architectures

designs, where every personal computing resource contributes to a single

application system and becomes a part of it. We entitled our work: “Distributed

Mailing System (DMS)”, through which a complex mailing architecture design

was shaped by combining both the peer behavior, in terms of time spend over

the internet, and computing resources evaluation methods. The distributed

mailing system has no central unit managing connections and email content.

There is no central server designed to serve a certain task. All peers (computing

systems) fulfill the client and server part, where the whole system resources

rely on end user computing systems. Based on the P2P technology, such as [4-

Patrik Emanuel Mezo Distributed Mailing System

 Page - 2 -

9], users have been able to harness their computer resource to a global

community. We want to adopt the same technology to shape a network

architecture design, where attempts to centralize elements within a

decentralized system were made.

The domain of this Ph.D. thesis relates to the aspect of designing an e-

mail system where the entirely data and communication relies on end user

systems and compatibility with other mail systems is maintained.

The first direction of research sets the basics for distributed mailing

systems, such as proposing a network architecture design for load – balancing

data availability in a stable environment. Further, our goal is to build the

proposed system from cluster to network architecture layer for an unstable

distributed network environment, as outlined in this report.

 The second direction of research is to design a protocol below the one

used for e-mail communication layer, for load – balancing network

communication between distributed network parties.

 The proposed thesis enrolls under the Distributed Computing domain

addressed by the sub - domain of Distributed Computing Architecture domain

and Distributed Computing Cluster domain.

Patrik Emanuel Mezo Distributed Mailing System

 Page - 3 -

2. Peer-to-Peer

 The P2P concept denotes a network architecture model above the

physical network structure. The participants that architect the system are called

peers and in most cases they are represented by personal computers that share

resources such as computing power, bandwidth and storage space. The P2P

concept was first introduced in file sharing applications, continuing its presence

afterwards in other fields such as: VOIP, mailing systems, social applications,

etc.

 A number of implementation attempts were pursued to harness the

resources of peers in several architecture designs among which we bring to

attention the following: Gnutella [4][5], Freenet [6], Kazaa [7][8], and eMule

[9]. With the demand of scaling at a large number of peers, the above

mentioned architectures presented some structure flaws: one lookup query was

limited by a time-to-live descriptor (Gnutella, Kazaa) and the entire peer

community could not be mapped onto a single identifier space or reached from

any point of access in the architecture model.

 As a response, the following designs were developed to overcome these

flaws and improve on existing features. We mention here CAN [10], Pastry

[11] [12], Tapestry [13] and Chord [14]. Even if the whole peer community was

mapped onto a single identifier space and queries were precisely addressed at

any point of architecture map, there is still need to highlight peers with certain

properties into different architecture location while maintaining interconnection

lookup to a minimum possible.

Patrik Emanuel Mezo Distributed Mailing System

 Page - 4 -

2.1 Peer-to-Peer Framework

One of the main issues raised during P2P applications development was

concluded in terms of network accessibility, each peer being able to

communicate within a limited TTL (time-to-leave) search area. Two

approaches have solved this issue: hybrid P2P designs and overlay network

layers. The first solution provides server-centric elements for managing the

coordination of certain peers within the network, while the second one handles

the peer community into a single identifier space, through which peers are able

to perform queries correlated to keys from the same space. Because hybrid P2P

networks do not specify a standard according to which peer should connect and

communicate, and every implementation has its own structural performance

contribution, we will discuss only the overlay framework platforms.

2.1.1 Peer-to-Peer Overlay Framework

The overlay architecture concept was designed as a framework for

applications situated above the overlay layer, such as file sharing or VoIP

applications (Figure 1). An application on top of the overlay framework handles

queries only at key level. The overlay framework underneath the application

layer provides transparency between keys and the network transport addresses,

handling tasks such as: lookup methods, stabilization, fix_finger_table, etc.

Chord is a structured P2P overlay network built on top of a ring model. Both

nodes and keys are mapped under the same identifier space using a consistent

hashing method [15]. The ring model can be viewed as a modulo 2
m

 identifier

space, where joining nodes are ordered from 0 to 2
m

-1. The available data

stored under the Chord overlay is represented through hashing data IDs and

obtaining a unique key ID in the identifier space, placed at the node with the

same ID (or under its successor, if the node isn’t present). The value of m

Application
Layer

Chord
Overlay

Application
Layer

Chord
Overlay

Application
Layer

Layer

Chord
Overlay

Peer Peer Peer

Figure 1 Overlay transparency for other applications

Patrik Emanuel Mezo Distributed Mailing System

 Page - 5 -

should be chosen to fit a large amount of joining nodes in the identifier circle

and thus preventing that two IP’s or keys from the identifier space have the

same hash ID. Each node from Chord is linked to its successor and maintains a

list of size r of nodes following it in the ring. To accelerate the routing process,

nodes in Chord point to a list of at most m successor nodes called a finger table.

If node n points to the i
th

 entry from the finger table, then this entry designates a

node located 2
i
 succeeding nodes away from the current position, where 1≤i≤m.

 When a new node joins the network it asks an existing node from the

Chord network to find an entry point in the ring. The existing node hashes the

new node’s IP and through the remote call of

new_node.init_finger_table(existing_node), it provides the new node with the

information needed for joining the Chord network. At this moment the other

nodes joining the network must be aware of the newly joined node by updating

their finger table through fix_fingers() procedure. The stabilization() procedure

ensures that a predecessor link is set to the newly joined node and new

predecessor link is set for its successor to notice the presence of the new node

in the Chord network. The periodical call of the stabilization() procedure

ensures scaling Chord under churn through maintaining a valid finger list for

each node participating to this overlay network.

There are several hierarchical implementations that focus on the necessary

extensions to fit the demands of the original Chord protocol. The main

principle, applied by all existing solutions for their hierarchical approaches, is

to represent a hierarchical depth level by another tier, which is different than

the original tier that lies closer to the base level of those implementations.

The Crescendo [16] solution consists of several interconnected ring

implementations, where some nodes from each ring point to each other to

obtain an ordered distribution of keys per whole identifier space. Features of

load-balancing, fault isolation, hierarchical storage control and storage access,

are presented additional to the architecture design.

The architecture design presented in [17] provides a hierarchical

implementation based on two tiers. The base Chord overlay coordinates the

second level depth of other overlays. Only the nodes that earned the property of

Super Node can coordinate other overlays within the base overlay. One Super

Node coordinates the second layer depth overlay through an additional set of

finger table and successor list to keep track of the second level depth queries.

 Another approach [18] handles the hierarchy in a concentric manner.

The highly reliable P2P system called HIPEER represents the overlay that

handles the other hierarchical overlays situated above it.

The approach used in [19] handles the hierarchy on top of a base overlay.

Links are built between several level depths with controlled cost, a lookup

Patrik Emanuel Mezo Distributed Mailing System

 Page - 6 -

operation between two hierarchic overlays being the amount of the total hops

needed for travelling to one level depth to another. If a node joins the network,

it must first join the base overlay, and then to continue until it reaches the

corresponding upper level depth.

2.2 Peer-to-Peer Mailing Architectures

Initially designed for academic purposes, the email application has become
one of the most used tools that modern society has adopted at daily basis. Due to
its original purpose, the email architectural structure has encountered several
changes over time. Current mailing systems are built over a server-centric
network architecture. The common model adopted for implementing email
operations is store and forward. The mail user agent (MUA) represents the
interface between the user and the mailing system. The transparency between
the MUA and the mechanism behind the mailing process is gained through the
coordination of several mail transfer agents (MTA). Through their cooperation,
the MTAs assure several processes such as: receiving, storing, replicating and
mail delivery to the local MUA via MTA. Hence, the whole mechanism is built
according to a store and forward model, through which mails are forwarded until
they reach destination (MUA or MTA).

Modern mailing systems architecture employs MTA at cluster level, where
performance is gained by accessing and managing the whole architecture
through distributing tasks among cluster resources. This approach has solved
several design issues such as: data replication, location services, network
availability or load balancing tasks, but with an increased cost. There are also
scenarios that overcome the actual mailing architecture design [2][20] including:
accessibility issues when a cluster lies behind an access link that is severed or
flooded, storage stress due to multiple attachments and server processing stress.

The existing P2P mailing architectures were developed to overcome the
issues that current mail architectures have to deal with. The main idea was to
shape a system where the entire architecture depended on personal computing
resources in a decentralized manner. Some of the implemented solutions were
designed over the framework provided by overlay networks [10-14], through
which mailing systems were developed to rely on homogenous computing
resources from the identifier space. Other implementations were developed on
hybrid architectures, combining the property of decentralized architectures with
the server-centric design.

Current P2P mailing solutions were developed in both hybrid and overlay
concepts. The first solution was able to coordinate peers through the presence of
server-centric entities, and the second one mapped the entire community into a

Patrik Emanuel Mezo Distributed Mailing System

 Page - 7 -

single identifier space, through which peers assigned each query to a key
correlated with the same identifier space. All the solutions were designed to
maintain the same functionalities as the traditional server-centric architecture.

The solution presented in [3] was developed under the mobile-object
paradigm. The mailbox is represented through an object that travels on the live
network to ensure data availability. A second mobile object defined here is the
dispatch unit, which holds information about the available active machines on
the network. A computer system that goes offline must first upload the mailbox
objects to the available systems on the network specified by the dispatch unit.

The approach used in [21] represents one of the best solutions concerning the
P2P mailing architectures. The proposal was developed over the Chord overlay
[5] placing inboxes at a precise key in the identifier space. For security issues,
the authors employed the services of an external certificate authority, each user
being able to identify itself for retrieving mail data over the P2P network
architecture.

The mailing architecture design in [22] was developed over a hybrid P2P
network design. The proposal offers authentication and location services under
the coordination of a server-centric entity. The network architecture is structured
according to community validation, each community consisting of a number of
nodes linked to a super node. The MTA property is fulfilled from the super node
side, all messages travelling first at this layer and after then being forwarded to
the other nodes linked to the MTA node.

The solution presented in [23] was developed over an overlay network layer.
It offers a pull-based solution, where each peer keeps track of the mail content
marked for sending purposes and places over the overlay only a notification for
the receiver to download the mail content from the sender side.

Patrik Emanuel Mezo Distributed Mailing System

 Page - 8 -

Patrik Emanuel Mezo Distributed Mailing System

 Page - 9 -

3. Distributed Mailing System (DMS)

Our mail architecture model uses the concepts found in [21] [22] and is

developed over a hybrid P2P network design. The architecture is structured

according to a community validation, each community being composed of

several super nodes; each super node managing a limited number of other nodes

called entity nodes. Each compound of the communities that address the same

location identifier has a member in its community that is addressed by a server-

centric element. If the destination of one’s email receiver is out of the sender’s

super node range, it contacts the member community for querying the sender

address. Our proposal does not replicate mail data content over the nodes that

are currently online. It uses a prediction method for synchronizing the data

across entity nodes over a limited uptime interval.

3.1 Preliminary Assumptions

3.1.1 Architectural Preliminaries

The architectural model used for designing our mailing system relies on the
concept used in [24], describing an interconnected multi-ring topology (Figure
2). Each network ring model defines a community through interconnecting
nodes that present higher system resources than ordinary network participants
(entity nodes - E), called super nodes (SN). The interconnected rings are
distributed over the network according to an external location service such as
MaxMind [25]. Through the GeoIp tagging, we can clearly distinguish across
the network which nodes should interconnect and which should not, according
to the information provided by MaxMind: hostname, country code, country
name, region, region name, city, area code, etc. To prevent unnecessary
bandwidth usage, queries over the rings take place only by local area limitation
(TTL - limited) described in [25]. To overcome those limitations, a dispatch ring
community is present in every location area, being addressed and managed
through an external service of domain name service (DNS) [26]. Hence, every
query addressed outside the local area limitation is directed to the dispatch
community, ensuring optimization of network usage.

Three types of network links are handling communication in our design:
external, internal and local connections. The external links are used for
interconnecting ring topologies, links sustained only from the super nodes
participants. The internal links are used for connecting super nodes inside a ring
and to lower the time needed for propagate a query inside the ring. The local

Patrik Emanuel Mezo Distributed Mailing System

 Page - 10 -

connections are held between entity nodes and super nodes for assuring load
balance among email operations and maintaining the mail service alive.

In Figure 2 we can clearly distinguish between the links used for
interconnecting mail system parties to the network service. The dashed lines
represent the external links, the dotted ones the internal links and the ones with
grey represent the local connections with entity nodes. Among the information
provided by MaxMind, we can clearly distinguish the membership of one node
to one certain country and the region inside that country. Because limited TTL
broadcast messages are used in our mailing network architecture, we limited the
community connections to the same region code. Only dispatch communities
can perform connections to other communities from different region codes, but
under the same country code and only between dispatch communities. If one
query aims higher than the country distance limitation, than it asks the dispatch
community to address the destination address through the external service of
DNS, to which all the dispatch units are registered with a limited number of
super nodes members from each registered community.

3.1.2 Metrics Preliminaries

Grouping unstable network parties together represents a major challenge for a
system that is unstable itself. The factors used in deciding which participant to
the mailing architecture gains the property of super node after a self evaluation
process, are: bandwidth, uptime, shared space and computing power. For each of
the considered metrics, evaluative score points are assigned, the final result
being computed according to a weighted average formula.

Bandwidth (as a metric) is expressed in terms of download and upload

speed. Typically, internet service providers (ISPs) assure higher download

speed than upload because they have designed their systems to optimize

download speeds [27]. Under these circumstances, in our architecture design

we evaluate the bandwidth measurement according to a weighted average, the

Dispatch
Community

SN

SN

SN

SN

SN

SN

SN

SN

SN

SN

SN

SN

SN

SN

SN

SN

SN

SN

SN

SN

SN

SN

SN

SN

E

E

SN

E

-Super Node

-Entity Node

Dispatch
Community

SN

SN

SN

SN

SN

SN

SN

SN

SN

SN

SN

SN

SN

SN

SN

SN

SN

SN

SN

SN

SN

SN

SN

SN

E

E

(1) (2)

Figure 2 DMS Architecture Overview

Patrik Emanuel Mezo Distributed Mailing System

 Page - 11 -

upload speed being offered a much higher weight.

Each participant should contribute to the mailing system by sharing some

percentage of its disk size. The shared space represents a small piece of the

system’s database. The mailing system is designed according to the concept of

a network attached storage (NAS), constructed from small sizes of disk spaces

that each user is willing to share. Unlike the NAS architecture, where disk

storage failure is controlled, watched and managed, DMS storage comes in a

variable and uncontrollable way. The shared space structure remains abstract

for this research.

Regarding the computational power, there are several systems that have

different hardware configuration. Computing power will be tested in time, to

see how a peer handles its participation to the system. This will test how many

threads a computing system can handle, access time to the local disk, memory

availability, etc. Periodically the application tests the CPU workload and how

much memory is required by the main application process.

Uptime represents the key factor in data caching and replication. To provide

a solid foundation for grouping participants, we designed the mailing

architecture according to an uptime availability prediction. The concept found

in [28] provides a thorough analysis of peer availability prediction over the

network. The concept of the inspired work relies on the number of counts per

time interval sent periodically from the peers that are still up in the network,

letting the peer neighbors know the current state of uptime availability over a

period of time. The count unit is measured according to a time slot of five

minutes, generating a 12 time slots per hour, 288 time slots per day. The

method used in [28] could generate a good prediction within an interval of a

week.

We designed our uptime availability as an average mean of a time slot of 60

minutes generating 24 time slots per day. Our concern remains only to predict

what are the chances that a peer is available on the network at a certain moment

in time. In an unstable network architecture design, one cannot predict precisely

the moment when a peer will be up and running. Hence, we are only interested

in finding the total number of peers across a community needed for caching and

replicating data across an interval of 24 hours time slots. The history

background for providing a good analysis of uptime availability prediction is

provided in 5 days of peer observation.

Figure 3 represents one example of our method of analyzing uptime

prediction of a certain peer. Assuming that the highest score point for a time

slot of one hour is 10 (a full range of 60 min), at day N – 1, the peer has

obtained the score of 3.5 at 00:00 AM and 5.5 at 23:00 PM. But the next day

the same peer has gained the score of 4.5 for both the same time slots. A mean

Patrik Emanuel Mezo Distributed Mailing System

 Page - 12 -

value is then computed and the final result remains 4 for the AM time slot and 5

for the PM time slot. The score points can vary according to the contribution of

the peer to the mailing system.
Also the work present in [28] provides an analysis of peer availability

through the use of BitTorrent, an application which holds 53% of all P2P traffic
on the internet. Measurements were taken at geographical distribution level,

acording to MaxMind [25], yielding in 191 countrys tested with an average
availability of 28.39%. The analyzed uptime availability was different for each
timezone, fact that provides a good foundation for grouping participants
according to the location services for our implementation design.

The final score point evaluation is computed according to a weighted
average, where the uptime has the greatest weight:

3.1.3 Service Primitives

Throughout the evolution of traditional mail protocol, the RFC standard
format [29] has permanently changed, from the beginning of the mailing service
until today. To adapt constantly to the newest protocol available on the market
and to assure compatibility with the traditional mailing systems, our architecture
was designed to perform intercommunication between peers according to a self
developed protocol, maintaining the RFC format as an interface between the
MUA and every peer joining our architecture design. The concept was also used
in [23], and the interface was built according to a local SMTP/IMAP server
which kept the compatibility with the MUA client according to the newest RFC
standard format.

Being able to perform the simplest mail operations (send and receive), we
have to define the service primitives that help building the tasks: store, delete,

Day/Hour 00:00 … 23:00

N -1 3.5 5.5

N 4.5 4.5

Day/Hour 00:00 … 23:00

N 4 5

Figure 3 Uptime Prediction Evaluation

10

*2*2*24* __ powerComputingspacesharedbandwidthuptime ScpScpScpScp
ScpE

Patrik Emanuel Mezo Distributed Mailing System

 Page - 13 -

fetch, append, read inbox and garbage collection. Throughout the mentioned
primitives, we highlight also unmentioned key elements that shape our
architectural design. For security purposes, we require the external services of
PGP keys [30] implementation, assuring data security and user privacy. We also
require that all user IDs append after the domain name, the country and region
code according to the MaxMind external service, for ease of identifying users
addresses among the communities that form our network architecture design (i.e.
user_id@domain.contry_code.region_code).

3.1.4 Store Primitive

Due to our three layered architecture design, we define a store primitive for
each of the following: dispatch community layer, community layer and entity
layer.

Throughout the community layer, lower peer elements (communities or
entities) are being managed. Hence, data availability and load – balance features
are defined through the presence of the internal connections between super
nodes. Every super node must replicate its data according to the prediction
method presented in section III. Because the final computed score point
highlights only peers with super node property among communities, a thorough
evaluation is performed to fulfill the availability feature. Therefore, score points
that represent the lowest unit (hour unit) are used. One super node must replicate
its data according to a 24 hour score point interval. The process is performed
randomly across the community, resulting the internal community links.
Through the presence of the internal links, a two-sided load-balancing feature is
gained, for data and communication. Load balancing is gained through caching
replicas among a limited number of super nodes; and through lowering the time
needed for a query to travel in a community.

The difference between dispatch and the lower layered community is the
caching content and the amount and type of queries. The dispatch unit is the one
who manages lower layered communities in the same region code provided by
the external service of MaxMind. Therefore, it only performs connections with
the lowered and other dispatch communities. The dispatch community manages
information regarding the area region code for which it is responsible, concluded
in: all user region IDs, public PGP keys and lists recording the community
address for each registered user (limited number of super nodes). Also, the
dispatch unit purpose is to perform load - balancing among queries aimed at the
same level, and not to forward them to the lower communities.

Each lower layered community manages its information according to the
present number of entity peers. Hence, information is distributed among
community units, data replication occurring only inside communities and not

Patrik Emanuel Mezo Distributed Mailing System

 Page - 14 -

between them. The information that resides in every community is concluded in:
public PGP keys of each peer connected to the same community, individual lists
of received mails, individual lists of peer score point evaluation (score point
table - SPT), and individual lists of the last sent mail addresses in a MRU
manner (most recently used). All the information is replicated among super
nodes according to the method presented in section III. At this layer level, the
super nodes interconnected with the scope of replicating data across the
community, are also building lists with entity nodes addresses according to the
24 hour validation, forming the storage availability table (SAT). This is mainly
done in the idle time, when no requests (or very rarely) of email operations take
place. The storage table is used for replicating data among a limited entity peers
that together provide a 24 hour data availability according to their score point
evaluation.

3.1.5 Delete and Garbage Collection Primitives

The delete primitive is implemented according to each of the following
layer’s validation: entity node, community and dispatch community. The delete
operation can be triggered from the user side through erasing email content by
reading inbox (store and forward mailing property); or by the garbage collection
primitive, when no activity from the peer side was registered for a period of
time.

When the read inbox operation takes place, the user only requests the email
content from few number of entity peers available on the network at a certain
moment in time. During the download of email content, the sender peers
automatically mark the sent item as ready for deletion. After the upload is
completed, the entity peers delete the email that was earlier sent to its receiver
and inform the community that the email was successfully sent to its destination.
The community stores this information for signaling other entity peers, that
shared the same sent email content, to delete this item from their shared space
when logging into the mailing system.

The content of every email that was previously sent to its destination, is
stored among a few number of entity nodes managed from the community
where the sender logs in. If the email marked as unread is never read by its
receiver, it is automatically erased by both the community and the caching entity
nodes sides. This is done through assigning both the header and email content
with a number of counts (measured in days), that both community and entity
nodes decrement, when a day passes by. When the number of counts reaches
zero, the email content is automatically deleted.

At the dispatch community layer, information regarding the user and email
inbox is handled. The inbox entries are marked also with the count of days. The

Patrik Emanuel Mezo Distributed Mailing System

 Page - 15 -

super nodes being in charge of holding ones email inbox, browses daily the list
marking each entry with a decrement of one, deleting also the entries that have
reached zero value. Also, the group of super nodes being in charge of managing
and building the SAT tables, are performing daily the validation of each peer
score point evaluation. If no score point is registered according to one day
validation, the final score point is computed with the average mean of zero
value. When the final score point of one peer is equal to zero, the peer is marked
with a count of days. After the count reaches zero and the peer has not registered
to the mail service, it is automatically deleted from the community database.

When a user is deleted from the community database, the unit in charge must
announce its deletion from the dispatch community also. The dispatch
community performs the deletion operations only at the same registered area
region community that the dispatch community is currently managing.

3.1.6 Fetch and Append Primitives

The fetch and append primitives define the operations of sending and
retrieving items through queries addressed among the peers that form our
network architecture design.

The fetch primitive is used when information is required between
communities with no specified destination address. Before replicating the email
content among the entity peers specified through the SAT validation, the
community must first know the receivers public PGP key, according to which
encryption takes place; and the receivers community address (number of super
nodes that handle the community, within the receiver logs in). The super node
handling the sender, is verifying first the receiver’s country and region code
appended after the domain name, in the specified user id. If both the country and
region code match the community’s region code, the fetch operation takes place
through queries addressed as broadcast messages. If one of the country or region
code are different from the hosting community, the dispatch community is being
addressed to forward the query. If the dispatch community is unreachable, the
super node from the hosting community uses the external services of DNS,
being able to reach one of the super nodes that form the dispatch community.
Every query addressed outside the hosting community, contains in its header the
sender address of the requesting super node. When the query reaches
destination, the receiver can directly address the sender through the information
specified by the header.

The append primitive, usually takes place after a fetch operation, with a well
known destination address. After the process of replicating the encrypted email
content on the entity nodes, the super node handling the sender connection is

Patrik Emanuel Mezo Distributed Mailing System

 Page - 16 -

now appending the notification (with the addresses of entity nodes replicas) to
the community where the receiver logs in.

3.1.7 Read Inbox Primitive

The read inbox primitive occurs between the MUA client and the interface
provided by the DMS service application. The interface is hosting the local
SMTP/IMAP server, and communicates with the MUA according to a specified
RFC protocol format. We are using this implementation for an ease of updating
the protocol according to the latest version available on the market. Hence, when
an update is available for the RFC protocol, we require only to update a small
amount of data for better quality services.

When the user downloads its email according to the list of received emails
headers available on the hosting community, it also deletes the email content
from the entity nodes. We implemented our mail service as being one of the
store and forward type. Therefore, the user’s MUA is in charge of replicating
downloaded email content on the computing machine that served as a peer to
our architecture design.

3.2 P2P Email Mechanism

For sending and receiving email content through our network architecture
design, we appeal to the primitives defined in Section IV. We exemplify the
email operations through the architecture overview present in Figure 1. For
further explanation, both the users computing machines are evaluated from the
DMS system as being entity nodes handled from different community locations
(same operations take place if the computing systems are evaluated as super
nodes). The steps needed for sending an email m from sender S handled from
community 1 to receiver R from community 2 are explained in the following:

1. The user sends his email via the MUA client that connects to the DMS
interface application (local SMTP/IMAP server) by specifying in the sender
field the receiver’s R user ID, domain name, country code and region code
(R_ID@domain.country_code.region_code).

2. The peer property of the sender’s user machine, evaluated as an entity
node, makes the request of sending email content to the upper community layer.

3. The super node from the community that currently handles S connections,
verifies if the country and region code matches its current location. In this case
only the region code is different from the current location, and the super node
forwards the request as a fetch operation to the dispatch community.

mailto:R_ID@domain.country_code.region_code

Patrik Emanuel Mezo Distributed Mailing System

 Page - 17 -

4. The dispatch community receives the super node’s fetch request and
verifies if the specified location address is handled from one of the neighbor
dispatch communities. If there are no links with the desired dispatch community,
the fetch operation reaches its destination according to the external services of
DNS. In this case the requested community is directly connected to the dispatch
unit that matches the fetch operations request, and the query is forwarded to it.

5. The dispatch unit matching the same location ID as the receivers email
address, responds to the super node that it initiated the fetch request operation
with the community address that handles R connections and its public PGP key.

6. The super node receives the information according to the fetch operation,
and responds to S with the public PGP key and a list of entity nodes according to
the SAT evaluation for replication purposes.

7. S encrypts the email content according to R’s public PGP key, and starts
the replication operation with the entity nodes provided in the SAT table.

8. After the replication process, the super node appends the notify header to
the community that currently manages R’s connection. The header is also
encrypted according to R’s public key.

9. R performs the read inbox operation and downloads the email content from
the entity nodes that currently are online in the network in the community where
S has sent the email content.

Patrik Emanuel Mezo Distributed Mailing System

 Page - 18 -

Patrik Emanuel Mezo Distributed Mailing System

 Page - 19 -

4. Interoperability solution between Peer-to-Peer and Client-

Server based mailing systems

Analyzing the previous work on P2P mailing concepts, we have identified

the need of implementing an interface compliant with the traditional mailing

design (based on the server-centric model) and also with the commonly used

mail client applications. The interface is built in the manner of splitting the

connections used for the RFC standard format from the internal P2P

communications. Also the shared space through which each peer contributes to

the mailing system is considered at an abstract level for providing a reliable

foundation for the P2P application concept. We encourage this way that future

implementations of P2P mailing implementations will also rely on a self

developed protocol format without the concern of inter-compatibility with the

traditional mailing concept based on a server-centric manner.

The mailing system represents a complex infrastructure of a series of

precisely aimed tasks. Figure 4 shows a possible scenario for interconnectivity

and communication within a mailing system. For an ease of understanding we

have represented all the components that help clarify the mailing tasks outside

the internet cloud. Naturally, one email provider has its data centers distributed

according to geographical distribution (e.g. google.com [31]) to assure certain

agreements, such as: service uptime, store and data availability, service

performance, etc. In this example we use elements from different internet

service providers (ISPs) to illustrate the mechanism of interoperability.

As previously mentioned before, the task of sending/receiving an email

content is fulfilled at an abstract level by both the mailing client and the server

side. If user 1, that uses the traditional mailing system, wants to send an email

to user 2 from the same mailing service type, its mail client application contacts

first the assigned mailing server for that purpose. The mailing server performs

an mx-lookup to retrieve the mx-records from the domain name system (DNS)

service [25] according to which it finds out the user 2 destination server.

Usually the requesting mail server takes the mx-entry with the highest priority

and tries to establish a connection with the user 2 receiving server. After the

connection was established according to the mx-entries, the server handling

user 1 email request, sends the content via SMTP protocol to the server where

user 2 is usually connecting and performing his daily mailing activities. When

user 2 wants to read its emails, it connects to the dedicated mailing server and

retrieves the new mails via the POP protocol.

The P2P mailing infrastructure still represents a new concept over the

network infrastructure, and because of the behavior of its peer members

(uptime is unpredictable) it is very hard to determine a fixed address of such

Patrik Emanuel Mezo Distributed Mailing System

 Page - 20 -

P2P

Email 1

P2P

Email 3

Mail Server 1

DNS Server

Mail Server 2

Gateway

SMTP

POP

SMTP

POP

The Internet

MX - Query

SMTP

SMTP

P2P

Protocol

Email

Client 1

Email

Client 2

P2P

Email 2

entities. Therefore, we present the situation in which the P2P mailing concept is

present in an institution [23] which lies behind a gateway with a fixed address

(IP address). For an inter-compatibility with the traditional mailing system, a

few number of peers must be registered to the DNS service as mx-hosts, and

also an implementation of an SMTP interface is required. Hence, when the

mailing process takes place from a traditional mailing system to a P2P

infrastructure or reversed, the same steps are performed: retrieving first the mx-

records, establish the connection with the mx-host and perform the sending

process of email content. When User 1, which uses the P2P mailing

infrastructure, is registered as an mx-host, receives an email with the

destination User 2 from the same mailing service type, it notifies the destination

user for new mail notification (if the notify feature is implemented). User 2,

than retrieves, according to the internal P2P mailing protocol, the new email

content.

According to the case study presented in this section, we will provide an

interface through which inter-compatibility with the traditional mailing systems

is gained, and further, it also provides a second functionality with the

commonly used mail client applications.

4.1 Architecture Implementation

The interoperability solution between P2P and server-centric mailing

systems relies on the interface presented in Figure 5. The interface separates the

protocol used under the RFC standard format from the internal protocol of

inter-peer communication. The RFC connector is used mainly for translating

email content from one side to another (P2P to/from RFC protocol) and for

providing compatibility with the traditional mailing system. Because we

encourage that P2P email content should travel according to a self-developed

protocol, for separating the RFC standard from the internal P2P

communication, we also provide a Peer Connector for that purpose. We provide

Figure 4 Interoperability Scenario between P2P and Client – Server based Mailing Systems

Patrik Emanuel Mezo Distributed Mailing System

 Page - 21 -

only solutions for the TCP/IP network layer; however, for any other protocol

implementations, which are positioned higher or lower than the one presented

in this work, the main process remains the same.

For handling the disk space every peer is willing to share, we provided the

necessary connections to all the elements that help handle our interface design.

The shared space, specified here as the address store centralization unit

(ASCU), is protected against concurrent writing, through the presence of both

reading and writing buffers (POP and PUSH). Because we implemented the

interface as an additional application which serves as a service for the users of

P2P mailing infrastructure, we have implemented the interface as a process

(main processing and control unit) that handles the internal blocks through

several operational tasks (processing threads) activated by the signals present in

Figure 2.

4.1.1 RFC Connector

The RFC connector specifies both the SMTP and POP connectors used for

communication with the traditional mailing system. The SMTP server interface

is used for receiving email messages content in an RFC standard format. If the

peer is registered as an mx-host, the SMTP interface binds to the assigned

gateway address, otherwise it uses the local host address (IP 127.0.0.1) only for

mail client connection purpose. When data is to be sent to this interface, signal

c1 notifies the request of storing data to the ASCU through the PUSH buffer.

Depending on P2P email protocol, the data newly arrived through this interface

is automatically adapted to the one used internally by the mailing system. If the

destination of newly arrived email represents the same peer host address, the

email content is also available on the POP buffer through signal c5 notification,

if the mail client application is also connected to the RFC Connector (POP

server interface).

LOCAL SMPT + POP SRV

POP PUSH
SMTP SRV.

POP SRV.

TCP CLI.

TCP SRV.

C1

C10

SMTP SEND N MAIL

TCP SRV. REQUEST N MAIL

MAIN PROCESSING

AND CONTROL UNIT

RFC Connector Peer Connector
ADDRESS/STORE CENTRALIZATION UNIT

SYSTEM

C8

C4
C6

C7
C9 C1

C5

C2
C3

ASCU

C10

Figure 5 Interoperabiltiy interface between P2P and Client-Server based Mailing Systems

Patrik Emanuel Mezo Distributed Mailing System

 Page - 22 -

The POP protocol is used for retrieving email content from the ASCU after

the authorization process of a certain mail client request. This interface only

binds to a local host address and its main purpose is to answer to the mail client

application request of retrieving new incoming mails. When the mail client

requests the incoming mails, the POP interface signals the ASCU to make the

new emails available on the POP buffer (c2 signal). Through the RFC

connector we have handled only the case of store and forward mailing system

property, hence when an email is retrieved through the POP interface signal c3

is also generated and its presence tells the ASCU that the emails that are being

retrieved from the mail client application side are also marked for deletion from

the shared space.

4.1.2 Peer Connector

There are several platforms through which the P2P mailing systems have

been developed and improved. We have considered the Peer Connector as an

abstract solution for either the hybrid or overlay platform implementation of

mailing infrastructure. Either the implementations, the Peer Connector must

consider both the shared space and RFC Connector as independent entities for

maintaining the compatibility and format according to the server-centric

mailing design. We have considered the TCP/IP network layer as being the

foundation of other protocols developed higher or lower than the one

mentioned in this paper work.

The TCP Client and Server perform two different tasks: intercommunication

between peers according to the used mailing architecture design and the

notifications used for sending/retrieving email content. We considered also the

situation when one peer lies behind a network address translation (NAT) server

, which combines firewalls and dynamic IPs for blocking connections inside the

protected network. In this case both the TCP Client and Server have the

property of retrieving and sending email content in a direct relation with the

ASCU and RFC connector entities.

When the TCP Client receives a new email content it notifies the POP

interface through signal c4 if the receiver mail address matches the peer who

handles this operation; or thorough signal c8 for storing the email content for

other peers that are not online or have not read their email for a while. For

retrieving an email according to the internal P2P mailing protocol, the client

signals the ASCU through the c7 signal for having the data available in the POP

buffer for transmission.

The TCP Server performs the same operations as the client: it notifies the

POP interface through signal c6 when the email has reached its destination, it

Patrik Emanuel Mezo Distributed Mailing System

 Page - 23 -

stores another peer’s email content according to signal c10 and is ready for

sending cached email content to another peer destination under the c9 signal.

4.1.3 Address Store Centralization Unit

The P2P concept implies most of the cases that participants contribute,

besides the computational power, with a certain percentage of disk space.

Regardless the operating system or carrier (mobile/desktop), the shared space

must be considered as a protected entity against failures that affect both the

consistency and privacy of data. Although for a mailing system, each email

content is protected according to the PGP (pretty good privacy) [14] method,

data consistency should also be consider as a reliable way of handling data

integrity. We have handled the ASCU entity as abstract in this paper work,

because every P2P mailing implementation comes with a self-developed

protocol through which data is also being handled according to a different

format.

Patrik Emanuel Mezo Distributed Mailing System

 Page - 24 -

Patrik Emanuel Mezo Distributed Mailing System

 Page - 25 -

5. Conclusions

5.1 Experimental Results

We have implemented our architecture design in an object oriented

environment, where both the entity and super node were handled as objects. We

tried to bring our simulation closest to the research provided in [28], through

which the users are being characterized though their behavior in time spent over

the internet. Hence, we analyzed the possibilities ranging from the user who

only remains logged in to the mailing service until it finishes reading emails

(0.1 probability), to the user with an increased spent uptime (0.9 probability).

Figure 6 illustrates the number of replicas, of one individual email sent

from the user to destination, over a number of entity nodes designated from the

super node, handling the senders connections, according to the SAT probability

prediction. The obtained results are higher in number of replicas than the other

previously researched solutions. We are aiming in obtaining solutions precisely

for situations in which all the participants act according to the uptime

probability described in Figure 6. Worst case scenario represents the case

within the participants are contributing to the mailing system according to the

probability of 0.1. Because in this case users log in to the mailing system only

for fetching email content, it is very hard to predict the moment according to

which the same process can take place the day after.

Figure 6 Number of email replicas, N = 10000

In Figure 7 we provide the availability analyses for the results obtained in

Figure 3 according to a time window of 31 days. To reach in practice, the

expected results can be interpreted at the probability corresponding to the 0.5 –

0.7 range of values. That is because the users cannot be described according to

one category of uptime probability. Hence, we provide a good foundation for

data availability under variable circumstances.

0

100

200

300

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

R

e

p

l

i

c

a

 Probability

Number of copies

DMS Others

Patrik Emanuel Mezo Distributed Mailing System

 Page - 26 -

Figure 7 Average email availability/day

Figure 8 Download speed

Figure 8 represents the bandwidth according to which email content can be

downloaded from a limited number of entity nodes from the receiver side. The

variation of speed for different cases of uptime probability marks the fact that

we rely mostly on uptime requirements than the bandwidth properties of a

certain entity node upon deciding the number of peers according to which

replication can take place.

5.2 Conclusions

This report paper presented a new concept regarding the mailing

infrastructure over a peer – to – peer network. We have shown a model of

interconnecting peers according to the location services and dividing them

according to the user behavior in time spent over the internet. Also we provided

a thorough analysis regarding the uptime prediction according to which data

caching can take place at any peer with a regular defined custom in terms of

uptime availability. The obtained results show that even users with low uptime

probability can be used as targets for caching data, but with an increased cost of

higher number of replicas of email content.

In this report paper we have also solved the issues raised from the

interoperability request between the P2P and client-server mailing

0

5

10

15

20

25

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

H

o

u

r

s

Probability

Availability [h]

Availability [h]

0

200

400

600

800

1000

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

K

B

/

s

Probability

Speed[KB]

Speed[KB]

Patrik Emanuel Mezo Distributed Mailing System

 Page - 27 -

architectures. We have provided an abstract model of an interface through

which solutions of handling both the internal peer-to-peer and server-centric

communication protocols were shown. This paper pointed out the cases

according to which our interface model represents a good solution for handling

inter-compatibility between the two mentioned concepts.

As a future work we plan to extend our model over a self developed overlay

concept, through which we can raise our expectations in terms of availability of

email content over a period of time.

Patrik Emanuel Mezo Distributed Mailing System

 Page - 28 -

Patrik Emanuel Mezo Distributed Mailing System

 Page - 29 -

References

[1] O. Andy. PEER TO PEER: Harnessing the benefits of Disruptive

Technologies. s.l. : O'Reilly Media, Feb 2001. ISBN:978-0-596-00110-

0.

[2] D. A. Turner and K. W. Ross, “Continuous media e-mail on the

internet: Infrastructure inadequancies and a sender-side solution”, IEEE

Network, 14(4): 30-37, July/Aug 2000.

[3] S. Bercovici, Y. Frishman, I. Keidar, A. Tal, “Decentralized Electronic

Mail”, Proceedings of the 26
th

 IEEE International Conference on

Distributed Computing Systems Workshops (ICDCSW’06), 2006

[4] Clip2 Distributed Search Services. "The Gnutella protocol

specifications v0.4". 2000.

[5] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, S. Shenker.

Making Gnutella-like P2P Systems Scalable. s.l. : SIGCOMM, 2003.

[6] I.Clarke, O.Sandberg,B.Wiley,andT.W.Hong. Freenet: A distributed

anonymous information storage and retrieval system. Berkeley,CA ,

USA : In Proceedings of the ICSI Workshop on Design Issues in

Anonymity and Unobservability, Junu 2000.

[7] ***.KazaA Homepage. http://www.kazaa.com.

[8] N. Leibowitz, M. Ripeanu, and A. Wierzbicki. Deconstructing the

Kazaa Network. SantaClara, CA : 3rd IEEE Workshop on Internet

Applications (WIAPP’03), 2003.

[9] Yoram Kulbak and Danny Bicson, academic supervisor Prof. Scott

Kirkpatrick. The eMule Protocol Specification. January.

[10] Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A

scalable content addressable network. U.C.Berkeley, CA : Technical

Report, TR-00-010 , 2000.

[11] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, descentralized

object location, and routing for large-scale peer - to - peer systems.

Heidelberg, Germany : Proceedings of the 18th IFIP/ACM International

Conference on Distributed Systems Platforms (Middleware), Nov 2001.

[12] A. I. T. Rowstron and P. Druschel. Storage management and caching in

PAST, A large-scale, persistent peer-to-peer storage utility. Banff, Al-

berta, Canada : Proceedings of the 18th ACM Sympo- sium on

Operating Systems Principles (SOSP), Oct 2001.

[13] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure for

fault-tolerant widearea location and rout- ing. U.C.Berkeley, CA :

Technical Report UCB/CSD-01-1141, 2001.

http://www.kazaa.com/

Patrik Emanuel Mezo Distributed Mailing System

 Page - 30 -

[14] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Bal- akrishnan.

Chord: A scalable peer-to-peer lookup service for internet applications.

s.l. : Technical Report TR-819, MIT., Mar. 2001.

[15] D. Karger, E.Lehman, F.Leighton, M. Levine, D. Lewin, R. Panigrahy.

Consistent hashing and random trees: Distributed caching protocols for

relieving hot spots on the World Wide Web. s.l. : In Proceedings of the

29th Annual ACM Symposium on Theory of Computing.

[16] Prasanna Ganesan, Krishna Gummadi and Hector Garcia-Molina.

Canon in G Major: Designing DHTs with Hierarchical Structure. s.l. :

Proceedings of the 24th International Conference on Distributed

Computing Systems (ICDCS’04), 2004.

[17] Zhiyong Xu, Rui Min and Yiming Hu. HIERAS: A DHT Based

Hierarchical P2P Routing Algorithm. s.l. : Proceedings of the 2003

International Conference on Parallel Processing (ICPP’03), 2003.

[18] Giscard Wepiwe and Plamen L. Simeonov. A Concentric Multi-ring

Overlay for Highly Reliable P2P Networks. s.l. : Proceedings of the

2005 Fourth IEEE International Symposium on Network Computing

and Applications (NCA’’05), 2005.

[19] Mayank Pandey,Syed Mushtaq Ahmed and Banshi Dhar Chaudhary.

2T-DHT: A Two Tier DHT for Implementing Publish/Subscribe. s.l. :

International Conference on Computational Science and Engineering,

2009.

 [20] D. A. Turner and K. W. Ross, “A comprehensive architecture for

continuous media email.”, IEEE Multimedia, 8(2): 88-98, Apr/June

2001.

[21] J. Kangasharju, K. W. Ross, D. A. Turner, “Secure and Resilient Peer-

to-Peer E-Mail: Design and Implementation”, Proceedings of the Third

International Conference on Peer-to-Peer Computing (P2P’03), 2003

[22] Y. Zhao, S. Zhou, and A. Zhou, “E-mail services on hybrid P2P

networks.”, In Grid and Cooperative Computing Conference, 2004.

[23] E. Kageyama, C. Maziero, A. Santin, „An experimental peer-to-peer e-

mail system“, 11th IEEE ICCS, 2008.

[24] A. Moravek, I. Jelinek, „Using Centralized Element in P2P Network For

Better Community Management“, International Conference on

Computer Systems and Technologies - CompSysTech’2004.

[25] ***.MaxMind. http://www.maxmind.com.

[26] P. V. Mockapetris. RFC 1035: Domain Names – implementation and

specification, Nov. 1987.

[27] ***.Wikipedia. http://en.wikipedia.org/wiki/Broadband_Internet_access

http://www.maxmind.com/
http://en.wikipedia.org/wiki/Broadband_Internet_access

Patrik Emanuel Mezo Distributed Mailing System

 Page - 31 -

[28] G. Song, S. Kim, D. Seo, „Replica Placement Algorithm for Highly

Available Peer-to-Peer Storage Systems“, First International Conference

on Advances in P2P Systems, 2009.

[29] ***.http://tools.ietf.org/html/rfc5321

[30] P. Zimmermann. The Official PGP User’s Guide. The MIT Press, 1995.

[31] ***.http://www.google.com/about/datacenters/locations/index.htm

http://tools.ietf.org/html/rfc5321

