

On the Design of Floating Point Units
for Interval Arithmetic

– PhD. Project –

PhD. Student: Eng. Alexandru Amăricăi
Scientific Advisor: Prof. Dr. Eng. Mircea Vlăduţiu

September 2007

 On the Design of Floating Point Units for Interval Arithmetic

2

ABSTRACT

Interval arithmetic has been proven a more reliable alternative to the
conventional floating point arithmetic. A great number of mathematical
methods that use interval arithmetic with applicability in a wide range of fields,
like computer graphics, air traffic control, physics, have been developed.
However, these methods are slow and inefficient on modern computers due to
the lack of hardware support. Therefore, the main goal of this thesis is to design
floating point units suitable for interval arithmetic, in order to exploit the full
potential of interval methods. The designed units have to be similar in cost and
performance with respect to conventional floating point units. Furthermore,
because interval arithmetic is not meant to be a replacement of the
conventional floating point arithmetic, but an extension of it, the proposed units
have also to be suitable for conventional floating point arithmetic. Other
approaches consisted on developing hardware support for interval arithmetic
by incorporating existing conventional floating point units. My approach relies
on the design of these units from almost zero, by taking into account algorithms
for interval operations and the particularities for each floating point operation
(normalization, rounding algorithms, exponent computation, etc). A very
important aspect of the research is the analysis of the proposed circuits in
terms of cost and performance. The cost will be estimated in terms of gate
count. The performance will be estimated both in the latency of the circuits
(measured in logic levels) and by estimating the performance of different
interval methods on the proposed units. Thus, a benchmark type analysis is
required. Because in interval arithmetic there is no known set of benchmarks
programs (similar to SPEC-FPU), a benchmark proposal will also be made in
this thesis.

 On the Design of Floating Point Units for Interval Arithmetic

3

Table of Contents:

1 Introduction………………………………………………....…………... 4
2 Background...………………………………………………….……….. 6
 2.1 Interval Arithmetic Algorithms and Designs...…………..………... 6
 2.2 Floating Point Arithmetic……….……………………….……….... 10
 2.2.1 IEEE 754 standard……………..…………………………. 10
 2.2.2 Floating Point Addition...………………………………… 12
 2.2.3 Floating Point Multiplication ……………………………. 14
 2.2.4 Multiply-Add Fused ……………………………………… 16
 2.2.5 Floating Point Division …………………………………... 18
3 Thesis Overview…………….………………………………..……….. 20
 3.1 Proposed Title…………………………………………...………... 20
 3.2 Thesis Objectives……...………………………………....………... 21
 3.3 Thesis Outline ….……………………………………….………... 22
 3.4 Realization………………………………………………………... 23
 3.4.1 Activity Planning ………………………………………… 23
 3.4.2 System Design …………………………………………… 26
 3.4.3 Dissemination ……………………………………………. 26
 3.5 Potential contributions…………………………………...………... 27
4 Conclusions…………………………………………………….……….. 28
 References ……………………………………………………... 29

 On the Design of Floating Point Units for Interval Arithmetic

4

1. Introduction

In the last decades the computational power of computers has increased
almost exponential. Nowadays, computers that perform billions of arithmetic
operations are common. However, the precision of the arithmetic is at a
standstill. As exemplified in [21], in the 1960’s the IBM S360/91 floating point
format had a 64 bits representation, with 7 bits for exponent and 56 for
mantissa; nowadays, the almost all computers use the IEEE 754/1985 double
precision representation, with 11 bits for exponents and 52 bits for mantissa.

Floating point arithmetic is full of errors. The reasons for these types of
errors are multiple: the impossibility of representing all the real numbers using
a floating point format (simple numbers like 1/3 or 2), truncation errors,
rounding errors etc. These errors seem very small. However, due to the great
number of arithmetic operations, an accumulation of arithmetic errors can
happen. This may lead to disastrous consequences, like the Dahran incident
during the First Gulf War [11].

Therefore, in some fields of application, it is very important for monitoring
and controlling the errors which occur in the floating point arithmetic. One way
for monitoring these types of errors is by using interval arithmetic. Interval
arithmetic does not increase the precision of floating point arithmetic, but it
provides a measure of the accuracy of the arithmetic computations [21].

Interval arithmetic does not deal with a single floating point number, which
is an approximation (less or greater accurate) of the desired real number, but
deals with an interval, defined by two floating point numbers (the upper bound
of the interval and the lower bound of the interval). The interval has the
property that it surely contains the desired real number. The width of the
interval is of measure of the accuracy for the arithmetic computations, or better
said is a measure of the lack of accuracy [11]. Thus, interval arithmetic and
interval mathematics provides methods which offer guaranties over the
obtained results. A wide range of mathematical methods have been developed
over the last four decades, like the Newton interval method for non linear
equations [15], methods for systems of equations [5][27][28][29] with
applicability in physics [11], computer graphics [20], air traffic control, robot
control [5] etc.

The potential of interval mathematics cannot be fully exploited because
interval methods are inefficient on modern computers. Interval arithmetic is
much slower than conventional floating point arithmetic due to the reasons: on
one hand, interval arithmetic comprises of at least two floating point operations;
on the other the only rounding mode which is incorporated in the arithmetic

 On the Design of Floating Point Units for Interval Arithmetic

5

instructions is the rounding towards nearest even, which is not used in interval
arithmetic; for operations with rounding towards positive or negative infinity
two instructions are needed (one for setting the rounding mode and the other for
the operation) [13]. Thus, the main reason for the low performance of interval
methods is the lack of hardware support, although hardware designs for
different arithmetic operations have been proposed. This lack of support has
two reasons, as presented in [11]: the uncertainty in demand and the lack of any
kind of standard (similar in some aspects with the IEEE 754).

The main objective of the thesis is to propose new designs and circuits,
which are both high performance and cost effective with respect to
conventional floating point units, for interval arithmetic. In this way, hardware
support for this type of arithmetic can be provided. Because interval arithmetic
should be seen as an extension of conventional floating point arithmetic [13],
the proposed units have also to be suitable for conventional floating point
arithmetic. Thus, the main focus of the proposed thesis is on hardware design of
floating point units for interval arithmetic.

This project proposal will present the main reasons why a successful
research can be conducted in this engineering domain. This paper is structured
on two main chapters. In the second chapter, the scientific background which
will be the starting point for my research. This chapter will briefly present the
main achievements and the latest trends in both interval and floating point
arithmetic. A very detailed presentation will be done in the following PhD.
reports, where the proposed solutions will be compared to both interval and
floating point units. The third chapter will present the PhD. thesis outline. The
structure of the reports and thesis is proposed. Furthermore, the targeted impact
of this thesis is presented, in both potential contributions and desired
publications. Also, the main activities and the milestones associated with them
are depicted.

 On the Design of Floating Point Units for Interval Arithmetic

6

2. Background

Hardware designs for interval arithmetic have been proposed. However,
these designs incorporate existing conventional floating point units, without
modifying or adapting their internal structure for the algorithms and
particularities of interval arithmetic. My approach in the research is designing
the interval arithmetic units by creating new architectures for floating point
units which take into account the algorithms and particularities for interval
arithmetic. Therefore, in this chapter are presented algorithms and previous
designs for interval arithmetic on one hand, and the main architectures and
design issues for conventional floating point arithmetic, from where the
inspiration is drawn, on the other hand.

2.1 Interval Arithmetic Algorithms and Designs

An interval X is defined by two floating point numbers, which constitute
the bounds of the given interval: [];lo hiX X X= [13][15]. The four basic
arithmetic operations between two intervals X ,Y are given below [13][15][22]:

- addition: [] [] []; ; ;lo hi lo hi lo lo hi hiX X Y Y X Y X Y+ = + +
- subtraction: [] [] []; ; ;lo hi lo hi lo hi hi loX X Y Y X Y X Y− = − −

- multiplication: [] [] () (); * ; max ;minlo hi lo hiX X Y Y XY XY⎡ ⎤= ⎣ ⎦∏ ∏

where XY∏ is represented by the four products
* ; * ; * ; *lo lo hi lo lo hi hi hiX Y X Y X Y X Y

- division: [] [] [] []; / ; ; * 1/ ;1/lo hi lo hi lo hi hi loX X Y Y X X Y Y=
undefined for []0 ;lo hiY Y∈

Also, the set operations, like the hull, the intersection and the inclusion are used
in interval arithmetic.

A very important aspect for interval arithmetic is the rounding mode used;
thus, the rounding modes which are used are rounding towards negative infinity
for the lower bound of the result (for example, in case of addition lo loX Y+ will
be rounded towards negative infinity) and rounding towards positive infinity for
the upper bound of the result (for example, in case of addition hi hiX Y+ will be
rounded towards positive infinity).

Several approaches have been proposed in order to provide hardware
support for interval arithmetic. The ones presented in [21][22] are dedicated to

 On the Design of Floating Point Units for Interval Arithmetic

7

variable precision floating point format, while the ones presented in
[1][13][15][26] can be used for IEEE floating point format numbers. In [25]
issues regarding special numbers and exception handling in interval arithmetic
are presented.

Interval addition, subtraction and division require two floating point
operations. The solutions proposed for these three interval operations ([13][15])
rely either on a single hardware unit (a floating point adder for
addition/subtraction or a floating point divider for division) which implements
both needed rounding modes, either on two floating point units (one for the
lower bound of the result, while the other for the upper bound of the result) – as
depicted in Fig. 2.1. In the first case, the performance of an interval operation is
equal to the performance of two conventional floating point operations, while
the cost is the same with respect to a conventional floating point unit. In the
second case, the performance of an interval operation is the same as a
conventional floating point operation, while the cost is almost double.

Fig. 2.1 – Hardware support for interval operations with two floating point units

as depicted in [13]

Interval multiplication is the most complex from all four basic interval
arithmetic operations. It requires four floating point multiplications and six

 On the Design of Floating Point Units for Interval Arithmetic

8

floating point comparisons, which means a total of ten floating point operations
(ten operations if we do not count rounding). As presented in [18], in
conventional floating point arithmetic the multiplications count almost 40%
from all arithmetic instructions. Therefore, it is expected that in interval
arithmetic, the multiplication to be a very important and frequent operation.
Thus, the latency of the interval multiplication (which consists of ten floating
point operations) is unacceptable. Different approaches in order to improve the
performance have been proposed. One approach used in [13][15][26] is based
on the reduction of the number of operation needed based on the signs of the
two operands. Thus, depending on the signs of the four floating point numbers,
nine cases for interval multiplication are obtained (Table 2.1). In eight cases,
only two floating point multiplications are needed; while in the ninth case
(when the two operands contain zero) four multiplications and two comparisons
are needed. (Regarding the interval division, this operation is undefined when
the second interval contains zero; thus, using the sign examination approach,
only six cases are obtained, in all of them only two operations being required.)

Table 2.1 – Nine cases for interval multiplication [15]

Case

[],lo hiX X [],lo hiY Y Result

1 0loX > 0loY > []* , *lo lo hi hiX Y X Y
2 0loX > 0hiY < []* , *hi lo lo hiX Y X Y
3 0loX > 0lo hiY Y< < []* , *hi lo hi hiX Y X Y
4 0hiX < 0loY > []* , *lo hi hi loX Y X Y
5 0hiX < 0hiY < []* , *hi hi lo loX Y X Y
6 0hiX < 0lo hiY Y< < []* , *lo hi lo loX Y X Y
7 0lo hiX X< < 0loY > []* , *lo hi hi hiX Y X Y
8 0lo hiX X< < 0hiY < []* , *hi lo lo loX Y X Y

9 0lo hiX X< < 0lo hiY Y< < () ()min * ; * ,max * ; *lo hi hi lo lo lo hi hiX Y X Y X Y X Y⎡ ⎤⎣ ⎦

In the sign examining approach, a significant improvement in the average

performance is obtained. Also, an improvement in the worst case performance
is also obtained. However, this approach is very difficult to implement on
pipeline structures, mainly due to the different number of operations required in
each case [15]. The hardware designs based on sign examination makes use of
one or two multipliers and one or two comparators. As it can be observed in

 On the Design of Floating Point Units for Interval Arithmetic

9

Table 2.1 an interval multiplication cannot be performed without a floating
point comparator.

Another approach for interval multiplication is presented in [15] and uses
and algorithm, which although at a first glance looks difficult, is suitable for
pipelined structures. This type of algorithm makes use of one or two floating
point multipliers (the one multiplier variant is presented in Fig. 2.2) and of two
comparators.

*lo lop X Y=
*lo hiq X Y=
*hi lor X Y= min(,)m p q= max(,)M p q=
*hi hit X Y= min(,)m m r= max(,)M M r=

min(,)m m t= max(,)M M t=
()loZ RNI m= ()hiZ RPI M=

Fig 2.2 – Interval multiplication algorithm presented in [15]

Very important for interval arithmetic are the set operations, like the hull,

inclusion or intersection (which is frequently used in Newton’s interval method
[15]). Therefore, hardware designs for such operations have been proposed,
such as the ones in [1][13]. These designs are based on the floating point
comparator and implement the algorithms for interval set operations, like the
ones presented in Fig. 2.3.

()
()

max ,

min ,
lo lo lo

hi hi hi

Z X Y

Z X Y

=

=

If loZ < hiZ then
 R= [],lo hiZ Z
else R= ∅

a)

()
()

min ,

max ,
lo lo lo

hi hi hi

Z X Y

Z X Y

=

=

R= [],lo hiZ Z

b)
Fig 2.3 – Interval intersection (a) and hull (b) algorithms as presented in [1]

As we can see, all these designs make use of floating point units without

modifying their internal structure for the specificities and algorithms of interval
arithmetic. My approach for this PhD. is to modify the internal structure of the
floating point units in order to obtain the best performance and cost for interval

 On the Design of Floating Point Units for Interval Arithmetic

10

arithmetic operations. Thus, an overview of the main floating point units is
absolutely necessary.

2.2 Floating Point Arithmetic

2.2.1. IEEE 754 standard

The IEEE 754 standard was developed in the mid 1980’s and it was a
successful attempt to provide a unitary floating point number system to be used
in all computers. The main idea behind the developing of the IEEE 754
standard was that the same program, which contains floating point operations,
with the same inputs, that is working on two different computers, to produce the
same result [9]. The standard presents a number format to be used for the
floating point numbers, specifies operations that have to be done, rounding
modes, special values and exceptions [9].

A floating point number using the format specified by IEEE 754 standard is
composed from the sign bit, exponent bits and mantissa bits [30]. The value is
computed using the formula:

()1 * 2 *1.s e biasN m−= −
where s represents the sign bit, e the exponents bits and m the mantissa bits,
while the bias represents the biased number of the exponent (the exponent is
represented in a biased form). The bit 1 from the mantissa representation (1.m)
is called the hidden bit [30].

The IEEE 754 standard specifies four formats for floating point numbers
[30]: single precision, double precision, single extended and double extended.
The single difference between these formats is represented by the number of
bits used to represent the numbers. In Table 2.2 the parameters for the four
formats are given.

 The IEEE 754 standard also specifies four rounding modes for the floating
point operations [30]: rounding towards nearest even, rounding towards positive
infinity, rounding towards negative infinity, rounding towards zero. Although,
four rounding mode are adopted by the standard, the only implicit rounding
mode adopted both in processor design and programming languages is rounding

 On the Design of Floating Point Units for Interval Arithmetic

11

towards nearest even. For any other rounding mode, an instruction for setting
the rounding mode has to be used before any operation [13].

Table 2.2 IEEE 754 format parameters [9]

 Single Precision Single Extended Double Precision Double Extended

Sign bits 1 1 1 1
Exponent Bits 8 11 11 15
Bias 127 1023 1023 16383
Mantissa Bits 23 31 52 63
Format Width 32 43 64 79

 Also in IEEE 754 standard special values had been specified. These values
describe special situations that can appear during computations and their role is
to prevent program halting when is not necessary [9]. The special values are
encoded in the IEEE format and they are easy to detect. The special values are:
zero (positive and negative), infinity, denormalized and NaN. In table 2.3 are
presented al the special values that appear in the IEEE 754 standard.

Table 2.3 Special values specified by the IEEE 754 standard [9]
Exponent Magnitude Represents

E=0 M=0 +/- 0
E=0 M<>0 Denormalized number

0<E<=Emax Floating point number
E=Emax+1 M=0 +/-∞
E=Emax+1 M<>0 NaN

 Along with special values, the IEEE 754 standard also defines the
mechanism of exceptions. This mechanism is used in case of exceptional
conditions do appear [9]. Five classes of exceptions are defined by the standard:
overflow, underflow, division by zero, invalid and inexact [30]. The standard
also recommends the use of trap handlers in case one of these exceptions does
appear. However, it is not mandatory to implement trap handlers, in this case
for each exception a specific value being returned (see Table 2.4).

 On the Design of Floating Point Units for Interval Arithmetic

12

Table 2.4 – Exceptions in IEEE 754 and their returned values [9]
Exception Returned Value
Overflow +/-∞
Underflow 0

Divide by zero +/-∞
Invalid NaN
Inexact Round(result)

2.2.2. Floating Point Addition

Floating point additions/subtractions count more than 55% of all floating
point operations [18], thus making the floating point adder the most frequently
used floating point unit. In order to add to IEEE 754 floating point numbers,
given by sign, exponent and mantissa, several steps must be followed [18]:
1. Exponent difference.
2. Right shifting the significand of the smaller operand with the result of the

absolute value of the exponents’ difference.
3. Significand addition/subtraction.
4. Result conversion in case that the significand is negative, after being yielded

in step 3.
5. Leading zero detection in order to determine the number of left shifting

positions needed in normalization step.
6. Normalization of the significand and updating the exponent of the result.
7. Rounding.

This algorithm requires two full length shifters (in step 2 and 6), three large
carry propagate adders (in steps 3, 4 and 7) and one leading zero counter (in
step 5). Therefore, a very low performance is obtained by implementing this
algorithm.

In order to increase the performance of this crucial operation, the double
path floating point adder is used. First described in [8], many types of this kind
of floating point adder have been developed, like the ones in
[10][17][18][23][24]. The double path adder is built on the following
assumptions:
1) When the exponent difference is greater than 1, then in case of an effective

subtraction the maximum number of leading zeros is one, so in the
normalization step only one-position left shift might be requires.
Furthermore, there is no need for the leading zero detection. Also, in case of

 On the Design of Floating Point Units for Interval Arithmetic

13

any type of effective addition (no matter of the exponent difference) there is
no possibility of leading zero’s appearance. In this case, a large full length
right shifter is required in order to align the two mantissas. This case is
known as the FAR path.

2) When the exponents’ difference is 0 or 1, then only a one position right
shift might be needed in step 2. However, in case of effective subtraction,
there is the possibility of appearance of a large number of leading zeros.
This case is known as the CLOSE path. Also, on this path, instead of
counting leading zeros after the subtraction of the two mantissas was
performed, a leading zero prediction is performed in parallel with the
mantissa addition [2][19]

Fig. 2.5 – The double path adder architecture [6]

Furthermore, both in FAR and CLOSE path a compound adder (which has

as result the sum of two numbers and the incremented sum – sum+1) is used to
add the aligned mantissas [18]. In this way are computed all the possible results
which may be obtained after rounding. Thus, the rounding step is reduced to

 On the Design of Floating Point Units for Interval Arithmetic

14

only a simple selection. Furthermore, the mantissas are swapped based on the
exponent difference so in case of a subtraction, the result to be always positive
[18]. Thus, the result conversion (2’s complementing) is not any more needed.
The general architecture of the mantissa computational path in the double path
adder is depicted in Fig 2.5. The selection criteria for the path selection can
vary from different types of double path adder: in [8][18] the exponents’
difference is used, while in [10][17][24] the CLOSE path is used only for
effective subtraction when the exponents’ difference is 0 or 1.

2.2.3. Floating Point Multiplication

Floating point multiplication is one of the most simple floating point
operations and consists of an exclusive or between the signs, an exponent
addition, and a significands multiplication. The significand multiplication is
basically an unsigned integer multiplication. The most appropriate multipliers
for the significand multiplication are the tree multipliers [6], due to their high
performance. The typical structure of a tree multiplier [6] consists of:
1. A partial product generation circuit which acts like an encoding scheme.

This unit implements one of the integer multiplication algorithms, like
Robertson, Booth or Modified Booth. Based on the two input numbers, the
scheme generates several partial products, depending on the chosen
algorithm and the chosen radix.

2. The partial product reduction tree, which can be a Wallace tree or a binary
tree, reduces the partial products resulted after the encoding scheme into two
final partial products. This unit is usually built from carry-save adders.

3. The final propagate adder, which sums up the final partial products in order
to generate the result of the multiplication. In general, if the input number
has an m bits size, then the final propagate adder has a 2·m bits size.
However, because of operating with IEEE 754 floating point numbers,

several challenges appear [7]:
1. The significands are numbers in the [1,2) interval. Consequently, the result is

a number in the [1,4) interval. Therefore, a normalization step (a one
position right shift of the significand, followed by an increment of the
exponent) may be needed.

2. After the mantissas multiplication, a double size mantissa will result. Thus, a
rounding step is needed. This rounding step may require a plus one addition
to the significand of the result – thus a large carry propagate adder.
Therefore, performance degradation can be observed, mainly due to the

rounding step. Thus, several methods for latency reduction in the rounding step

 On the Design of Floating Point Units for Interval Arithmetic

15

were developed, such as the ES algorithm, the YZ algorithm or the QTF
algorithm [7].

Fig. 2.6 – Overall architecture of the floating point multiplier [6]

All these methods rely on splitting the two final partial products into two

halves [6]. The most significant halves of the final partial products are fed to a
compound adder in order to compute all the possible results which may occur
after rounding. The least significant halves of the two final partial products are
used to compute the sticky bits needed for rounding and the carry (that would
normally result if the addition of the whole partial products would have taken
place). This way, the rounding step would be reduced to a selection between the
two possible results, using a simple multiplexer. Thus, a significant increase is
obtained because the carry propagate adder in the final stage of the three
multiplier is replaced by a half size compound adder and the rounding step is

 On the Design of Floating Point Units for Interval Arithmetic

16

reduced to a selection (using a multiplexer instead of a large carry propagate
adder) [6].

2.2.4. Multiply-Add Fused

 In a wide range of applications, like the signal processing, matrix
multiplication, computer graphics, the most frequent operation is the multiply-
add (multiplication followed by addition – A+B*C) [6]. Therefore, it is very
favorable that this operation should be implemented as a single instruction and
executed by a specialized hardware unit. There are two main reasons for
implementing this operation with a single specialized hardware unit, rather than
using a multiplier and an adder [6][12]:

 1. The performance is higher.
 2. There is only one rounding, rather than two. Therefore, a major

reduction of rounding errors can be obtained.
 In order to multiply-add three numbers (A+B*C) several steps have to be
followed [3]:

1. Add the exponents of the multiplying numbers (B and C) and subtract
the exponent of A in order to determine the amount of alignment shift
for A.

2. “Multiplication” of B and C in order to produce a carry save
representation (two final partial products form) – in term of a tree
multiplier only the encoding scheme and the reduction tree is used.

3. Bit inversion (in case of an effective subtraction) and alignment of A.
This is done in parallel with the multiplication.

4. Addition of A with the two final partial products obtained from B*C.
This is done using a carry-save adder line.

5. Final addition using a large carry propagate adder. In parallel a leading
zero prediction is done.

6. Normalization and rounding.
The general architecture of a floating point multiply-add fused unit is

presented in Fig. 2.7. As presented in Fig. 2.7 a multiply-add fused has
components specific to both floating point adders (like the alignment shifter,
leading zero predictor and normalization shifter) and floating point multipliers
(like the carry-save adders based tree).

 On the Design of Floating Point Units for Interval Arithmetic

17

Fig. 2.7 Overall architecture of a multiply-add fused for IEEE 754 double

precision format numbers [3]

 Different improvements have been made to the overall architecture
presented in Fig. 2.7, such as separating the two final operands (the inputs of
the final carry propagate) in two parts (with the most significand being inputs

 On the Design of Floating Point Units for Interval Arithmetic

18

for a smaller compound adder, while the least significand used for rounding bits
computation – similar to the final stages of a floating point multiplier) [3], or
using two computation paths based on the result in step 1 (similar to a double
path adder) [4].

2.2.5 Floating Point Division

Floating point division is apparently one of the most simple floating point
operations, being very similar to the floating point multiplication. It consists of
an exclusive or between the signs, an exponent subtraction and a mantissa
division, which is basically an integer division. However, the division requires a
large number of clock cycles, five times or more than multiplication [16].

According to [16][18], the division techniques can be classified into four
major classes: digit recurrence, functional iteration, very high radix, table look-
up. However, almost all practical implementations use a combination of all
these techniques, rather than a single particular class [18].

The digit recurrence techniques include restoring division, non-restoring
division and SRT division [16]. The digit recurrence techniques use the
addition as the main operation and after each iteration a fixed number of digits
are retired and partial remainder is obtained [18]. The most used technique is
the SRT because of its high performance. According to [14], the SRT division
is characterized by a normalized divisor, a redundant symmetric quotient digit
set and a possible redundant representation for remainder. The main choices I
case of a SRT division are the radix, the redundant quotient digit set and the
representation of the remainder [18]. The basic stage for SRT dividers is
presented in Fig. 2.8. In case of the floating point division, a major issue it is
represented by rounding: in the case of digit recurrence algorithm the rounding
is performed after the computation of several extra quotient digits and
examining the final partial remainder.

The functional iteration division uses multiplication, and not addition, as the
main operation. The advantage of the functional iteration division is that after
each iteration the result converges quadratically [18]. They are four major
techniques of functional iteration [16]: polynomial approximation, rational
approximation, Newton-Raphson and series expansion (the most used being
Goldschmidt algorithm). Functional iteration is very used for floating point
division, mainly due to the fact that division is a low frequently used operation
and it can be easily performed on fast floating point multipliers (the multiplier
is shared between multiplication and division) [18].

 On the Design of Floating Point Units for Interval Arithmetic

19

Fig. 2.8 The basic SRT stage [18]

Very high radix division applies to dividers which return more than 10

quotient digits after each iteration [18]. Both addition and multiplication are
used at each step [16]. The convergence in this case is linear.

Look-up tables are used both in functional iteration and digit recurrence for
a better initial approximation. Furthermore, they are used when only a low
precision quotient is required [18]. The main advantage of the look-up tables is
that they are quite fast, because no arithmetic operations are needed [18]. The
look-up tables can be used for direct approximation, linear approximation,
interpolation approximation and bipartite approximation [16].

Many of the division techniques can be used also for other more complex
operations, like the square root, inverse square root, exponentiation and
logarithm [16].

 On the Design of Floating Point Units for Interval Arithmetic

20

3. Thesis Overview

 A PhD. means dissemination of the existing knowledge, and based on this
the creation of new knowledge, which can be used and furthermore developed
by an entire scientific community. A very rigorous documentation of the state-
of-the-art in the scientific domain which the PhD. belongs must be undertaken
in order to be able to recognize the disadvantages of the state-of-the-art
solutions and then to improve them, thus bringing new ideas and creating new
knowledge. In order to do so, the research activity must be undertaken into a
scientific environment which can be characterized by tradition, continuity and
performance. Such a group is the ACSA (Advanced Computer Science and
Architectures) research group, where I belong. Due to the scientific activity of
Prof. Mircea Vladutiu, which is my scientific coordinator, and of Mihai
Udrescu, Lucian Prodan and Oana Boncalo, this group can offer the premises
for a successful PhD. thesis.

Fig. 3.1 ACSA laboratory overview

3.1. Proposed Title

The name which I propose for this PhD. is “On the Design of Floating Units
for Interval Arithmetic”. This title describes in apprehensive and coherent
manner the scientific domain where this PhD. thesis belongs. Furthermore, this

 On the Design of Floating Point Units for Interval Arithmetic

21

title described the methodology for the accomplishing my main objective,
which is to design high performance, low cost interval arithmetic units.

3.2. Thesis Objectives

The objectives for this PhD. will follow two main scientific directions. The
first direction will focus on the design of units for interval arithmetic, while the
second will be focused on the impact of the designed units on specific interval
arithmetic applications.

Regarding the first scientific direction, four interval operations will be
targeted: addition, multiplication, multiply-add fused and divide-add fused. All
four units will be designed in VHDL, at gate level for IEEE simple precision
format and at more behavioral level (major modules of the design) IEEE double
precision format. Both cost and latency for the proposed units will be estimated
using these VHDL models. Furthermore, a gate level model for a simplified
IEEE format of only 16 bits will be developed in order to allow exhaustive
functional testing.

Regarding the addition unit, a fast design based on the double path floating
point adder will be looked for. As in conventional floating point arithmetic,
additions are expected to be the most common operations in interval arithmetic.
Thus, a fast adder is justified. Furthermore, a significant cost increase must be
avoided for the proposed unit.

Regarding interval multiplication, both algorithm and hardware
implementation will be looked for. The algorithm will be designed in order to
reduce the drawbacks of having large number of operations for interval
multiplication. Furthermore, the algorithm must be easily implemented in
circuitry.

As in conventional floating point arithmetic, there are some applications
(like matrix multiplication) where a multiply-add fused (MAF) may be more
advantageous than using a multiplier and an adder. The interval multiply-add
fused will be the first of its kind, to the best of our knowledge, there is no such
interval unit. Thus, both algorithm and hardware implementation must be
developed for this unit.

Regarding the divide-add fused, this hardware unit will be used in order to
increase the performance of the Newton’s interval method. This method has its
main operations a division followed by a subtraction. Thus, a divide-add fused
(DAF) unit is justified.

Regarding the second scientific direction, the impact of the proposed units
on the specific interval applications will be looked for. The applications will be
evaluated and statistic data (like the percentages of each operation) will be

 On the Design of Floating Point Units for Interval Arithmetic

22

extracted. Because the most common programming languages do not provide
support for interval arithmetic, an interval arithmetic emulator will be
developed.

3.3. Thesis Outline

The proposed outline is given belong. This outline is the today’s vision on
the future PhD. However, future changes can appear.

1. Introduction – in this chapter a overall view of the scientific domain will

be made and the opportunity for this thesis will be
presented.

2. An Interval Arithmetic System Perspective – this chapter will be
dedicated to the analysis of the specific interval arithmetic
applications; a presentation of these applications will be
realized; a presentation of the methodology of analysis will
be made; and finally the results will be given, which will
present the hardware requirements for these applications.

3. Interval Addition – this chapter will be dedicated to the interval addition
unit; the chapter will contain the state-of-the-art regarding
both floating point addition and interval addition; the
proposed unit will be presented and detailed; cost and
performance estimates are given; the impact for both
interval arithmetic applications and for floating point is
estimated; also comparison with the state-of-the-art both in
conventional floating point and interval arithmetic is
realized.

4. Interval Multiplication – this chapter will present the interval
multiplication unit; the chapter will contain state-of-the-art
regarding floating point multiplication; interval
multiplication algorithms are examined and detailed; the
proposed interval multiplication algorithm will be ; its
hardware implementation will be detailed; cost and
performance estimates are given; also comparison with the
state-of-the-art both in conventional floating point and
interval arithmetic is realized.

5. Interval Multiply-Add Fused – this chapter is dedicated to the interval
multiply-add fused unit; the state-of-the-art of the floating
point multiply-add fused will be realized; interval multiply-

 On the Design of Floating Point Units for Interval Arithmetic

23

add fused algorithms will be proposed; hardware
implementation of the proposed algorithms are given; cost
and performance estimates are given; comparisons with
floating point multiply-add fused units will be made; the
impact on specific interval arithmetic applications will be
performed.

6. Interval Divide-Add Fused – this chapter will present the interval divide-
add fused unit; a detailed presentation of the floating point
SRT division will be made; a floating point divide-add fused
will be proposed; an interval divide-add fused algorithm and
its hardware implementations will be given; cost and
performance estimates are realized; the impact on specific
interval arithmetic application will be analyzed.

7. Conclusion – this chapter will present the concluding remarks of the PhD.
thesis; the major contributions of this thesis are summarized;
furthermore the impact of this thesis is given.

Two PhD. reports will be presented. The contents of the PhD. reports will

be the following:
- PhD. Report 1 – this report will be dedicated to interval addition and

multiplication
- PhD. Report 2 – this report will be dedicated to interval multiply-add

fused and divide-add fused

3.4. Realization

3.4.1. Activity Planning

In order to achieve the major thesis objectives, on the two main scientific
directions, and to follow the proposed thesis outline, a very detailed and
carefully planning of the research and development activities has to be
followed. The major tasks of the research process follow the major chapters of
the proposed PhD. thesis layout. Furthermore, the two PhD. reports and the
completion of the thesis are also included in the major tasks of the scientific
process. Fig 3.2 presents the timeline and an estimated duration for the
accomplishment of the major tasks in the research process.

 On the Design of Floating Point Units for Interval Arithmetic

24

Fig. 3.2 Major activities planning

In order to achieve each major research and development activity, smaller

activities have to be accomplished. These smaller activities are specific to every
major task.

In Fig. 3.3 are depicted the activities which will result in the completion of
the PhD. report No. 1. These activities are planned for the academic year 2007-
2008. The estimated timeline and milestones for each of major activities are
presented in the below graphic.

Fig 3.3 Planned activities for the 2007-2008 academic year

 On the Design of Floating Point Units for Interval Arithmetic

25

 For the second academic year (2008-2009), the finalization of the PhD.
report No. 1 and of the PhD. thesis are the main goals. Also, the design of the
interval MAF and interval DAF are estimated to take place in this period. In
Fig. 3.4 are depicted the activities which must be undertaken in order to achieve
the major tasks of this academic year.

Fig 3.4 Planned activities for the 2007-2008 academic year

Thus, by a accomplishing each of the major tasks as planned and by

sustaining all the activities planned, the PhD. thesis can be defended by the
second quarter of 2009, following the directions dictated by the University’s
Doctoral Program.

 On the Design of Floating Point Units for Interval Arithmetic

26

3.4.2. System Design

The main scientific direction of this PhD. will be the design of the interval
arithmetic unit for addition, multiplication, multiply-add fused and divide-add
fused. These units must be evaluated in terms of both performance and cost and
must be compared with both existing interval arithmetic units and conventional
floating point units.

In order to achieve the above presented tasks, the proposed units will be
designed in VHDL. VHDL will be used because it provides a technology
independent hardware description language. Thus, my designs will be
technology independent, which is a major advantage for me, due to the
inaccessibility of any semiconductor chip processing technology.

For each unit, three VHDL models will be designed. A first model will be
made at gate level for a simplified 16 bits IEEE format. The role of this model
will be for functional testing, because at 16 bits exhaustive testing is possible.

A second VHDL model will be made at gate level for IEEE simple
precision. The role of this model will be to estimate the cost of the design.
Furthermore, VHDL models for other existing units will be made in order to
achieve an efficient and relevant cost comparison.

A third model will be made for IEEE double precision numbers. This model
will be made at a more behavioral level, where the major subcomponents will
be described at behavioral level. All the details, and especially the delays, for
these subcomponents will be taken from the existing literature. Thus, a relevant
performance comparison can be achieved.

3.4.3. Dissemination

An important issue for this PhD. is constituted by the results dissemination.
The dissemination will follow two major directions:

- The first direction is focused on the dissemination needed for
accomplishing the PhD. thesis and is based around the two PhD. report
and the PhD. thesis. In this way, all the scientific results of my research
will be evaluated and criticized by the ACSA research group and by the
Computer Science and Engineering Department, where I belong.

- The second direction is focused on publication in major conference
proceedings and journals. In this way, my work during this PhD. will be
evaluated by the entire scientific community. The main topic of the
conferences where I attend to publish will be computer arithmetic, in
particular, and digital design, in general. Some conferences which I

 On the Design of Floating Point Units for Interval Arithmetic

27

attend to publish are: IEEE Workshop on Design and Diagnostics of
Electronic Circuits and Systems, Euromicro Digital System Design,
IEEE Circuits and Systems Conference, IEEE Symposium on Computer
Arithmetic.

3.5. Potential Contributions

This thesis main goal is to offer a new perspective in the design process of
interval arithmetic units, offering viable and efficient solutions in order to
provide hardware support for interval arithmetic. Thus, significant contributions
will be made for each designed unit. The potential contributions can be
classified in to classes:

- Better solutions for existing interval arithmetic units – this can apply to
the interval addition and multiplication units;

- New interval arithmetic units – this principal can apply to the multiply-
add fused and divide-add fused; to the best of our knowledge no such
units have been proposed.

Another major potential contribution may be given by the second scientific
direction, being the first attempt to analyze interval arithmetic application in
order to design specific circuitry dedicated to them.

 On the Design of Floating Point Units for Interval Arithmetic

28

4. Conclusions

 As it was stated in the beginning of this report, this PhD. comes to fill the
gap of dedicated hardware support for interval arithmetic. A new approach for
this major objective is proposed: to design the hardware units from almost zero,
by taking into account all the specifications of interval arithmetic. This way
efficient hardware unit both in performance and cost can be obtained. Thus, a
better exploitation of the more reliable interval applications is possible.
 The PhD. is like a journey. It has a start point, which is represented by the
state-of-the-art of the scientific domains where the PhD. belongs. In this case,
the scientific domain is represented by the floating point and interval arithmetic.
In this PhD. report Chapter 2 is dedicated to the state-of-the-art in both interval
and conventional floating point arithmetic. Algorithms and hardware designs
for interval arithmetic units are presented. An overview of the IEEE 754
standard for binary floating point arithmetic, which will be used for all the
proposed designs, is given. Principles in hardware designs for floating point
addition, multiplication, multiply-add fused and division are detailed.
 The journey has a destination. This destination is represented by the final
PhD. thesis. An outline for this PhD. is given. This outline points out the major
objectives and the potential contributions. Furthermore, the main objectives and
the contributions are presented in this PhD. report.
 Furthermore, the means for reaching the destination are presented in detail
in this PhD. report. The main milestones and the activities associated with them
are given. A detailed planning for these milestones and activities are depicted.
Also, the methodology for design and analysis of the proposed units is
presented. And last, but not least, the dissemination plans are given.
 Thus, this report constitutes the first step for the proposed PhD. thesis. The
future work will follow the guidelines presented in this report.

 On the Design of Floating Point Units for Interval Arithmetic

29

References:

[1] A. Akkas -A Combined Interval and Floating Point Comparator/Selector –
Proceedings of the 13th IEEE Conference of Application Specific Architectures and
Processors (ASAP), 2002
[2] J. Bruguera, T. Lang – Leading One Prediction with Concurrent Position Corection
– IEEE Trans. on Computers, Vol. 48, No. 10, 1999
[3]J. Bruguera, T. Lang – Floating Point Fused Multiply-Add with Reduced Latency-
Proceedings of the IEEE International Conference on Computer Design (ICCD), 2002
[4] J. Bruguera, T. Lang – Floating Point Fused Multiply-Add: Reduced Latency for
Floating Point Addition – Proceedings of the 17th IEEE Conference on Computer
Arithmetic (ARITH-17), 2005
[5] COPRIN project, -http://www-sop.inria.fr/coprin/developpements/ main.html -,
INRIA, France
[6] M. Ercegovac, T. Lang – Digital Arithmetic – Morgan-Kaufmann Publishers, 2006
[7] G. Even, P.M. Seidel – A Comparisson of Three Rounding Algorithms for IEEE
Floating Point Multiplication – IEEE Trans on Computers, Vol. 49, No. 7, 2000
[8] P. M. Farmwald – On the Design of High Performance Digital Arithmetic Circuits
– PhD. Thesis, Stanford University, 1981
[9] D. Goldberg – What Every Computer Scientist Should Know About Floating Point
Arithmetic – ACM Computing Surveys, Vol 32, No 1, 1991
[10] V. Gorshtein, A. Grushin, S. Shevtsov - Floating point addition methods and
apparatus – US Patent No. 5808926, Sun Microsystems, 1998
[11] B. Hayes – A Lucid Interval – American Scientist, Vol. 91, No. 9, 2003
[12] R.M. Jessani, M. Putrino – Comparisson of Single and Dual Pass Multiply-Add
Fused Floating Point Units – IEEE Trans. on Computers, Vol. 47, No. 9, 1998
[13] R. Kirchner, U. Kulisch – Hardware Support for Interval Arithmetic – Reliable
Computing, Vol. 12, No. 3, 2006
[14] P. Kornerup – Digit Selection for SRT Division and Square Root – IEEE Trans.
on Computers, Vol. 54, No. 3, 2005
[15] U. Kulisch, -Advanced Arithmetic for the Digital Computers- Springer-Verlag,
Vienna, 2002
[16] A.A. Liddicoat – High Performance Arithmetic for Division and the Elementary
Functions - PhD. Thesis, Stanford University, 2002
[17] S.F. Oberman – Floating Point Arithmetic Unit Including an Efficient Close Data
Path – US Patent No. 6094668, AMD, 2000
[18] S.F. Oberman – Design Issues in High Performance Floating Point Arithmetic
Units – PhD. Thesis, Stanford University, 1996
[19] R. Rogenmoser, L. O’Donnel – Method and Apparatus to Correct Leading One
Prediction – US Patent No. 6988115, Broadcom Corporation, 2006
[20] J.F. Sanjuan-Estrada, L.G. Casado, I. Garcia – Reliable Algorithms for Ray
Intersection in Computer Graphics Based on Interval Arithmetic – Proceedings on 16th
IEEE Brazilian Symposium on Computer Graphics and Image Processing, 2003

 On the Design of Floating Point Units for Interval Arithmetic

30

[21] M.J. Schulte – A Variable Precision, Interval Arithmetic Processor – PhD. Thesis,
University of Texas at Austin, 1996
[22] M.J. Schulte, E. Swartzlander – Hardware Design and Arithmetic Algorithms for
Variable-Precision, Interval Arithmetic Coprocessor – Proceedings of 12th IEEE
Conference on Computer Arithmetic (ARITH-12), 1995
[23] P.M. Seidel – On the Design of IEEE Compliant Floating Point Units and Their
Quantitative Analysis – PhD. Thesis, University of Saalanden, 1999
[24] P.M. Seidel, G. Even – On the Design of Fast IEEE Floating Point Adder –
Proceedings of the 15th IEEE Conference on Computer Arithmetic (ARITH-15), 2001
[25] G. Steele - Floating point system with improved support of interval arithmetic –
US Patent No. 7069288, Sun Microsystems, 2006
[26] J.E. Stine, M.J. Schulte – A Combined Interval and Floating Point Multiplier –
Proceedings of ACM Great Lakes Symposium on VLSI (GLSVLSI), 1998
[27] G. Walster, E. Hansen – Method and apparatus for solving systems of nonlinear
equations using interval arithmetic – US Patent No. 6915321, Sun Microsystems, 2005
[28] G. Walster, E. Hansen – Solving systems of nonlinear equations using interval
arithmetic and term consistency– US Patent No. 6859817, Sun Microsystems, 2005
[29] G. Walster, E. Hansen – Termination criteria for the interval version of Newton's
method for solving systems of non-linear equations – US Patent No. 6920472, Sun
Microsystems, 2005
[30] ANSI/IEEE 754-1985 Standard for Binary Floating Point Arithmetic

