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Abstract 
 
 

This report aims at presenting the research program and to review the literature 
describing quantum computing, quantum fault tolerance issues and classical fault 
injection. Thus, previous work is presented together with future research directions. 
The proposed PhD research program aims at developing a methodology for 
simulation based fault injection for quantum circuits. Through simulation, I obtain 
a statistically significant sample in order to provide a quantitative means to assess 
quantum circuit reliability. A desired feature of the fault injection methodology is 
scalability. Nevertheless, quantum circuit simulation requires simulation resources 
that grow exponentially with the number of simulated qubits. Although, simulation 
techniques that improve the simulation cost and/or time were developed, still for 
complex and large structures it is not feasible to apply fault injection. In order to 
overcome this obstacle and obtain scalability, I propose a logic partitioning. The 
complex and large quantum circuit is decomposed into less complex parts. Fault 
injection is used to evaluate quantum reliability for these parts. The reliability for 
the larger circuit is assessed by means of a reliability graph by taking into account 
the reliability of the smaller parts. 
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Chapter 1 

Introduction 
 
 
Computing machines evolved tremendously during the last decades. There is an 
increasing need for new reliable devices with less power consumption which are 
smaller in size. As nowadays the dimension of semiconductors is required to 
become smaller and smaller, it will eventually reach the nanometer scale. The laws 
that must be obeyed on the nanometer scale are those of quantum physics [3]. 
Quantum Computation (QC) promises tremendous computational power for 
efficiently solving some of the most difficult problems in computational science, 
such as integer factorization, discrete logarithms, and quantum simulation an 
modeling that are intractable on present and even future conventional 
computational devices [1]. 
 If classical computers are highly reliable, the quantum elements are more 
fragile. One of the greatest challenges for building quantum devices is 
decoherence, mainly the distortion of the quantum state due to the impossibility of 
perfectly isolating the quantum system from its environment [4][5]. In addition, the 
quantum elementary operations (called gates) suffer from inaccuracies [6][7][8]. 
The errors that accumulate ruin the quantum computation; hence, a way to 
overcome the effect of quantum noise is necessary. Optimistic signs for 
overcoming this drawback were given by the discovery of the quantum error 
detecting and correcting codes such as [9][10][11][12]. However, there are still 
some obstacles to overcome especially from the technological perspective [1][2]. It 
is necessary to develop significantly more complex quantum-information 
processing capabilities before quantum computer science issues can begin to be 
experimentally studied. The desired 2007 and 2012 high-level goals for QC as they 
are stated in the roadmap for QC are [1]: 
 

• By the year 2007, to: 
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o to encode a qubit into the state of a logical qubit made of  several 
physical qubits 

o perform repetitive error correction on the encoded qubit 
o transfer the state of the logical qubit into the state of another set of 

physical qubits with high fidelity. 
 

• By the year 2012, to 
o implement a concatenated error correcting code. 

The ways in which the nanotechnologies are suppose to evolve according to the 
International Technology Roadmap on Semiconductors (ITRS), the Emerging 
devices document is depicted in Fig. 1.1 [2]. 

 
Figure 1.1: Emerging technology sequence [2]  

 
Meeting this goals require both experimental and theoretical advances. Because 
device simulation and simulate fault injection  proved to be a helpful tool to 
understand, explore and evaluate new hardware designs for classical circuits 
[15][16][17],  I intend to take advantage of the rich classical theory of fault 
injection methodologies and to extend and adapt it for QC. In the proposed thesis I 
intend on focusing my attention on the modeling of quantum faults and error 
models in order to provide realistically simulation results. Thus, the core of my 
work will deal with simulated fault injection for quantum circuits - a tool to 
quantitatively evaluate quantum circuits fault tolerance. 
 This report is organized as follows: Section 2 titled “Previous work” is 
concerned with establishing the scientific domain of the proposed thesis. 
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Furthermore, the information presented in the section is divided in two scientific 
directions: on the one hand classical FI with existing methodologies is depicted, 
and on the other hand a review on the existing FI for quantum circuits and also QC 
related information is presented. 
 Section 3 – “Thesis overview” is concerned with describing the thesis goals 
and proposed outline. The timelines and the activities involved are also presented, 
together with the potential contribution of the proposed thesis.  
 The last Section 4 – “Conclusions” summarizes the repost and outlines the 
potential research directions and contributions. 
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Chapter 2 

Previous work 
 
 

2.1 Scientific domain 
 
During the 1970s the field of digital circuit testing suffered a tremendous 
revolution. Before that, testing was strongly related to manufacturing, almost 
completely isolated from design  – “we design it, we build and test it”. After that 
time, more and more companies left the entire responsibility for testing in the 
hands of designers. The test technology that has evolved along with the digital 
system technology involves three distinct but interrelated areas: test hardware, test 
software and test theory. Test hardware (test systems) gives excellence 
performance but, they are often too expensive and they tend to be self-obsolete. 
Test software refers to two groups of applications. On the one hand, there is the 
software that runs the test systems and, on the other hand there are the application 
programs that deal with the automation of portions of the design process. 
Automatic test generation for combinational networks, fault simulation, and 
checking of design rules are among the programs that support test [14].  
 In the design phase, computed-aided design (CAD) environments are used 
to evaluate the design via simulation, included simulated fault injection. The 
simulation based fault injection is used to test the effectiveness of fault-tolerant 
mechanisms and evaluates the dependability, providing feedback to system 
designers. Simulation, however, needs accurate input parameters and also, the 
validation of the results is needed [13]. Central to this is the model of the faults and 
also the fault patterns. Faults can occur singly or there can also be multiple faults. 
A large portion of literature and research in this area deals with singly occurring 
faults. While this simplifies the analysis, the occurrence of multiple faults cannot 
be excluded [14]. In the design phase, simulated fault injection can be applied at 
various levels of abstraction for the classical circuits. However, as the circuits 
became larger and more complex, the simulation and analysis of various 
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parameters became more difficult.  Thus, in order to avoid the growth of resources 
needed for the simulation, methods for dividing the circuit into logically 
independent parts, which can be processed separately, were designed. These 
methods are collectively called partitioning [14].   

The rich techniques and methodologies developed for the classical circuits 
[13][15][17] inspire the development of similar tools and environments for the 
emerging technologies. Among these, QC faces the challenge of improving the 
quantum circuit reliability by means of fault tolerance mechanisms (such as error 
detection and correction codes [8][9]). However, these proposed mechanisms need 
to be evaluated. Because simulation of assessing fault tolerance through simulated 
based fault injection is a much cheaper mean than the hardware based solution [16] 
for classical circuits, I expect the same outcome for the use of such techniques for 
quantum circuits (especially because the hardware is less accessible than for 
classical systems).   
 For the proposed research, there are some domains that are connected. In 
order to extend the benefits of simulation based fault injection techniques for 
reliability parameters computation for quantum circuits, a bridge between quantum 
circuit simulation, quantum fault modeling and also the existing classical fault 
injection methodologies needs to be establishes. The merge between the above 
mentioned domains is needed in order to develop a viable methodology for 
quantum circuits fault injection. 
 

2.2 Simulated FI for classical circuits 
 
Fault injection techniques can be classified in three main categories: physical (or 
hardware implemented fault injection), software implemented and simulation-
based fault injection [18]. Simulation-based fault injection techniques based on 
hardware description languages (HDL, especially VHDL), offer important 
advantages with regard to other fault injection techniques. First, they can be 
applied early in the design process, thus, reducing time-to- market. Furthermore, 
early diagnosis of design errors reduces costs [16][18]. Second, this types of 
techniques present high controllability and reachability Two main trends 
characterize recent work on fault injection (FI):  first, to apply fault injection as 
early as possible in the design process of fault-tolerant systems, i.e., into the 
simulated design models of the fault tolerant systems; and second, when dealing 
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with the implementation of the target fault tolerant system, favor software-
implemented fault injection [15][16].  

2.2.1 Methodologies and tools 
A very attractive group of fault injection techniques are those based on VHDL as a 
modeling language. These techniques are widely applied because they are offered 
the advantage of a standard description language [19]. A classification of these 
techniques is shown by Figure 2.1. As illustrated two categories of fault injection 
techniques are identified: one that demands the modification of the VHDL model, 
and a second technique which makes use of the simulator commands. 

 

 
Figure 2.1: VHDL-based techniques for simulation-based fault injection [18] 

 
The techniques based on simulator commands deal with signal and/or 

variable manipulation. When using signal manipulation, the correct value of the 
signals in the VHDL model is altered by disconnecting the signal from its driver(s) 
and forcing it to a new value. Variable manipulation, on the other hand, is useful 
for the behavioral VHDL models, and implies the altering of the variables present 
in the VHDL code [15]. 

For the second category there are as shown by Figure 2.1 two 
representatives: saboteurs and mutants [16]. A saboteur is a VHDL component that 
alters the value or timing characteristics of one or several signals when activated. 
There are two possible saboteur architectures presented in Figure 2.1. These 
saboteurs break the path between a drive and its corresponding receiver [15]. A 
mutant is a component description that replaces another component description. 
When inactive, it behaves as the component description it replaces, and when 
activated it presents the components behavior in the presence of faults. Mutants 
take advantage of the VHDL configuration mechanism in order to make the 
replacement of the correct component with its mutations [18]. 

Saboteurs fall into 2 categories serial and parallel, and can be simple or 
complex depending on the fault pattern that is being modeled (see Figure 2.2) 
[16][20]. A serial saboteur, on the one hand, breaks the signal path between a 
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driver output and its corresponding receiver input, while a parallel saboteur is 
usually added as an additional driver for a resolved signal for the receiver [16]. 

 

 
Figure 2.2: Serial/parallel insertion on simple/complex saboteurs. D1 . . .DN are the 
drivers, R1 . . .RN the signal receivers, while fS stands for the function required by 

complex saboteur computation [20] 
 

 There are several ways for generating mutations (obtaining mutant 
descriptions of a correct component) [16][18]: 
 

• adding saboteur(s) to an existing structural or behavioral VHDL component 
description, 

• recursive mutations of a component by replacing subcomponents (e.g. 
replacing an AND gate by a NAND gate), 

• by modifying statements in behavioral component description (this can 
support automatic generation of mutants). 

 
To sum up, a comparison of the fault injection techniques presented above 

is required, based on the observations and simulation results from the work of 
[15][16][17][18]. Although at first glance, the techniques based on simulator 
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commands seam to be favored because they don’t require code modification, these 
techniques present the disadvantage of being highly dependent on the VHDL 
simulator capabilities and the functionalities of their commands. Mutants offer the 
highest fault modeling capability and they use the full strength of the VHDL 
language by making use of the configuration mechanism. Saboteurs are generally 
used for less complex faults, but, there can also be complex saboteurs by 
incorporating finite state machines in them. 
Based on the presented techniques a number of tools for simulated fault injection 
for classical circuits were developed such as the MEFISTO tool [15][16],  the 
VFIT tool [18]. An overview of the VFIT tool is presented in Figure 2.3.  
The most common features of these tools are: 

 
• automation at different degrees of the fault injection process. This is 

accomplished by means of dedicated software modules for setting up and 
running the simulation (e.g.: for the setup part there are some automated code 
mutation – mutant generation; also, there are scripts designed to run the 
simulation fault injection campaigns).  

• extraction of various error related information and also its processing; 
• the injection experiment consists of 3 phases. 
 

For both MEFISTO [16] and VFIT [18] there are 3 phases for simulation-based 
fault injection: 
 

• A setup phase where the simulation parameters are tuned. These parameters 
may refer to the fault model and fault occurrence pattern, the number of 
simulations to be performed, the data which is fed to the simulated circuits, 
data which is to be collected during the simulation campaigns is decided.  

• The simulation phase consists of the actual simulation of the VHDL circuit 
under test, and also, during this phase information is collected to be later 
analyzed during the last phase. 

• The analysis phase(results processing phase) the faulty trace is compared 
to that of a golden run (a simulation result obtained from a correct 
functioning system), extracting different dependability and simulation 
related parameters. 
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With the inspiration drawn from the classical hardware HDL-based fault 
injection techniques, I aim at extending this knowledge to the quantum circuits. 
However, the classical fault injection methodologies presented above cannot be 
mapped without intervention for quantum computation due to its specific features.  

 

 
Figure 2.3: VFIT block diagram [18] 
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2.2.2 Logic partitioning 
A fault-tolerant system must function correctly even after some of its elements 
failed. In order to estimate the reliability of a system as a whole we make use of 
reliability models. All reliability models start with assumptions regarding the rate 
at which various system elements fail. Fault tolerant systems require complex 
reliability models in order to predict overall system reliability. These models fall 
into one of the two cases: combinational or Markov [13]. Combinational models 
attempt to categorize the set of operational states in a way that the probabilities of 
each of these states can be determined by combinational means [13]. Markov 
models, on the other hand, concentrate on transitions and on the rate at which these 
take place. This information is used to determine the probabilities that the system is 
each of these states at some given time [13]. In general a structure can be 
represented by a Markov model if it’s possible to characterize it in terms of states. 
  When dealing with large complex systems, testing techniques require large 
computational resources. A group of methods dedicated for dividing the circuit into 
logical independent parts, each of which can be processed separately was designed. 
These methods are collectively called partitioning (or divide and conquer) [14]. 
There are two possible reasons for partitioning: 
 

• The network/system is to big and complex for the tools, 
• The network/system has too many inputs for exhaustive testing. 

 

2.3 Quantum circuits’ reliability 

2.3.1 Quantum circuits: background 
In modern computers (referred to as classical to distinguish them from their 
quantum counterparts) binary information is stored in a bit. For the quantum 
domain, binary information is stored in a quantum bit called qubit. Thus, the qubit 
can be regarded as an extension of the classical notion of bit, where the besides the 
classical states denoted by denoted by { }0 , 1 we an also have a superposition of 

these two states in the form of a unitary vector 0 1a b+  (see bra/ket notation 
invented by Dirac [26]), where a, b are complex numbers called quantum 
amplitudes with |a|2+|b|2=1. If such a superposition is measured with respect to the 
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basis{ }0 , 1  (any orthogonal unit vectors can be considered for the basis, as long 

as the notations are consistent) then, the probability that the measured value is 1  

is |b|2, and the probability that the measured value is 0  is |a|2. Even if the 
quantum bit can be put in an infinitely many superpositions of states, it is only 
possible to extract one classical bit. The reason is that the information can only be 
obtained by measurement, which is an irreversible operation. When a measured is 
done, it changes the state to one of the basis states [5].  

The qubits can be organized in linear structures called quantum registers, 
encoding a superposition of all possible states of the corresponding classical 
registers. For a n-qubit quantum register, its corresponding state is a normalized 

vector in the 2H  Hilbert space,
12

0

n
a iii

−
Ψ = ∑

=
, where 

2
12

0

1i

n

i

a
−

=

=∑  and i  is one of 

the superposed states of the register.  
 

e.g.: 
        In the case where the individual qubit states are known  

0 10 1A a aΨ +=  and 2 30 1B a aΨ += , 
       the tensor product will give the overall state: 

0 2 0 3 1 2 1 300 01 10 11BA a a a a a a a aΨ ⊗ Ψ = + + + .  
 

      Also, in matrix representation we have: 

[ ]20
0 2 0 3 1 2 1 3

31

aa
a a a a a a a a

aa
⎡ ⎤⎡ ⎤

⊗ =⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

. 

 
A quantum state affected by entanglement cannot be efficiently represented 

as a tensor product of its parts [21]. Two examples depicting a non entangled state 
and a quantum state affected by entanglement are shown. For the non-entangled 
state the representation of the state as a tensor product of its qubits is showed. 
Furthermore, the second example illustrates a quantum state affected by 
entanglement and also the impossibility in a straightforward representation of the 
entangled state as a tensor product of its qubits. 
 
e.g.1: 
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( )1
1 00 01
2

+Ψ = , as tensor product: ( )1
10 0 1
2

⎡ ⎤
⎢ ⎥
⎣ ⎦

Ψ = ⊗ + ; 

e.g.2: 

( )2
1 00 11
2

+Ψ = ,  for  2Ψ , there aren’t 2 vectors that verify the 

condition: 

[ ]20
0 2 0 3 1 2 1 3

31

1 1  0  0  
2 2

aa
a a a a a a a a

aa
⎡ ⎤⎡ ⎤ ⎡ ⎤⊗ = =⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

. 

In matrix representation, a quantum state corresponding to N qubits affected 
by entanglement requires 2N  quantum amplitudes (i.e. matrix elements) to be 
stored, whereas a non-entangled quantum state (i.e. which can be represented by a 
tensor product) requires N (2×1)-size matrixes (therefore, 2N matrix elements). 
This means that when entanglement is present the resources required for simulation 
grow exponentially with the number of qubits, unless an optimized methodology 
for storing the qubits is used [25].  
 The circuit model of quantum computation consists of the quantum gate 
array, a formalism introduced by Deutsch [28]. It is an acyclic combinational logic 
circuit which is in fact made of quantum gates interconnected without fan-out or 
feedback by quantum wires [27]. A schematic representation of the quantum circuit 
is shown in Figure 2.4. Each rectangle represents a level of the quantum network 
that is being computed at a certain moment in time.  Also, each level of gates has 
the number of inputs equal with the number of outputting wires.    
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Figure 2.4: A schematic representation of a quantum network 
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 Analogous to the way a classic computer is made of an electronic circuit 
containing wires and logic gates, a quantum computer is built from a quantum 
circuit containing quantum gates to manipulate the quantum information. Next, 
some simple quantum gates are presented. A quantum gate is described by a 
quantum transformation – most commonly in matrix form – with a single 
constraint: unitarity [21]. A matrix U is unitary (describes a unitary transformation) 
if *UU I= . Unitary transformations can be regarded as rotations of a complex 
vector space [5]. A very important consequence is that quantum transformations 
are reversible. Reversible computation is especially attractive because of its 
relation to the energy of computation and information.  
 Some important gates that act upon one qubit (single qubit) gates are: the Z 
gate, the X gate, the Y gate, and the H gate (also known as Hadamard gate). These 
transformations are described below in both BraKet notation and matrix form (for 
more details see [5][21]). Also, the symbols most commonly used to represent 
them are depicted. 
 

• The X gate (negation gate) is also known as bit-flip transformation: 
 

:  0 1
       1 0  
X →

→
0 1
1 0X ⎡ ⎤= ⎢ ⎥⎣ ⎦

 
Figure 2.5: The X gate: BraKet notation, matrix representation, symbol 

 

• The Y gate performs both phase shift and bit-flip Y=ZX: 
 

:   0 1
       1   0  
Y →−

→
0 1
1 0Y ⎡ ⎤= −⎢ ⎥⎣ ⎦

 
Figure 2.6: The Y gate: BraKet notation, matrix representation, symbol 

 

• The Z gate which performs phase shift: 
 

:   0  0
       1 1  
Z →

→−
1 0
0 1Z ⎡ ⎤= −⎢ ⎥⎣ ⎦

Z
 

Figure 2.7: The Z gate: BraKet notation, matrix representation, symbol 
 

• The H gate (Hadamard gate) is one of the most useful quantum gates.   
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( )
( )

:   0  1 2 0 1
        1  1 2 0 1
H → +

→ −
1 1 1

1 12
H ⎡ ⎤= −⎢ ⎥⎣ ⎦

H

 
Figure 2.8: The Hadamard gate: BraKet notation, matrix representation, symbol 

 
 
The Hadamard transformation is used in many applications. It is very important 
because it transforms 0 (or 1 ), a classical state into a superposition of states 

( )1 2 0 1+ ( or ( )1  1 2 0 1→ − ). If it is applied to n qubits individually it 

can generate a superposition of 2n  classical states.  
( )

( ) ( ) ( )
2 1

0

    00 0
1 2 0 1 0 1 0 1

     
n

n

i

H H H

i
−

=

⊗ ⊗ ⊗

= + ⊗ + ⊗ ⊗ +

= ∑

… …
…                                             (2.1) 

  
There are also gates acting on multiple qubits. A very relevant quantum gate acting 
on 2 qubits is the controlled-not gate or in short CNOT gate. This gate flips the 
controlled qubit if the controlling qubit is 1 as shown below:  

 

:   00  00
               01  01
               10  11
               11  10

CNOT →
→
→
→

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

CNOT
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 
Figure 2.9: The CNOT (controlled-not) gate: BraKet notation, matrix 

representation, symbol 
 

For 3 qubits there is the controlled-controlled-not gate also known as the Toffoli 
gate. This gate flips the controlled qubit if the 2 controlling qubits are 1. As a 
generalization of this 2 gates there is the controlled-controlled-…-controlled-U 
gate, where U is a unitary transformation that acts on one qubit. For the 2 gates 
(CNOT, Toffoli) mentioned above the single qubit transformation is U=X. 
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2.3.2 Quantum fault simulation  
Maintaining a coherent, accurate quantum computation is not an easy task; there 
are some quantum specific issues one needs to deal with: 
 

• Phase errors. The classical encoding provides no protection against phase 
shift errors.  

• Small errors. Due to quantum amplitudes, quantum information is not 
entirely digital therefore, an error may affect the amplitudes by a small 
amount of orderε , and these small errors can accumulate over time.  

• Measurement destroys superposed state. In the classical error correcting 
schemes, one needs to measure the bits in order to detect and correct the 
errors. However, any measurement of a quantum state irreversibly disturbs 
it in quantum computing [21].  

• No cloning. In the classical encoding, the information is protected by 
making extra copies of it. This is not possible in quantum computing since 
arbitrary quantum bits cannot be copied with perfect fidelity [5].  

• Decoherence represents the distortion of the quantum state due to 
interactions with the environment [4].  

 
Solutions for improving the quantum circuit reliability are mostly based on 

the classical theory of error detection and correction codes [8][9][10][11][12]. 
However, there are some which take advantage of new approaches such as 
reconfigurable gate arrays [31]. One of the simplest examples of a quantum error-
correcting code is Shor’s 3 qubit repetition code [12]. This code is based on the 
mechanism of majority voting and uses the following qubit encoding: 

0 000→ ,       1 111→        (2.2) 
Shor’s 3 qubit repetition code is capable of detecting and correcting a single error 
in the encoded block.  
 A very important quantum parameter is the accuracy threshold. The 
accuracy threshold is the physical gate error probability for which an arbitrary long 
quantum computation is possible with a given error probability [8]. Thus, all the 
error detection and correction codes aim at permitting an accuracy threshold which 
is as high as possible.  

At this moment, it is too difficult to conduct a realistic assessment of 
quantum fault tolerance that does not depend on the details of the chosen fault and 
error model. Therefore, the fault and error models play an essential role in the 
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simulated fault injection process. The most widely accepted quantum faults are 
modeled by the Pauli operators [5][29]. These faults are: bit-flip (negation, 
modeled by X operator – Figure 2.5), phase-shift (modeled by the Z operator – 
Figure 2.6) and both bit-flip and phase-shift (modeled by the Y operator – Figure 
2.7), and identity I as depicted bellow.  
 

0 0

1 1

→

→
1 0
0 1Iσ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

0 1

1 0

→

→

0 1
1 0Xσ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

0 1

1 0

→−

→
0 1
1 0Yσ

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

0 0

1 1

→

→−

1 0
0 1Zσ
⎛ ⎞

= ⎜ ⎟−⎝ ⎠

 
Figure 2.10: The Pauli operators 

 
Besides the Pauli operators, there are some other quantum fault models, as those 
described in reference [6]. These fault models proved to be very effective for 
quantum circuit testing [7]. 
 

• Gate insertion: in this case, we assume that the Pauli operators are inserted 
in the designated fault locations. 

• Gate removal: any single gate can be removed from the system. 
 
The most widely used error model is - independent stochastic errors 

[12][29][30][32][34] – the error model consists of having independent probabilistic 
errors represented by Pauli operators acting at error location. Their overall effect is 
estimated by means of classical error probability. 

There are several approaches to quantum error simulation. The simulator 
constructed after Cirac and Zoller scheme of ion trap quantum computer [24], 
simulates errors by introducing operational errors and errors resulting from 
decoherence. The simulator implements gates as sequences of laser transformation. 
The operational errors are a result of altering these transformations. The drawback 
of such an approach is the fact that is a physical dependent implementation, which 
is relevant only for the ion trap computer. 

A different approach uses C based programming languages (ANSI C, C++) 
in order to perform a Monte Carlo simulation [30][35]. The quantum computation 
is run several times and errors are introduced at each gate with some probability.  
The state of the quantum circuit is not stored. The only stored information for each 
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qubit is whether an error has occurred or not [35]. Thus, in the case of the Monte 
Carlo simulation the track of the fault propagation is kept rather than the evolution 
of the complete quantum state. Another approach consists of simulating quantum 
faults by means of a HDL-based tool - the QUantum ERror Injection Simulation 
Tool (QUERIST), an ongoing project with guidelines set in [33].  
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Chapter 3 

Thesis overview 
 
 
Writing a thesis involves activities such as the study and understanding of the state-
of-the-art of the domains related to the scientific topic chosen. Furthermore, a very 
important aspect is related to the innovations and contributions of the research 
work. Such an activity can only take place in an academic environment where a 
group of people work to add up the pieces to a wider puzzle in order to successfully 
finish a complex research project. The proposed research direction is part of a 
complex framework QUERIST. The guidelines for this framework were proposed 
by dr. ing. Mihai Udrescu. He is a co-advisor for the proposed PhD thesis and one 
of the founders of the ACSA research group, the group that supports my research 
activity. 
 

 
Figure 3.1: ACSA group overview 

 

3.1 Proposed name 
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The title for my research project is: “Simulation-Based Assesment of Quantum 
Circuit Reliability”. The main target is that of finding an adequate methodology for 
assessment of quantum reliability by means of simulation. The starting point for 
this research is the classical theory of circuit reliability analysis and simulated 
based fault injection as a mean of computing different reliability parameters.  

3.2 Thesis goals 
 
The main objectives of the proposed research project, as well as the activities 
needed to successfully achieve them, are depicted in Table 3.1. 
  

Table 3.1: Objectives of proposed research project 
Year  Objectives Associated activities  

1. Study of existing implementations and 
methodologies for simulated based fault 
injection for classical circuits and quantum 
circuits. 
2. The study of the quantum noise, quantum 
fault models. Study of existing error 
models.Review of literature. 

1. The development of a 
theoretical basis for 
simulated based fault 
injection using HDL 
languages for quantum 
circuits. 

3. The VHDL modeling of quantum errors 
and faults. 
1. Refining the implementation of the 
proposed fault injection techniques. 
2. Driving complex simulated based fault 
injection campaigns in order to evaluate the 
effectiveness of the proposed techniques. 

2. The implemetation of 
the QUERIST (Quantum 
Error Injection 
Simulation Tool) by 
adding the simulated 
based fault injection 
techniques 

3. Comparisson of the results with the ones 
claimed by the most recent and relevant 
publications. 

1. Gathering the theoretical knowledge and 
simulation results into a PhD report. 

 
 
 
2008 

3. Dissemination – 
writting a PhD report 
entitled: Simulation 
based fault injection 
techniques for quantum 

2. Report presentation. 
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circuits. 

1. The study of the classical circuit logic 
partitioning techniques for combinational 
circuits. 

4. Development of the 
theoretical bases for 
quantum circuit logic 
partitioning 2. The developement of the mathematical 

model for the computation of the cuantum 
circuit reliability based on the reliability of its 
subcomponents. For this purpose the use of 
Markov chains or reliability graphs is 
considered. 
1. The development of a logic partitioning 
algorithm for cuantum circuits. 
2. The study of the elaborated algoritm based 
on simulation campaigns. 

1. Developing a 
partitioning algorithm for 
quantum circuits. 

3. The writting of an article based on 
quantum circuit partitioning and then 
submitting it to a ISI indexed conference. 
Also, the participation to the conference.   
1. Gathering the theoretical knowledge and 
simulation results into a PhD report. 

2.  Dissemination – 
writting a PhD report 
entitled: A logic 
partitioning based 
technique for quantum 
circuit reliability 
assessment. 

2. Report presentation. 

1. Results processing and comparisson with 
the latest reported results from this research 
field. 
2. Refining of PhD thesis and defending 
thethesis. 

 
 
2009 
 
 
 

3.  Dissemination – the  
PhD thesis elaboration. 

3. Book contracting at Politehnica University 
of Timisoara in order to include the PhD 
thesis in the PhD series edited by The 
University Politehnica of Timisoara. 
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3.3 Thesis outline 
 
In Table 3.2 a proposed thesis layout is presented. Of course, it is still early, and 
future results may overrule the information presented bellow. This can be 
considered today’s image of how my PhD thesis will be structured. The second 
column from the table bellow briefly presents the intended contents of the thesis 
chapters. 
 

Table 3.2: Proposed thesis layout 
Thesis chapter Comments 

1. Introduction Contains the problem statement. Also, 
the thesis structure and main 
contributions are stated. 

2. Quantum background 
 2.1 Fault tolerance problems 
 2.2 Quantum noise 
 2.2.1 Fault model 
 2.2.2 Error model 
 2.2.3 Discussion 
 2.3 Quantum simulation 
 2.4 Quantum reliability: 

background 

Presents some common knowledge 
regarding quantum computing. Then, it 
focuses on the quantum fault models and 
also the pattern on which these faults 
manifest. Furthermore a brief discussion 
about fault tolerance problems is also 
considered useful.  Next, follow the 
quantum simulation drawbacks. Last but 
not least, the reliability metrics and 
parameters need to be presented. 

3. Classical fault injection 
 3.1 Techniques and tools 
 3.2 Classical mutants 
 3.3 Classical saboteurs 
 3.4 Technique comparison 

This chapter of the thesis is meant to deal 
with the techniques and tools developed 
for classical computation which are a 
useful source of knowledge and 
experience for the development of fault 
injection methodology for quantum 
circuits. 

4. Quantum fault injection 
 4.1 Previous work 
 4.2 QUERIST tool 
 4.3 Simulator commands 
 4.4 Quantum mutants 
 4.5 Quantum saboteurs 

Quantum fault injection techniques are 
presented in chapter 4. These techniques 
are presented, analyzed and compared 
from the performance and simulation 
resources required perspective, on the 
one hand. Also, on the other hand, 
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 4.6 Comparison parameters such as effort for setting up a 
simulation campaign, capacity of 
modeling, capacity of extracting the data 
concerning fault propagation are being 
tackled.  

5.  Simulation campaigns 
 5.1 First circuit 
 5.1.1 Simulation scenario 
 5.1.2 Fault injection entities 
 5.1.3 Results 
 5.2 Quantum double redundancy 
 5.2.1 Simulated circuit 
 5.2.2 Campaign description 
 5.2.3 Fault injection entities 
 5.2.4 Simulation results 
 5.3 Bell’s circuit 
 5.3.1 Campaign description 
 5.3.2  Fault injection entities 
 5.3.3 Campaign results 
 5.4 Concluding remarks 

This chapter is dedicated to the 
presentation of several simulation 
campaigns: the campaign’s scenarios, the 
fault injection entities used described in 
detail, and also the assumptions 
considered for the simulations performed, 
the obtained results. A summary of the 
chapter as well as the conclusions drawn 
from the performed simulation 
experiments. 

6.  Logic partitioning 
 6.1 Background 
 6.2 Proposed algorithm 
 6.3 Experimental results 

A review of literature concerning the 
partitioning algorithms and methods is 
presented in chapter 6. Furthermore, a 
solution for quantum circuit logic 
partitioning is proposed. Lastly, the 
experimental results are depicted. 

7. Conclusions and future work Provides a summary of the thesis, and 
proposed future research directions based 
on the results. 

 Bibliography 
 Appendix 

 

3.4 Timelines 
 
According to the PhD program, the second phase of the program should last 
maximum 2 years. Two PhD reports are needed and of course a PhD thesis must be 
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defended. In order to fulfill these requirements a list of objectives and associate 
activities was developed and described in Table 3.1.  
 

 
Figure 3.2: Schedule for the main objectives of the PhD thesis 

 

 
Figure 3.3: Schedule for objectives and associated activities for the academic year 

2007-2008 

 
Figure 3.3: Schedule for objectives and associated activities for the academic years 

2008-2009 
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The activities described in Table 3.1 are scheduled to take place according to the 
timelines depicted by Figure 3.3 for the academic year 2007-2008. Furthermore the 
tasks with the proposed deadlines for the academic year 2008-2009 are presented 
by Figure 3.4. 
 

3.5 Dissemination 
 
There are two dissemination directions: 
 

• On the one hand, there are the two PhD reports: 
1. The first PhD report entitled “Simulation based fault injection 

techniques for quantum circuits”. 
2. And the second PhD report: “A logic partitioning based technique 

for quantum circuit reliability assessment”. 
And last, but not least the writting of the PhD thesis: “Simulation-Based 
Assesment of Quantum Circuit Reliability”. 

• On the other hand there are the publications which are to be submitted at 
conferences, workshops and journals. For the conferences and workshops 
the candidates are: Annual Simulation Symposium (ANSS- ISI indexed), 
European Test Symposium (ETS- ISI indexed), Euromicro Conference on 
Digital System Design (DSD- ISI indexed). There are also a number of 
journals of interest: IEEE Design and Test of Computers, IEEE 
Transactions on Computer Aided Design, ACM Journal on Emerging 
Technologies in Computer Systems.  

 

3.6 Potential contributions 
 
The proposed PhD research program - “Simulation-Based Assesment of Quantum 
Circuit Reliability” - aims at developing a methodology for quantitatively 
assessing quantum circuit reliability. The main contributions of this research would 
be: 

• A review of literature concerning: quantum noise, quantum circuit 
reliability, classical simulated based fault injection, classical logic 
decomposition. 
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• An as accurate as possible model of the quantum noise. The HDL modeling 
of existing error models. 

• Developing a viable methodology for simulation based fault injection for 
quantum circuits.  

• Finding a solution for making the developed reliability assessment 
techniques scale. A possible solution is logic partitioning. Thus, a potential 
contribution might be the development of an algorithm for quantum circuit 
partitioning. 

• The implementation of the fault injection techniques and the partitioning 
algorithm in a tool. The process is intended to be automated, so that through 
simulation, a statistically significant sample is obtained in order to provide 
a quantitative means to assess quantum circuit reliability.  
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Chapter 4 

Conclusions 
 
 
In this report the research program and a review the of the literature describing 
quantum computing, quantum fault tolerance issues and classical fault injection 
were presented. Previous work is described in Chapter 2. There are two domains – 
on the one hand, there are is classical theory with fault injection techniques and 
logic partitioning and a rich experience with HDL modeling and tools; - and on the 
other hand there is the quantum domain plagued by quantum noise, which requires 
new solutions to improve reliability and also, there is the need to study for a better 
understanding of the effect of quantum errors.   

The following chapter introduces the proposed research directions with 
refined steps o consider for reaching the goals depicted in Subsection 3.2. 
Furthermore, the timelines for the proposed activities together with the 
dissemination activities are presented. Last, but not least, the potential 
contributions of the research activities are illustrated by Subsection 3.2. 

The proposed PhD research program - “Simulation-Based Assesment of 
Quantum Circuit Reliability” - aims at developing a methodology for simulation 
based fault injection for quantum circuits. A desired feature of the fault injection 
methodology is scalability. Nevertheless, quantum circuit simulation requires 
simulation resources that grow exponentially with the number of simulated qubits. 
Although, simulation techniques that improve the simulation cost and/or time were 
developed [22][23][25], still for complex and large structures it is not feasible to 
apply fault injection. A proposed solution is logic partitioning. The complex and 
large quantum circuit is decomposed into less complex parts. Fault injection is used 
to evaluate quantum reliability for these parts. The reliability for the larger circuit 
is assessed by means of a reliability graph by taking into account the reliability of 
the smaller parts. I also want to focus on automating as mush as possible of the 
process of creating, running and post-processing the results of a simulation 
campaign. In this manner, a statistically significant sample can be obtained in order 
to provide a quantitative means to assess quantum circuit reliability. 
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