

Simulation-Based Assessment of Quantum

Circuit Reliability

Oana Boncalo
Computer Science Department

Politehnica University of Timisoara

Advisor: Prof. Mircea Vlăduţiu

PhD Project

September 2007

Abstract

This report aims at presenting the research program and to review the literature
describing quantum computing, quantum fault tolerance issues and classical fault
injection. Thus, previous work is presented together with future research directions.
The proposed PhD research program aims at developing a methodology for
simulation based fault injection for quantum circuits. Through simulation, I obtain
a statistically significant sample in order to provide a quantitative means to assess
quantum circuit reliability. A desired feature of the fault injection methodology is
scalability. Nevertheless, quantum circuit simulation requires simulation resources
that grow exponentially with the number of simulated qubits. Although, simulation
techniques that improve the simulation cost and/or time were developed, still for
complex and large structures it is not feasible to apply fault injection. In order to
overcome this obstacle and obtain scalability, I propose a logic partitioning. The
complex and large quantum circuit is decomposed into less complex parts. Fault
injection is used to evaluate quantum reliability for these parts. The reliability for
the larger circuit is assessed by means of a reliability graph by taking into account
the reliability of the smaller parts.

Contents

1 Introduction………………………………………………....…………... 5
2 Previous work………………………………………………….……….. 8
 2.1 Scientific domain………………………………………...………... 8
 2.2 Simulated FI for classical circuits………………………..………... 9
 2.2.1 Methodologies and tools………………………...……….. 10
 2.2.2 Logic partitioning………………………………..……….. 14
 2.3 Quantum circuits’ reliability…….…………………….……….... 14
 2.3.1 Background: quantum computation……………..……….. 14
 2.3.2 Quantum fault simulation………………………………… 19
3 Thesis overview………………………………………………..……….. 22
 3.1 Proposed name…………………………………………...………... 22
 3.2 Thesis goals……………………………………………....………... 23
 3.3 Thesis outline…………………………………………….………... 25
 3.4 Timelines…………………………………………………………... 26
 3.5 Dissemination……………………………………………………… 28
 3.6 Potential contributions…………………………………...………... 28
4 Conclusions…………………………………………………….……….. 30
 Bibliography 31

List of Figures

1.1 Emerging technology sequence [2]………………………....………… 6

2.1 VHDL-based techniques for simulation-based fault injection [18]…... 10
2.2 Serial/parallel insertion on simple/complex saboteurs. D1 . . .DN are

the drivers, R1 . . .RN the signal receivers, while fS stands for the
function required by complex saboteur computation [20]…………….

11

2.3 VFIT block diagram [18]……………………………………………… 13
2.4 A schematic representation of a quantum network…………………… 16
2.5 The X gate: BraKet notation, matrix representation, symbol…………. 17
2.6 The Y gate: BraKet notation, matrix representation, symbol…………. 17
2.7 The Z gate: BraKet notation, matrix representation, symbol…………. 17
2.8 The Hadamard gate: BraKet notation, matrix representation, symbol... 18
2.9 The CNOT (controlled-not) gate: BraKet notation, matrix

representation, symbol…………………………………………………
18

2.10 The Pauli operators……………………………………………………. 20

3.1 ACSA group overview………………………………………………. 22
3.2 Schedule for the main objectives of the PhD thesis………………….. 27
3.3 Schedule for objectives and associated activities for the academic

year 2007-2008………………………………………………………..
27

3.4 Schedule for objectives and associated activities for the academic
year 2008-2009………………………………………………………..

27

5

Chapter 1

Introduction

Computing machines evolved tremendously during the last decades. There is an
increasing need for new reliable devices with less power consumption which are
smaller in size. As nowadays the dimension of semiconductors is required to
become smaller and smaller, it will eventually reach the nanometer scale. The laws
that must be obeyed on the nanometer scale are those of quantum physics [3].
Quantum Computation (QC) promises tremendous computational power for
efficiently solving some of the most difficult problems in computational science,
such as integer factorization, discrete logarithms, and quantum simulation an
modeling that are intractable on present and even future conventional
computational devices [1].
 If classical computers are highly reliable, the quantum elements are more
fragile. One of the greatest challenges for building quantum devices is
decoherence, mainly the distortion of the quantum state due to the impossibility of
perfectly isolating the quantum system from its environment [4][5]. In addition, the
quantum elementary operations (called gates) suffer from inaccuracies [6][7][8].
The errors that accumulate ruin the quantum computation; hence, a way to
overcome the effect of quantum noise is necessary. Optimistic signs for
overcoming this drawback were given by the discovery of the quantum error
detecting and correcting codes such as [9][10][11][12]. However, there are still
some obstacles to overcome especially from the technological perspective [1][2]. It
is necessary to develop significantly more complex quantum-information
processing capabilities before quantum computer science issues can begin to be
experimentally studied. The desired 2007 and 2012 high-level goals for QC as they
are stated in the roadmap for QC are [1]:

• By the year 2007, to:

1. Introduction

6

o to encode a qubit into the state of a logical qubit made of several
physical qubits

o perform repetitive error correction on the encoded qubit
o transfer the state of the logical qubit into the state of another set of

physical qubits with high fidelity.

• By the year 2012, to
o implement a concatenated error correcting code.

The ways in which the nanotechnologies are suppose to evolve according to the
International Technology Roadmap on Semiconductors (ITRS), the Emerging
devices document is depicted in Fig. 1.1 [2].

Figure 1.1: Emerging technology sequence [2]

Meeting this goals require both experimental and theoretical advances. Because
device simulation and simulate fault injection proved to be a helpful tool to
understand, explore and evaluate new hardware designs for classical circuits
[15][16][17], I intend to take advantage of the rich classical theory of fault
injection methodologies and to extend and adapt it for QC. In the proposed thesis I
intend on focusing my attention on the modeling of quantum faults and error
models in order to provide realistically simulation results. Thus, the core of my
work will deal with simulated fault injection for quantum circuits - a tool to
quantitatively evaluate quantum circuits fault tolerance.
 This report is organized as follows: Section 2 titled “Previous work” is
concerned with establishing the scientific domain of the proposed thesis.

1. Introduction

 7

Furthermore, the information presented in the section is divided in two scientific
directions: on the one hand classical FI with existing methodologies is depicted,
and on the other hand a review on the existing FI for quantum circuits and also QC
related information is presented.
 Section 3 – “Thesis overview” is concerned with describing the thesis goals
and proposed outline. The timelines and the activities involved are also presented,
together with the potential contribution of the proposed thesis.
 The last Section 4 – “Conclusions” summarizes the repost and outlines the
potential research directions and contributions.

8

Chapter 2

Previous work

2.1 Scientific domain

During the 1970s the field of digital circuit testing suffered a tremendous
revolution. Before that, testing was strongly related to manufacturing, almost
completely isolated from design – “we design it, we build and test it”. After that
time, more and more companies left the entire responsibility for testing in the
hands of designers. The test technology that has evolved along with the digital
system technology involves three distinct but interrelated areas: test hardware, test
software and test theory. Test hardware (test systems) gives excellence
performance but, they are often too expensive and they tend to be self-obsolete.
Test software refers to two groups of applications. On the one hand, there is the
software that runs the test systems and, on the other hand there are the application
programs that deal with the automation of portions of the design process.
Automatic test generation for combinational networks, fault simulation, and
checking of design rules are among the programs that support test [14].
 In the design phase, computed-aided design (CAD) environments are used
to evaluate the design via simulation, included simulated fault injection. The
simulation based fault injection is used to test the effectiveness of fault-tolerant
mechanisms and evaluates the dependability, providing feedback to system
designers. Simulation, however, needs accurate input parameters and also, the
validation of the results is needed [13]. Central to this is the model of the faults and
also the fault patterns. Faults can occur singly or there can also be multiple faults.
A large portion of literature and research in this area deals with singly occurring
faults. While this simplifies the analysis, the occurrence of multiple faults cannot
be excluded [14]. In the design phase, simulated fault injection can be applied at
various levels of abstraction for the classical circuits. However, as the circuits
became larger and more complex, the simulation and analysis of various

2. Previous work

 9

parameters became more difficult. Thus, in order to avoid the growth of resources
needed for the simulation, methods for dividing the circuit into logically
independent parts, which can be processed separately, were designed. These
methods are collectively called partitioning [14].

The rich techniques and methodologies developed for the classical circuits
[13][15][17] inspire the development of similar tools and environments for the
emerging technologies. Among these, QC faces the challenge of improving the
quantum circuit reliability by means of fault tolerance mechanisms (such as error
detection and correction codes [8][9]). However, these proposed mechanisms need
to be evaluated. Because simulation of assessing fault tolerance through simulated
based fault injection is a much cheaper mean than the hardware based solution [16]
for classical circuits, I expect the same outcome for the use of such techniques for
quantum circuits (especially because the hardware is less accessible than for
classical systems).
 For the proposed research, there are some domains that are connected. In
order to extend the benefits of simulation based fault injection techniques for
reliability parameters computation for quantum circuits, a bridge between quantum
circuit simulation, quantum fault modeling and also the existing classical fault
injection methodologies needs to be establishes. The merge between the above
mentioned domains is needed in order to develop a viable methodology for
quantum circuits fault injection.

2.2 Simulated FI for classical circuits

Fault injection techniques can be classified in three main categories: physical (or
hardware implemented fault injection), software implemented and simulation-
based fault injection [18]. Simulation-based fault injection techniques based on
hardware description languages (HDL, especially VHDL), offer important
advantages with regard to other fault injection techniques. First, they can be
applied early in the design process, thus, reducing time-to- market. Furthermore,
early diagnosis of design errors reduces costs [16][18]. Second, this types of
techniques present high controllability and reachability Two main trends
characterize recent work on fault injection (FI): first, to apply fault injection as
early as possible in the design process of fault-tolerant systems, i.e., into the
simulated design models of the fault tolerant systems; and second, when dealing

2. Previous work

10

with the implementation of the target fault tolerant system, favor software-
implemented fault injection [15][16].

2.2.1 Methodologies and tools
A very attractive group of fault injection techniques are those based on VHDL as a
modeling language. These techniques are widely applied because they are offered
the advantage of a standard description language [19]. A classification of these
techniques is shown by Figure 2.1. As illustrated two categories of fault injection
techniques are identified: one that demands the modification of the VHDL model,
and a second technique which makes use of the simulator commands.

Figure 2.1: VHDL-based techniques for simulation-based fault injection [18]

The techniques based on simulator commands deal with signal and/or

variable manipulation. When using signal manipulation, the correct value of the
signals in the VHDL model is altered by disconnecting the signal from its driver(s)
and forcing it to a new value. Variable manipulation, on the other hand, is useful
for the behavioral VHDL models, and implies the altering of the variables present
in the VHDL code [15].

For the second category there are as shown by Figure 2.1 two
representatives: saboteurs and mutants [16]. A saboteur is a VHDL component that
alters the value or timing characteristics of one or several signals when activated.
There are two possible saboteur architectures presented in Figure 2.1. These
saboteurs break the path between a drive and its corresponding receiver [15]. A
mutant is a component description that replaces another component description.
When inactive, it behaves as the component description it replaces, and when
activated it presents the components behavior in the presence of faults. Mutants
take advantage of the VHDL configuration mechanism in order to make the
replacement of the correct component with its mutations [18].

Saboteurs fall into 2 categories serial and parallel, and can be simple or
complex depending on the fault pattern that is being modeled (see Figure 2.2)
[16][20]. A serial saboteur, on the one hand, breaks the signal path between a

2. Previous work

 11

driver output and its corresponding receiver input, while a parallel saboteur is
usually added as an additional driver for a resolved signal for the receiver [16].

Figure 2.2: Serial/parallel insertion on simple/complex saboteurs. D1 . . .DN are the
drivers, R1 . . .RN the signal receivers, while fS stands for the function required by

complex saboteur computation [20]

 There are several ways for generating mutations (obtaining mutant
descriptions of a correct component) [16][18]:

• adding saboteur(s) to an existing structural or behavioral VHDL component
description,

• recursive mutations of a component by replacing subcomponents (e.g.
replacing an AND gate by a NAND gate),

• by modifying statements in behavioral component description (this can
support automatic generation of mutants).

To sum up, a comparison of the fault injection techniques presented above

is required, based on the observations and simulation results from the work of
[15][16][17][18]. Although at first glance, the techniques based on simulator

2. Previous work

12

commands seam to be favored because they don’t require code modification, these
techniques present the disadvantage of being highly dependent on the VHDL
simulator capabilities and the functionalities of their commands. Mutants offer the
highest fault modeling capability and they use the full strength of the VHDL
language by making use of the configuration mechanism. Saboteurs are generally
used for less complex faults, but, there can also be complex saboteurs by
incorporating finite state machines in them.
Based on the presented techniques a number of tools for simulated fault injection
for classical circuits were developed such as the MEFISTO tool [15][16], the
VFIT tool [18]. An overview of the VFIT tool is presented in Figure 2.3.
The most common features of these tools are:

• automation at different degrees of the fault injection process. This is

accomplished by means of dedicated software modules for setting up and
running the simulation (e.g.: for the setup part there are some automated code
mutation – mutant generation; also, there are scripts designed to run the
simulation fault injection campaigns).

• extraction of various error related information and also its processing;
• the injection experiment consists of 3 phases.

For both MEFISTO [16] and VFIT [18] there are 3 phases for simulation-based
fault injection:

• A setup phase where the simulation parameters are tuned. These parameters
may refer to the fault model and fault occurrence pattern, the number of
simulations to be performed, the data which is fed to the simulated circuits,
data which is to be collected during the simulation campaigns is decided.

• The simulation phase consists of the actual simulation of the VHDL circuit
under test, and also, during this phase information is collected to be later
analyzed during the last phase.

• The analysis phase(results processing phase) the faulty trace is compared
to that of a golden run (a simulation result obtained from a correct
functioning system), extracting different dependability and simulation
related parameters.

2. Previous work

 13

With the inspiration drawn from the classical hardware HDL-based fault
injection techniques, I aim at extending this knowledge to the quantum circuits.
However, the classical fault injection methodologies presented above cannot be
mapped without intervention for quantum computation due to its specific features.

Figure 2.3: VFIT block diagram [18]

2. Previous work

14

2.2.2 Logic partitioning
A fault-tolerant system must function correctly even after some of its elements
failed. In order to estimate the reliability of a system as a whole we make use of
reliability models. All reliability models start with assumptions regarding the rate
at which various system elements fail. Fault tolerant systems require complex
reliability models in order to predict overall system reliability. These models fall
into one of the two cases: combinational or Markov [13]. Combinational models
attempt to categorize the set of operational states in a way that the probabilities of
each of these states can be determined by combinational means [13]. Markov
models, on the other hand, concentrate on transitions and on the rate at which these
take place. This information is used to determine the probabilities that the system is
each of these states at some given time [13]. In general a structure can be
represented by a Markov model if it’s possible to characterize it in terms of states.
 When dealing with large complex systems, testing techniques require large
computational resources. A group of methods dedicated for dividing the circuit into
logical independent parts, each of which can be processed separately was designed.
These methods are collectively called partitioning (or divide and conquer) [14].
There are two possible reasons for partitioning:

• The network/system is to big and complex for the tools,
• The network/system has too many inputs for exhaustive testing.

2.3 Quantum circuits’ reliability

2.3.1 Quantum circuits: background
In modern computers (referred to as classical to distinguish them from their
quantum counterparts) binary information is stored in a bit. For the quantum
domain, binary information is stored in a quantum bit called qubit. Thus, the qubit
can be regarded as an extension of the classical notion of bit, where the besides the
classical states denoted by denoted by { }0 , 1 we an also have a superposition of

these two states in the form of a unitary vector 0 1a b+ (see bra/ket notation
invented by Dirac [26]), where a, b are complex numbers called quantum
amplitudes with |a|2+|b|2=1. If such a superposition is measured with respect to the

2. Previous work

 15

basis{ }0 , 1 (any orthogonal unit vectors can be considered for the basis, as long

as the notations are consistent) then, the probability that the measured value is 1

is |b|2, and the probability that the measured value is 0 is |a|2. Even if the
quantum bit can be put in an infinitely many superpositions of states, it is only
possible to extract one classical bit. The reason is that the information can only be
obtained by measurement, which is an irreversible operation. When a measured is
done, it changes the state to one of the basis states [5].

The qubits can be organized in linear structures called quantum registers,
encoding a superposition of all possible states of the corresponding classical
registers. For a n-qubit quantum register, its corresponding state is a normalized

vector in the 2H Hilbert space,
12

0

n
a iii

−
Ψ = ∑

=
, where

2
12

0

1i

n

i

a
−

=

=∑ and i is one of

the superposed states of the register.

e.g.:
 In the case where the individual qubit states are known

0 10 1A a aΨ += and 2 30 1B a aΨ += ,
 the tensor product will give the overall state:

0 2 0 3 1 2 1 300 01 10 11BA a a a a a a a aΨ ⊗ Ψ = + + + .

 Also, in matrix representation we have:

[]20
0 2 0 3 1 2 1 3

31

aa
a a a a a a a a

aa
⎡ ⎤⎡ ⎤

⊗ =⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

.

A quantum state affected by entanglement cannot be efficiently represented

as a tensor product of its parts [21]. Two examples depicting a non entangled state
and a quantum state affected by entanglement are shown. For the non-entangled
state the representation of the state as a tensor product of its qubits is showed.
Furthermore, the second example illustrates a quantum state affected by
entanglement and also the impossibility in a straightforward representation of the
entangled state as a tensor product of its qubits.

e.g.1:

2. Previous work

16

()1
1 00 01
2

+Ψ = , as tensor product: ()1
10 0 1
2

⎡ ⎤
⎢ ⎥
⎣ ⎦

Ψ = ⊗ + ;

e.g.2:

()2
1 00 11
2

+Ψ = , for 2Ψ , there aren’t 2 vectors that verify the

condition:

[]20
0 2 0 3 1 2 1 3

31

1 1 0 0
2 2

aa
a a a a a a a a

aa
⎡ ⎤⎡ ⎤ ⎡ ⎤⊗ = =⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

.

In matrix representation, a quantum state corresponding to N qubits affected
by entanglement requires 2N quantum amplitudes (i.e. matrix elements) to be
stored, whereas a non-entangled quantum state (i.e. which can be represented by a
tensor product) requires N (2×1)-size matrixes (therefore, 2N matrix elements).
This means that when entanglement is present the resources required for simulation
grow exponentially with the number of qubits, unless an optimized methodology
for storing the qubits is used [25].
 The circuit model of quantum computation consists of the quantum gate
array, a formalism introduced by Deutsch [28]. It is an acyclic combinational logic
circuit which is in fact made of quantum gates interconnected without fan-out or
feedback by quantum wires [27]. A schematic representation of the quantum circuit
is shown in Figure 2.4. Each rectangle represents a level of the quantum network
that is being computed at a certain moment in time. Also, each level of gates has
the number of inputs equal with the number of outputting wires.

.

.

.

.

.

.

.

.

.

.

.

.

O
U
T
P
U
T
S

G
A
T
E
S

L
e
v
e
L

1

.

.

.

G
A
T
E
S

L
e
v
e
L

2

G
A
T
E
S

L
e
v
e
L

3

G
A
T
E
S

L
e
v
e
L

n

I
N
P
U
T
S

Figure 2.4: A schematic representation of a quantum network

2. Previous work

 17

 Analogous to the way a classic computer is made of an electronic circuit
containing wires and logic gates, a quantum computer is built from a quantum
circuit containing quantum gates to manipulate the quantum information. Next,
some simple quantum gates are presented. A quantum gate is described by a
quantum transformation – most commonly in matrix form – with a single
constraint: unitarity [21]. A matrix U is unitary (describes a unitary transformation)
if *UU I= . Unitary transformations can be regarded as rotations of a complex
vector space [5]. A very important consequence is that quantum transformations
are reversible. Reversible computation is especially attractive because of its
relation to the energy of computation and information.
 Some important gates that act upon one qubit (single qubit) gates are: the Z
gate, the X gate, the Y gate, and the H gate (also known as Hadamard gate). These
transformations are described below in both BraKet notation and matrix form (for
more details see [5][21]). Also, the symbols most commonly used to represent
them are depicted.

• The X gate (negation gate) is also known as bit-flip transformation:

: 0 1
 1 0
X →

→
0 1
1 0X ⎡ ⎤= ⎢ ⎥⎣ ⎦

Figure 2.5: The X gate: BraKet notation, matrix representation, symbol

• The Y gate performs both phase shift and bit-flip Y=ZX:

: 0 1
 1 0
Y →−

→
0 1
1 0Y ⎡ ⎤= −⎢ ⎥⎣ ⎦

Figure 2.6: The Y gate: BraKet notation, matrix representation, symbol

• The Z gate which performs phase shift:

: 0 0
 1 1
Z →

→−
1 0
0 1Z ⎡ ⎤= −⎢ ⎥⎣ ⎦

Z

Figure 2.7: The Z gate: BraKet notation, matrix representation, symbol

• The H gate (Hadamard gate) is one of the most useful quantum gates.

2. Previous work

18

()
()

: 0 1 2 0 1
 1 1 2 0 1
H → +

→ −
1 1 1

1 12
H ⎡ ⎤= −⎢ ⎥⎣ ⎦

H

Figure 2.8: The Hadamard gate: BraKet notation, matrix representation, symbol

The Hadamard transformation is used in many applications. It is very important
because it transforms 0 (or 1), a classical state into a superposition of states

()1 2 0 1+ (or ()1 1 2 0 1→ −). If it is applied to n qubits individually it

can generate a superposition of 2n classical states.
()

() () ()
2 1

0

 00 0
1 2 0 1 0 1 0 1

n

n

i

H H H

i
−

=

⊗ ⊗ ⊗

= + ⊗ + ⊗ ⊗ +

= ∑

… …
… (2.1)

There are also gates acting on multiple qubits. A very relevant quantum gate acting
on 2 qubits is the controlled-not gate or in short CNOT gate. This gate flips the
controlled qubit if the controlling qubit is 1 as shown below:

: 00 00
 01 01
 10 11
 11 10

CNOT →
→
→
→

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

CNOT
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Figure 2.9: The CNOT (controlled-not) gate: BraKet notation, matrix

representation, symbol

For 3 qubits there is the controlled-controlled-not gate also known as the Toffoli
gate. This gate flips the controlled qubit if the 2 controlling qubits are 1. As a
generalization of this 2 gates there is the controlled-controlled-…-controlled-U
gate, where U is a unitary transformation that acts on one qubit. For the 2 gates
(CNOT, Toffoli) mentioned above the single qubit transformation is U=X.

2. Previous work

 19

2.3.2 Quantum fault simulation
Maintaining a coherent, accurate quantum computation is not an easy task; there
are some quantum specific issues one needs to deal with:

• Phase errors. The classical encoding provides no protection against phase
shift errors.

• Small errors. Due to quantum amplitudes, quantum information is not
entirely digital therefore, an error may affect the amplitudes by a small
amount of orderε , and these small errors can accumulate over time.

• Measurement destroys superposed state. In the classical error correcting
schemes, one needs to measure the bits in order to detect and correct the
errors. However, any measurement of a quantum state irreversibly disturbs
it in quantum computing [21].

• No cloning. In the classical encoding, the information is protected by
making extra copies of it. This is not possible in quantum computing since
arbitrary quantum bits cannot be copied with perfect fidelity [5].

• Decoherence represents the distortion of the quantum state due to
interactions with the environment [4].

Solutions for improving the quantum circuit reliability are mostly based on

the classical theory of error detection and correction codes [8][9][10][11][12].
However, there are some which take advantage of new approaches such as
reconfigurable gate arrays [31]. One of the simplest examples of a quantum error-
correcting code is Shor’s 3 qubit repetition code [12]. This code is based on the
mechanism of majority voting and uses the following qubit encoding:

0 000→ , 1 111→ (2.2)
Shor’s 3 qubit repetition code is capable of detecting and correcting a single error
in the encoded block.
 A very important quantum parameter is the accuracy threshold. The
accuracy threshold is the physical gate error probability for which an arbitrary long
quantum computation is possible with a given error probability [8]. Thus, all the
error detection and correction codes aim at permitting an accuracy threshold which
is as high as possible.

At this moment, it is too difficult to conduct a realistic assessment of
quantum fault tolerance that does not depend on the details of the chosen fault and
error model. Therefore, the fault and error models play an essential role in the

2. Previous work

20

simulated fault injection process. The most widely accepted quantum faults are
modeled by the Pauli operators [5][29]. These faults are: bit-flip (negation,
modeled by X operator – Figure 2.5), phase-shift (modeled by the Z operator –
Figure 2.6) and both bit-flip and phase-shift (modeled by the Y operator – Figure
2.7), and identity I as depicted bellow.

0 0

1 1

→

→
1 0
0 1Iσ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

0 1

1 0

→

→

0 1
1 0Xσ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

0 1

1 0

→−

→
0 1
1 0Yσ

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

0 0

1 1

→

→−

1 0
0 1Zσ
⎛ ⎞

= ⎜ ⎟−⎝ ⎠

Figure 2.10: The Pauli operators

Besides the Pauli operators, there are some other quantum fault models, as those
described in reference [6]. These fault models proved to be very effective for
quantum circuit testing [7].

• Gate insertion: in this case, we assume that the Pauli operators are inserted
in the designated fault locations.

• Gate removal: any single gate can be removed from the system.

The most widely used error model is - independent stochastic errors

[12][29][30][32][34] – the error model consists of having independent probabilistic
errors represented by Pauli operators acting at error location. Their overall effect is
estimated by means of classical error probability.

There are several approaches to quantum error simulation. The simulator
constructed after Cirac and Zoller scheme of ion trap quantum computer [24],
simulates errors by introducing operational errors and errors resulting from
decoherence. The simulator implements gates as sequences of laser transformation.
The operational errors are a result of altering these transformations. The drawback
of such an approach is the fact that is a physical dependent implementation, which
is relevant only for the ion trap computer.

A different approach uses C based programming languages (ANSI C, C++)
in order to perform a Monte Carlo simulation [30][35]. The quantum computation
is run several times and errors are introduced at each gate with some probability.
The state of the quantum circuit is not stored. The only stored information for each

2. Previous work

 21

qubit is whether an error has occurred or not [35]. Thus, in the case of the Monte
Carlo simulation the track of the fault propagation is kept rather than the evolution
of the complete quantum state. Another approach consists of simulating quantum
faults by means of a HDL-based tool - the QUantum ERror Injection Simulation
Tool (QUERIST), an ongoing project with guidelines set in [33].

22

Chapter 3

Thesis overview

Writing a thesis involves activities such as the study and understanding of the state-
of-the-art of the domains related to the scientific topic chosen. Furthermore, a very
important aspect is related to the innovations and contributions of the research
work. Such an activity can only take place in an academic environment where a
group of people work to add up the pieces to a wider puzzle in order to successfully
finish a complex research project. The proposed research direction is part of a
complex framework QUERIST. The guidelines for this framework were proposed
by dr. ing. Mihai Udrescu. He is a co-advisor for the proposed PhD thesis and one
of the founders of the ACSA research group, the group that supports my research
activity.

Figure 3.1: ACSA group overview

3.1 Proposed name

3. Thesis overview

 23

The title for my research project is: “Simulation-Based Assesment of Quantum
Circuit Reliability”. The main target is that of finding an adequate methodology for
assessment of quantum reliability by means of simulation. The starting point for
this research is the classical theory of circuit reliability analysis and simulated
based fault injection as a mean of computing different reliability parameters.

3.2 Thesis goals

The main objectives of the proposed research project, as well as the activities
needed to successfully achieve them, are depicted in Table 3.1.

Table 3.1: Objectives of proposed research project
Year Objectives Associated activities

1. Study of existing implementations and
methodologies for simulated based fault
injection for classical circuits and quantum
circuits.
2. The study of the quantum noise, quantum
fault models. Study of existing error
models.Review of literature.

1. The development of a
theoretical basis for
simulated based fault
injection using HDL
languages for quantum
circuits.

3. The VHDL modeling of quantum errors
and faults.
1. Refining the implementation of the
proposed fault injection techniques.
2. Driving complex simulated based fault
injection campaigns in order to evaluate the
effectiveness of the proposed techniques.

2. The implemetation of
the QUERIST (Quantum
Error Injection
Simulation Tool) by
adding the simulated
based fault injection
techniques

3. Comparisson of the results with the ones
claimed by the most recent and relevant
publications.

1. Gathering the theoretical knowledge and
simulation results into a PhD report.

2008

3. Dissemination –
writting a PhD report
entitled: Simulation
based fault injection
techniques for quantum

2. Report presentation.

3. Thesis overview

24

circuits.

1. The study of the classical circuit logic
partitioning techniques for combinational
circuits.

4. Development of the
theoretical bases for
quantum circuit logic
partitioning 2. The developement of the mathematical

model for the computation of the cuantum
circuit reliability based on the reliability of its
subcomponents. For this purpose the use of
Markov chains or reliability graphs is
considered.
1. The development of a logic partitioning
algorithm for cuantum circuits.
2. The study of the elaborated algoritm based
on simulation campaigns.

1. Developing a
partitioning algorithm for
quantum circuits.

3. The writting of an article based on
quantum circuit partitioning and then
submitting it to a ISI indexed conference.
Also, the participation to the conference.
1. Gathering the theoretical knowledge and
simulation results into a PhD report.

2. Dissemination –
writting a PhD report
entitled: A logic
partitioning based
technique for quantum
circuit reliability
assessment.

2. Report presentation.

1. Results processing and comparisson with
the latest reported results from this research
field.
2. Refining of PhD thesis and defending
thethesis.

2009

3. Dissemination – the
PhD thesis elaboration.

3. Book contracting at Politehnica University
of Timisoara in order to include the PhD
thesis in the PhD series edited by The
University Politehnica of Timisoara.

3. Thesis overview

 25

3.3 Thesis outline

In Table 3.2 a proposed thesis layout is presented. Of course, it is still early, and
future results may overrule the information presented bellow. This can be
considered today’s image of how my PhD thesis will be structured. The second
column from the table bellow briefly presents the intended contents of the thesis
chapters.

Table 3.2: Proposed thesis layout
Thesis chapter Comments

1. Introduction Contains the problem statement. Also,
the thesis structure and main
contributions are stated.

2. Quantum background
 2.1 Fault tolerance problems
 2.2 Quantum noise
 2.2.1 Fault model
 2.2.2 Error model
 2.2.3 Discussion
 2.3 Quantum simulation
 2.4 Quantum reliability:

background

Presents some common knowledge
regarding quantum computing. Then, it
focuses on the quantum fault models and
also the pattern on which these faults
manifest. Furthermore a brief discussion
about fault tolerance problems is also
considered useful. Next, follow the
quantum simulation drawbacks. Last but
not least, the reliability metrics and
parameters need to be presented.

3. Classical fault injection
 3.1 Techniques and tools
 3.2 Classical mutants
 3.3 Classical saboteurs
 3.4 Technique comparison

This chapter of the thesis is meant to deal
with the techniques and tools developed
for classical computation which are a
useful source of knowledge and
experience for the development of fault
injection methodology for quantum
circuits.

4. Quantum fault injection
 4.1 Previous work
 4.2 QUERIST tool
 4.3 Simulator commands
 4.4 Quantum mutants
 4.5 Quantum saboteurs

Quantum fault injection techniques are
presented in chapter 4. These techniques
are presented, analyzed and compared
from the performance and simulation
resources required perspective, on the
one hand. Also, on the other hand,

3. Thesis overview

26

 4.6 Comparison parameters such as effort for setting up a
simulation campaign, capacity of
modeling, capacity of extracting the data
concerning fault propagation are being
tackled.

5. Simulation campaigns
 5.1 First circuit
 5.1.1 Simulation scenario
 5.1.2 Fault injection entities
 5.1.3 Results
 5.2 Quantum double redundancy
 5.2.1 Simulated circuit
 5.2.2 Campaign description
 5.2.3 Fault injection entities
 5.2.4 Simulation results
 5.3 Bell’s circuit
 5.3.1 Campaign description
 5.3.2 Fault injection entities
 5.3.3 Campaign results
 5.4 Concluding remarks

This chapter is dedicated to the
presentation of several simulation
campaigns: the campaign’s scenarios, the
fault injection entities used described in
detail, and also the assumptions
considered for the simulations performed,
the obtained results. A summary of the
chapter as well as the conclusions drawn
from the performed simulation
experiments.

6. Logic partitioning
 6.1 Background
 6.2 Proposed algorithm
 6.3 Experimental results

A review of literature concerning the
partitioning algorithms and methods is
presented in chapter 6. Furthermore, a
solution for quantum circuit logic
partitioning is proposed. Lastly, the
experimental results are depicted.

7. Conclusions and future work Provides a summary of the thesis, and
proposed future research directions based
on the results.

 Bibliography
 Appendix

3.4 Timelines

According to the PhD program, the second phase of the program should last
maximum 2 years. Two PhD reports are needed and of course a PhD thesis must be

3. Thesis overview

 27

defended. In order to fulfill these requirements a list of objectives and associate
activities was developed and described in Table 3.1.

Figure 3.2: Schedule for the main objectives of the PhD thesis

Figure 3.3: Schedule for objectives and associated activities for the academic year

2007-2008

Figure 3.3: Schedule for objectives and associated activities for the academic years

2008-2009

3. Thesis overview

28

The activities described in Table 3.1 are scheduled to take place according to the
timelines depicted by Figure 3.3 for the academic year 2007-2008. Furthermore the
tasks with the proposed deadlines for the academic year 2008-2009 are presented
by Figure 3.4.

3.5 Dissemination

There are two dissemination directions:

• On the one hand, there are the two PhD reports:
1. The first PhD report entitled “Simulation based fault injection

techniques for quantum circuits”.
2. And the second PhD report: “A logic partitioning based technique

for quantum circuit reliability assessment”.
And last, but not least the writting of the PhD thesis: “Simulation-Based
Assesment of Quantum Circuit Reliability”.

• On the other hand there are the publications which are to be submitted at
conferences, workshops and journals. For the conferences and workshops
the candidates are: Annual Simulation Symposium (ANSS- ISI indexed),
European Test Symposium (ETS- ISI indexed), Euromicro Conference on
Digital System Design (DSD- ISI indexed). There are also a number of
journals of interest: IEEE Design and Test of Computers, IEEE
Transactions on Computer Aided Design, ACM Journal on Emerging
Technologies in Computer Systems.

3.6 Potential contributions

The proposed PhD research program - “Simulation-Based Assesment of Quantum
Circuit Reliability” - aims at developing a methodology for quantitatively
assessing quantum circuit reliability. The main contributions of this research would
be:

• A review of literature concerning: quantum noise, quantum circuit
reliability, classical simulated based fault injection, classical logic
decomposition.

3. Thesis overview

 29

• An as accurate as possible model of the quantum noise. The HDL modeling
of existing error models.

• Developing a viable methodology for simulation based fault injection for
quantum circuits.

• Finding a solution for making the developed reliability assessment
techniques scale. A possible solution is logic partitioning. Thus, a potential
contribution might be the development of an algorithm for quantum circuit
partitioning.

• The implementation of the fault injection techniques and the partitioning
algorithm in a tool. The process is intended to be automated, so that through
simulation, a statistically significant sample is obtained in order to provide
a quantitative means to assess quantum circuit reliability.

30

Chapter 4

Conclusions

In this report the research program and a review the of the literature describing
quantum computing, quantum fault tolerance issues and classical fault injection
were presented. Previous work is described in Chapter 2. There are two domains –
on the one hand, there are is classical theory with fault injection techniques and
logic partitioning and a rich experience with HDL modeling and tools; - and on the
other hand there is the quantum domain plagued by quantum noise, which requires
new solutions to improve reliability and also, there is the need to study for a better
understanding of the effect of quantum errors.

The following chapter introduces the proposed research directions with
refined steps o consider for reaching the goals depicted in Subsection 3.2.
Furthermore, the timelines for the proposed activities together with the
dissemination activities are presented. Last, but not least, the potential
contributions of the research activities are illustrated by Subsection 3.2.

The proposed PhD research program - “Simulation-Based Assesment of
Quantum Circuit Reliability” - aims at developing a methodology for simulation
based fault injection for quantum circuits. A desired feature of the fault injection
methodology is scalability. Nevertheless, quantum circuit simulation requires
simulation resources that grow exponentially with the number of simulated qubits.
Although, simulation techniques that improve the simulation cost and/or time were
developed [22][23][25], still for complex and large structures it is not feasible to
apply fault injection. A proposed solution is logic partitioning. The complex and
large quantum circuit is decomposed into less complex parts. Fault injection is used
to evaluate quantum reliability for these parts. The reliability for the larger circuit
is assessed by means of a reliability graph by taking into account the reliability of
the smaller parts. I also want to focus on automating as mush as possible of the
process of creating, running and post-processing the results of a simulation
campaign. In this manner, a statistically significant sample can be obtained in order
to provide a quantitative means to assess quantum circuit reliability.

 31

Bibliography

[1] ARDA. A quantum Information Science and Technology Roadmap.

http://qist.lanl.gov.5
[2] ****, Emerging Research Devices with a New Section on Emerging Research

Materials, International Technology Roadmap for Semiconductors (ITRS) Report
(2005 Update), www.itrs.net/Common/2005Update/, (2005).International
Technology Roadmap for Semiconductors. Emerging research devices. (2005)

[3] Centre for Quantum Computation web page. www.qubit.org.
[4] L. Spector, Automatic Quantum Computer Programming. A Genetic Programming

Approach, Kluwer Academic Publishers, (2004)
[5] E. Rieffer, W. Polak, An Introduction to Quantum Computing for Non-Physicists,

nline preprint quantum-ph/9809016, (1998)
[6] M. Perkowski, J. Biamonte, M.Lukac, Test Generation and Fault Localization for

Quantum Circuits, Proceedings of the 35th International Symposium on Multiple-
Valued Logic (ISMVL’05), (2005)

[7] J.P. Hayes, I. Polian, B. Becker, Testing for Missing Gate Faults in Reversible
Circuits, Proceedings of the 13th Asian Test Symposium (ATS 2004), (2004)

[8] J. Preskill, Fault-Tolerant Quantum Computation, Online preprint Quant-
ph/9712048, (1997)

[9] A.M. Steane, Error correcting codes in quantum theory, Phys. Rev. Lett. 77, 793
(1996)

[10] D. Gottesman, Stabilizer Codes and Quantum Error Correction, PHD Thesis,
California Institute of Technology Pasadena, California, (1997)

[11] E. Knill, R. Laflamme, Concatenated codes, Online preprint quant-ph/9608012,
(1996)

[12] E. Knill, R. Laflamme, A. Ashikhmin, H. Barnum, L. Viola, W.H. Zurek,
Introduction to Quantum Error Correction, Online preprint Quant-ph/0207170,
(2002)

[13] K. Pradhan, Fault-Tolerant Computer System Design, Prentice Hall, (1996)
[14] P. H. Bardell, W. H. McAnney, J. Savir, Built-In Test for VLSI: Pseudorandom

Techniques, A Wiley-Interscience publication, (1989)

BIBLIOGRAPHY

32

[15] M. Rimen, J. Ohlsson, J. Karlsson, E. Jenn, J. Arlat, Validation of Fault Tolerance by
Fault Injection in VHDL Simulation Models, Raport LAAS No.92469, (1992)

[16] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, J. Karlsson, Fault Injection into VHDL
Models: The MEFISTO Tool, 24th Annual International Symposium on Fault
Tolerant Computing (FTCS-24), pp 66-75, (1994)

[17] T.A. DeLong, J.A.. Profeta III, A Fault Injection technique for VHDL Behavioral-
Level Models, IEEE Design and Test of Computers, pp 24-33, winter, (1996)

[18] J.C. Baraza, J. Gracia, D. Gil, P.J. Gil, Improvement of Fault injection Techniques
Based on VHDL Code Modification, IEEE International Design Validation and Test
Workshop, pp 19-26, (2005).

[19] Institute od Electic and Electonic Engineers (IEEE). IEEE Standard VHDL
Language Reference Manual, IEEE STD 1076-1993.

[20] M.Udrescu, PhD report No. 3, www.acsa.upt.ro, (2004)
[21] M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information,

Cambridge University Press, (2000)
[22] G. F. Viamontes, I. L. Markov and J. P. Hayes, Improving Gate-Level Simulation of

Quantum Circuits, Quantum Information Processing vol. 2(5), pp. 347-380, October,
(2003)

[23] G. F. Viamontes, I. L. Markov and J. P. Hayes, Graph-based Simulation of Quantum
Computation in the Density Matrix Representation, Quantum Information and
Computation, vol.5, no.2 pp. 113-130, quant-ph/0403114, February, (2005)

[24] K. M. Obeland, A. M. Despain, A parallel quantum computer simulator, High
performance computing, Online preprint quant-ph/9804039, (1998)

[25] M. Udrescu, L. Prodan, M. Vladutiu, The Bubble Bit Technique as Improvement of
HDL-Based Quantum Circuit Simulation, Proceedings IEEE 38th Annual Simulation
Symposium, pp. 217-224, (2005)

[26] P. Dirac, The Principles of Quantum Mechanic (fourth edition), Oxford University
Press, (1958)

[27] A. Barenco, C.H. Bennett, R. Cleve, D. DiVincenzo, N. Margolus, P. Shor, T.
Sleator, J. Smolin, H. Weinfurter, Elementary gates for quantum computation, Phys.
Rev. A (52), 3457-3467, (1995)

[28] D. Deutsch, Quantum computational networks, Proc. Roy. Soc. Lon. A. 425, 73,
(1989)

[29] E. Knill, E. Laflamme, W. H. Zurek, Resilient Quantum Computation: Error Models
and Thresholds, Online preprint quant-ph/9702058, (1997)

[30] C. Zalka, Threshold Estimate for Fault Tolerant Quantum Computing, Online
preprint quant-ph/9612028, (1997)

[31] M. Udrescu, L. Prodan, M. Vladutiu, Improving Quantum Circuit Dependability with
Reconfigurable Quantum Gate Arrays, Proceedings ACM 2nd International
Conference on Computing Frontiers (CF'05), Ischia, Italy, pp. 133-144, (2005)

BIBLIOGRAPHY

 33

[32] E. Knill, Fault Tolerant Postselected Quantum Computation: Threshold Analysis,
Online preprint Quant-ph/0404104, (2004)

[33] M. Udrescu, L. Prodan, M. Vladutiu, Simulated Fault Injection in Quantum Circuits
with Bubble Bit Technique, 7th International Conference on Adaptive and Natural
Computing Algorithms (ICANNGA), Springer, pp 276-279, (2005)

[34] A.M. Steane Space, time, parallelism and noise requirements for reliable quantum
computing, Online preprint quantum-ph/9708021, (1997)

[35] A.M. Steane Overhead and noise threshold of fault tolerant quantum error
corection, Phys. Rev. A68, (2003)

