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ABSTRACT 
 
 

Interval arithmetic has been proven a more reliable alternative to the 
conventional floating point arithmetic. A great number of mathematical 
methods that use interval arithmetic with applicability in a wide range of fields, 
like computer graphics, air traffic control, physics, have been developed. 
However, these methods are slow and inefficient on modern computers due to 
the lack of hardware support. Therefore, the main goal of this thesis is to design 
floating point units suitable for interval arithmetic, in order to exploit the full 
potential of interval methods. The designed units have to be similar in cost and 
performance with respect to conventional floating point units. Furthermore, 
because interval arithmetic is not meant to be a replacement of the 
conventional floating point arithmetic, but an extension of it, the proposed units 
have also to be suitable for conventional floating point arithmetic. Other 
approaches consisted on developing hardware support for interval arithmetic 
by incorporating existing conventional floating point units. My approach relies 
on the design of these units from almost zero, by taking into account algorithms 
for interval operations and the particularities for each floating point operation 
(normalization, rounding algorithms, exponent computation, etc). A very 
important aspect of the research is the analysis of the proposed circuits in 
terms of cost and performance. The cost will be estimated in terms of gate 
count. The performance will be estimated both in the latency of the circuits 
(measured in logic levels) and by estimating the performance of different 
interval methods on the proposed units. Thus, a benchmark type analysis is 
required. Because in interval arithmetic there is no known set of benchmarks 
programs (similar to SPEC-FPU), a benchmark proposal will also be made in 
this thesis.      
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1. Introduction 
 
 

In the last decades the computational power of computers has increased 
almost exponential. Nowadays, computers that perform billions of arithmetic 
operations are common. However, the precision of the arithmetic is at a 
standstill. As exemplified in [21], in the 1960’s the IBM S360/91 floating point 
format had a 64 bits representation, with 7 bits for exponent and 56 for 
mantissa; nowadays, the almost all computers use the IEEE 754/1985 double 
precision representation, with 11 bits for exponents and 52 bits for mantissa. 

Floating point arithmetic is full of errors. The reasons for these types of 
errors are multiple: the impossibility of representing all the real numbers using 
a floating point format (simple numbers like 1/3 or 2 ), truncation errors, 
rounding errors etc. These errors seem very small. However, due to the great 
number of arithmetic operations, an accumulation of arithmetic errors can 
happen. This may lead to disastrous consequences, like the Dahran incident 
during the First Gulf War [11]. 

Therefore, in some fields of application, it is very important for monitoring 
and controlling the errors which occur in the floating point arithmetic. One way 
for monitoring these types of errors is by using interval arithmetic. Interval 
arithmetic does not increase the precision of floating point arithmetic, but it 
provides a measure of the accuracy of the arithmetic computations [21].  

Interval arithmetic does not deal with a single floating point number, which 
is an approximation (less or greater accurate) of the desired real number, but 
deals with an interval, defined by two floating point numbers (the upper bound 
of the interval and the lower bound of the interval). The interval has the 
property that it surely contains the desired real number. The width of the 
interval is of measure of the accuracy for the arithmetic computations, or better 
said is a measure of the lack of accuracy [11]. Thus, interval arithmetic and 
interval mathematics provides methods which offer guaranties over the 
obtained results. A wide range of mathematical methods have been developed 
over the last four decades, like the Newton interval method for non linear 
equations [15], methods for systems of equations [5][27][28][29] with 
applicability in physics [11], computer graphics [20], air traffic control, robot 
control [5] etc.  

The potential of interval mathematics cannot be fully exploited because 
interval methods are inefficient on modern computers. Interval arithmetic is 
much slower than conventional floating point arithmetic due to the reasons: on 
one hand, interval arithmetic comprises of at least two floating point operations; 
on the other the only rounding mode which is incorporated in the arithmetic 
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instructions is the rounding towards nearest even, which is not used in interval 
arithmetic; for operations with rounding towards positive or negative infinity 
two instructions are needed (one for setting the rounding mode and the other for 
the operation) [13]. Thus, the main reason for the low performance of interval 
methods is the lack of hardware support, although hardware designs for 
different arithmetic operations have been proposed. This lack of support has 
two reasons, as presented in [11]: the uncertainty in demand and the lack of any 
kind of standard (similar in some aspects with the IEEE 754).  

The main objective of the thesis is to propose new designs and circuits, 
which are both high performance and cost effective with respect to 
conventional floating point units, for interval arithmetic. In this way, hardware 
support for this type of arithmetic can be provided. Because interval arithmetic 
should be seen as an extension of conventional floating point arithmetic [13], 
the proposed units have also to be suitable for conventional floating point 
arithmetic. Thus, the main focus of the proposed thesis is on hardware design of 
floating point units for interval arithmetic. 

This project proposal will present the main reasons why a successful 
research can be conducted in this engineering domain. This paper is structured 
on two main chapters. In the second chapter, the scientific background which 
will be the starting point for my research. This chapter will briefly present the 
main achievements and the latest trends in both interval and floating point 
arithmetic. A very detailed presentation will be done in the following PhD. 
reports, where the proposed solutions will be compared to both interval and 
floating point units. The third chapter will present the PhD. thesis outline. The 
structure of the reports and thesis is proposed. Furthermore, the targeted impact 
of this thesis is presented, in both potential contributions and desired 
publications. Also, the main activities and the milestones associated with them 
are depicted.      
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2. Background 
 
 

Hardware designs for interval arithmetic have been proposed. However, 
these designs incorporate existing conventional floating point units, without 
modifying or adapting their internal structure for the algorithms and 
particularities of interval arithmetic. My approach in the research is designing 
the interval arithmetic units by creating new architectures for floating point 
units which take into account the algorithms and particularities for interval 
arithmetic. Therefore, in this chapter are presented algorithms and previous 
designs for interval arithmetic on one hand, and the main architectures and 
design issues for conventional floating point arithmetic, from where the 
inspiration is drawn, on the other hand.    

   
 

2.1 Interval Arithmetic Algorithms and Designs 
 

An interval X  is defined by two floating point numbers, which constitute 
the bounds of the given interval: [ ];lo hiX X X=  [13][15]. The four basic 
arithmetic operations between two intervals X ,Y  are given below [13][15][22]: 

- addition: [ ] [ ] [ ]; ; ;lo hi lo hi lo lo hi hiX X Y Y X Y X Y+ = + +  
- subtraction: [ ] [ ] [ ]; ; ;lo hi lo hi lo hi hi loX X Y Y X Y X Y− = − −  

- multiplication: [ ] [ ] ( ) ( ); * ; max ;minlo hi lo hiX X Y Y XY XY⎡ ⎤= ⎣ ⎦∏ ∏  

where XY∏ is represented by the four products 
* ; * ; * ; *lo lo hi lo lo hi hi hiX Y X Y X Y X Y  

- division: [ ] [ ] [ ] [ ]; / ; ; * 1/ ;1/lo hi lo hi lo hi hi loX X Y Y X X Y Y=  
undefined for [ ]0 ;lo hiY Y∈  

Also, the set operations, like the hull, the intersection and the inclusion are used 
in interval arithmetic.   

A very important aspect for interval arithmetic is the rounding mode used; 
thus, the rounding modes which are used are rounding towards negative infinity 
for the lower bound of the result (for example, in case of addition lo loX Y+  will 
be rounded towards negative infinity) and rounding towards positive infinity for 
the upper bound of the result (for example, in case of addition hi hiX Y+  will be 
rounded towards positive infinity). 

Several approaches have been proposed in order to provide hardware 
support for interval arithmetic. The ones presented in [21][22] are dedicated to 
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variable precision floating point format, while the ones presented in 
[1][13][15][26] can be used for IEEE floating point format numbers. In [25] 
issues regarding special numbers and exception handling in interval arithmetic 
are presented.  

Interval addition, subtraction and division require two floating point 
operations. The solutions proposed for these three interval operations ([13][15]) 
rely either on a single hardware unit (a floating point adder for 
addition/subtraction or a floating point divider for division) which implements 
both needed rounding modes, either on two floating point units (one for the 
lower bound of the result, while the other for the upper bound of the result) – as 
depicted in Fig. 2.1. In the first case, the performance of an interval operation is 
equal to the performance of two conventional floating point operations, while 
the cost is the same with respect to a conventional floating point unit. In the 
second case, the performance of an interval operation is the same as a 
conventional floating point operation, while the cost is almost double.   

    

 
Fig. 2.1 – Hardware support for interval operations with two floating point units 

as depicted in [13] 
  

Interval multiplication is the most complex from all four basic interval 
arithmetic operations. It requires four floating point multiplications and six 



 
 
 
 
 
                             On the Design of Floating Point Units for Interval Arithmetic 

8 

floating point comparisons, which means a total of ten floating point operations 
(ten operations if we do not count rounding). As presented in [18], in 
conventional floating point arithmetic the multiplications count almost 40% 
from all arithmetic instructions. Therefore, it is expected that in interval 
arithmetic, the multiplication to be a very important and frequent operation. 
Thus, the latency of the interval multiplication (which consists of ten floating 
point operations) is unacceptable. Different approaches in order to improve the 
performance have been proposed. One approach used in [13][15][26] is based 
on the reduction of the number of operation needed based on the signs of the 
two operands. Thus, depending on the signs of the four floating point numbers, 
nine cases for interval multiplication are obtained (Table 2.1). In eight cases, 
only two floating point multiplications are needed; while in the ninth case 
(when the two operands contain zero) four multiplications and two comparisons 
are needed. (Regarding the interval division, this operation is undefined when 
the second interval contains zero; thus, using the sign examination approach, 
only six cases are obtained, in all of them only two operations being required.)  

 
Table 2.1 – Nine cases for interval multiplication [15] 

   
Case 

[ ],lo hiX X  [ ],lo hiY Y  Result 

1 0loX >  0loY >  [ ]* , *lo lo hi hiX Y X Y  
2 0loX >  0hiY <  [ ]* , *hi lo lo hiX Y X Y  
3 0loX >  0lo hiY Y< < [ ]* , *hi lo hi hiX Y X Y  
4 0hiX <  0loY >  [ ]* , *lo hi hi loX Y X Y  
5 0hiX <  0hiY <  [ ]* , *hi hi lo loX Y X Y  
6 0hiX <  0lo hiY Y< < [ ]* , *lo hi lo loX Y X Y  
7 0lo hiX X< <  0loY >  [ ]* , *lo hi hi hiX Y X Y  
8 0lo hiX X< <  0hiY <  [ ]* , *hi lo lo loX Y X Y  

9 0lo hiX X< <  0lo hiY Y< < ( ) ( )min * ; * ,max * ; *lo hi hi lo lo lo hi hiX Y X Y X Y X Y⎡ ⎤⎣ ⎦  
 
In the sign examining approach, a significant improvement in the average 

performance is obtained. Also, an improvement in the worst case performance 
is also obtained. However, this approach is very difficult to implement on 
pipeline structures, mainly due to the different number of operations required in 
each case [15]. The hardware designs based on sign examination makes use of 
one or two multipliers and one or two comparators. As it can be observed in 
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Table 2.1 an interval multiplication cannot be performed without a floating 
point comparator.   

Another approach for interval multiplication is presented in [15] and uses 
and algorithm, which although at a first glance looks difficult, is suitable for 
pipelined structures. This type of algorithm makes use of one or two floating 
point multipliers (the one multiplier variant is presented in Fig. 2.2) and of two 
comparators.  

 

*lo lop X Y=
*lo hiq X Y=
*hi lor X Y= min( , )m p q= max( , )M p q=
*hi hit X Y= min( , )m m r= max( , )M M r=

min( , )m m t= max( , )M M t=
( )loZ RNI m= ( )hiZ RPI M=

 
Fig 2.2 – Interval multiplication algorithm presented in [15] 

 
Very important for interval arithmetic are the set operations, like the hull, 

inclusion or intersection (which is frequently used in Newton’s interval method 
[15]). Therefore, hardware designs for such operations have been proposed, 
such as the ones in [1][13]. These designs are based on the floating point 
comparator and implement the algorithms for interval set operations, like the 
ones presented in Fig. 2.3.  

 
( )
( )

max ,

min ,
lo lo lo

hi hi hi

Z X Y

Z X Y

=

=

If loZ < hiZ  then 
 R= [ ],lo hiZ Z  
else R= ∅   

a) 

( )
( )

min ,

max ,
lo lo lo

hi hi hi

Z X Y

Z X Y

=

=

R= [ ],lo hiZ Z  
 
 

b) 
Fig 2.3 – Interval intersection (a) and hull (b) algorithms as presented in [1] 

 
As we can see, all these designs make use of floating point units without 

modifying their internal structure for the specificities and algorithms of interval 
arithmetic. My approach for this PhD. is to modify the internal structure of the 
floating point units in order to obtain the best performance and cost for interval 
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arithmetic operations. Thus, an overview of the main floating point units is 
absolutely necessary.  

 
  

2.2 Floating Point Arithmetic 
 
2.2.1. IEEE 754 standard 
 

The IEEE 754 standard was developed in the mid 1980’s and it was a 
successful attempt to provide a unitary floating point number system to be used 
in all computers. The main idea behind the developing of the IEEE 754 
standard was that the same program, which contains floating point operations, 
with the same inputs, that is working on two different computers, to produce the 
same result [9]. The standard presents a number format to be used for the 
floating point numbers, specifies operations that have to be done, rounding 
modes, special values and exceptions [9]. 

A floating point number using the format specified by IEEE 754 standard is 
composed from the sign bit, exponent bits and mantissa bits [30]. The value is 
computed using the formula:  

( )1 * 2 *1.s e biasN m−= −  
where s represents the sign bit, e the exponents bits and m the mantissa bits, 
while the bias represents the biased number of the exponent (the exponent is 
represented in a biased form). The bit 1 from the mantissa representation (1.m) 
is called the hidden bit [30].  

The IEEE 754 standard specifies four formats for floating point numbers 
[30]: single precision, double precision, single extended and double extended. 
The single difference between these formats is represented by the number of 
bits used to represent the numbers. In Table 2.2 the parameters for the four 
formats are given.   

 The IEEE 754 standard also specifies four rounding modes for the floating 
point operations [30]: rounding towards nearest even, rounding towards positive 
infinity, rounding towards negative infinity, rounding towards zero. Although, 
four rounding mode are adopted by the standard, the only implicit rounding 
mode adopted both in processor design and programming languages is rounding 
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towards nearest even. For any other rounding mode, an instruction for setting 
the rounding mode has to be used before any operation [13].  

 
Table 2.2 IEEE 754 format parameters [9]  

 Single Precision Single Extended Double Precision Double Extended 

Sign bits 1 1 1 1 
Exponent Bits 8 11 11 15 
Bias 127 1023 1023 16383 
Mantissa Bits 23 31 52 63 
Format Width 32 43 64 79 
 
 Also in IEEE 754 standard special values had been specified. These values 
describe special situations that can appear during computations and their role is 
to prevent program halting when is not necessary [9]. The special values are 
encoded in the IEEE format and they are easy to detect. The special values are: 
zero (positive and negative), infinity, denormalized and NaN. In table 2.3 are 
presented al the special values that appear in the IEEE 754 standard. 
 

Table 2.3 Special values specified by the IEEE 754 standard [9]  
Exponent Magnitude Represents 

E=0 M=0 +/- 0 
E=0 M<>0 Denormalized number 

0<E<=Emax  Floating point number 
E=Emax+1 M=0 +/-∞  
E=Emax+1 M<>0 NaN 

 
 Along with special values, the IEEE 754 standard also defines the 
mechanism of exceptions. This mechanism is used in case of exceptional 
conditions do appear [9]. Five classes of exceptions are defined by the standard: 
overflow, underflow, division by zero, invalid and inexact [30]. The standard 
also recommends the use of trap handlers in case one of these exceptions does 
appear. However, it is not mandatory to implement trap handlers, in this case 
for each exception a specific value being returned (see Table 2.4). 
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Table 2.4 – Exceptions in IEEE 754 and their returned values [9] 
Exception Returned Value
Overflow +/-∞  
Underflow 0 

Divide by zero +/-∞  
Invalid NaN 
Inexact Round(result) 

 
 
2.2.2. Floating Point Addition 
 

Floating point additions/subtractions count more than 55% of all floating 
point operations [18], thus making the floating point adder the most frequently 
used floating point unit. In order to add to IEEE 754 floating point numbers, 
given by sign, exponent and mantissa, several steps must be followed [18]: 
1. Exponent difference. 
2. Right shifting the significand of the smaller operand with the result of the 

absolute value of the exponents’ difference. 
3. Significand addition/subtraction. 
4. Result conversion in case that the significand is negative, after being yielded 

in step 3. 
5. Leading zero detection in order to determine the number of left shifting 

positions needed in normalization step. 
6. Normalization of the significand and updating the exponent of the result. 
7. Rounding. 

This algorithm requires two full length shifters (in step 2 and 6), three large 
carry propagate adders (in steps 3, 4 and 7) and one leading zero counter (in 
step 5). Therefore, a very low performance is obtained by implementing this 
algorithm.  

In order to increase the performance of this crucial operation, the double 
path floating point adder is used. First described in [8], many types of this kind 
of floating point adder have been developed, like the ones in 
[10][17][18][23][24]. The double path adder is built on the following 
assumptions: 
1) When the exponent difference is greater than 1, then in case of an effective 

subtraction the maximum number of leading zeros is one, so in the 
normalization step only one-position left shift might be requires. 
Furthermore, there is no need for the leading zero detection. Also, in case of 
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any type of effective addition (no matter of the exponent difference) there is 
no possibility of leading zero’s appearance. In this case, a large full length 
right shifter is required in order to align the two mantissas. This case is 
known as the FAR path. 

2) When the exponents’ difference is 0 or 1, then only a one position right 
shift might be needed in step 2. However, in case of effective subtraction, 
there is the possibility of appearance of a large number of leading zeros. 
This case is known as the CLOSE path. Also, on this path, instead of 
counting leading zeros after the subtraction of the two mantissas was 
performed, a leading zero prediction is performed in parallel with the 
mantissa addition [2][19]  

 

 
Fig. 2.5 – The double path adder architecture [6] 

 
Furthermore, both in FAR and CLOSE path a compound adder (which has 

as result the sum of two numbers and the incremented sum – sum+1) is used to 
add the aligned mantissas [18]. In this way are computed all the possible results 
which may be obtained after rounding. Thus, the rounding step is reduced to 
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only a simple selection. Furthermore, the mantissas are swapped based on the 
exponent difference so in case of a subtraction, the result to be always positive 
[18]. Thus, the result conversion (2’s complementing) is not any more needed. 
The general architecture of the mantissa computational path in the double path 
adder is depicted in Fig 2.5. The selection criteria for the path selection can 
vary from different types of double path adder: in [8][18] the exponents’ 
difference is used, while in [10][17][24] the CLOSE path is used only for 
effective subtraction when the exponents’ difference is 0 or 1. 
 
 
2.2.3. Floating Point Multiplication 
 

Floating point multiplication is one of the most simple floating point 
operations and consists of an exclusive or between the signs, an exponent 
addition, and a significands multiplication. The significand multiplication is 
basically an unsigned integer multiplication. The most appropriate multipliers 
for the significand multiplication are the tree multipliers [6], due to their high 
performance. The typical structure of a tree multiplier [6] consists of:   
1. A partial product generation circuit which acts like an encoding scheme. 

This unit implements one of the integer multiplication algorithms, like 
Robertson, Booth or Modified Booth. Based on the two input numbers, the 
scheme generates several partial products, depending on the chosen 
algorithm and the chosen radix. 

2. The partial product reduction tree, which can be a Wallace tree or a binary 
tree, reduces the partial products resulted after the encoding scheme into two 
final partial products. This unit is usually built from carry-save adders. 

3. The final propagate adder, which sums up the final partial products in order 
to generate the result of the multiplication. In general, if the input number 
has an m bits size, then the final propagate adder has a 2·m bits size. 
However, because of operating with IEEE 754 floating point numbers, 

several challenges appear [7]: 
1. The significands are numbers in the [1,2) interval. Consequently, the result is 

a number in the [1,4) interval. Therefore, a normalization step (a one 
position right shift of the significand, followed by an increment of the 
exponent) may be needed. 

2. After the mantissas multiplication, a double size mantissa will result. Thus, a 
rounding step is needed. This rounding step may require a plus one addition 
to the significand of the result – thus a large carry propagate adder.  
Therefore, performance degradation can be observed, mainly due to the 

rounding step. Thus, several methods for latency reduction in the rounding step 
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were developed, such as the ES algorithm, the YZ algorithm or the QTF 
algorithm [7].  

 

 
Fig. 2.6 – Overall architecture of the floating point multiplier [6] 

 
All these methods rely on splitting the two final partial products into two 

halves [6]. The most significant halves of the final partial products are fed to a 
compound adder in order to compute all the possible results which may occur 
after rounding. The least significant halves of the two final partial products are 
used to compute the sticky bits needed for rounding and the carry (that would 
normally result if the addition of the whole partial products would have taken 
place). This way, the rounding step would be reduced to a selection between the 
two possible results, using a simple multiplexer. Thus, a significant increase is 
obtained because the carry propagate adder in the final stage of the three 
multiplier is replaced by a half size compound adder and the rounding step is 
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reduced to a selection (using a multiplexer instead of a large carry propagate 
adder) [6].  

 
 

2.2.4. Multiply-Add Fused 
 
 In a wide range of applications, like the signal processing, matrix 
multiplication, computer graphics, the most frequent operation is the multiply-
add (multiplication followed by addition – A+B*C) [6]. Therefore, it is very 
favorable that this operation should be implemented as a single instruction and 
executed by a specialized hardware unit. There are two main reasons for 
implementing this operation with a single specialized hardware unit, rather than 
using a multiplier and an adder [6][12]: 

 1. The performance is higher. 
 2. There is only one rounding, rather than two. Therefore, a major 

reduction of rounding errors can be obtained. 
 In order to multiply-add three numbers (A+B*C) several steps have to be 
followed [3]: 

1. Add the exponents of the multiplying numbers (B and C) and subtract 
the exponent of A in order to determine the amount of alignment shift 
for A. 

2. “Multiplication” of B and C in order to produce a carry save 
representation (two final partial products form) – in term of a tree 
multiplier only the encoding scheme and the reduction tree is used. 

3. Bit inversion (in case of an effective subtraction) and alignment of A. 
This is done in parallel with the multiplication. 

4. Addition of A with the two final partial products obtained from B*C. 
This is done using a carry-save adder line. 

5. Final addition using a large carry propagate adder. In parallel a leading 
zero prediction is done. 

6. Normalization and rounding. 
The general architecture of a floating point multiply-add fused unit is 

presented in Fig. 2.7. As presented in Fig. 2.7 a multiply-add fused has 
components specific to both floating point adders (like the alignment shifter, 
leading zero predictor and normalization shifter) and floating point multipliers 
(like the carry-save adders based tree).  
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Fig. 2.7 Overall architecture of a multiply-add fused for IEEE 754 double 

precision format numbers [3] 
 
 Different improvements have been made to the overall architecture 
presented in Fig. 2.7, such as separating the two final operands (the inputs of 
the final carry propagate) in two parts (with the most significand being inputs 
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for a smaller compound adder, while the least significand used for rounding bits 
computation – similar to the final stages of a floating point multiplier) [3], or 
using two computation paths based on the result in step 1 (similar to a double 
path adder) [4].  
  
 
2.2.5 Floating Point Division 
 

Floating point division is apparently one of the most simple floating point 
operations, being very similar to the floating point multiplication. It consists of 
an exclusive or between the signs, an exponent subtraction and a mantissa 
division, which is basically an integer division. However, the division requires a 
large number of clock cycles, five times or more than multiplication [16].  

According to [16][18], the division techniques can be classified into four 
major classes: digit recurrence, functional iteration, very high radix, table look-
up. However, almost all practical implementations use a combination of all 
these techniques, rather than a single particular class [18].   

The digit recurrence techniques include restoring division, non-restoring 
division and SRT division [16].  The digit recurrence techniques use the 
addition as the main operation and after each iteration a fixed number of digits 
are retired and partial remainder is obtained [18]. The most used technique is 
the SRT because of its high performance. According to [14], the SRT division 
is characterized by a normalized divisor, a redundant symmetric quotient digit 
set and a possible redundant representation for remainder. The main choices I 
case of a SRT division are the radix, the redundant quotient digit set and the 
representation of the remainder [18]. The basic stage for SRT dividers is 
presented in Fig. 2.8. In case of the floating point division, a major issue it is 
represented by rounding: in the case of digit recurrence algorithm the rounding 
is performed after the computation of several extra quotient digits and 
examining the final partial remainder.   

The functional iteration division uses multiplication, and not addition, as the 
main operation. The advantage of the functional iteration division is that after 
each iteration the result converges quadratically [18]. They are four major 
techniques of functional iteration [16]: polynomial approximation, rational 
approximation, Newton-Raphson and series expansion (the most used being 
Goldschmidt algorithm). Functional iteration is very used for floating point 
division, mainly due to the fact that division is a low frequently used operation 
and it can be easily performed on fast floating point multipliers (the multiplier 
is shared between multiplication and division) [18].  
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Fig. 2.8 The basic SRT stage [18]  

 
Very high radix division applies to dividers which return more than 10 

quotient digits after each iteration [18]. Both addition and multiplication are 
used at each step [16]. The convergence in this case is linear.  

Look-up tables are used both in functional iteration and digit recurrence for 
a better initial approximation. Furthermore, they are used when only a low 
precision quotient is required [18]. The main advantage of the look-up tables is 
that they are quite fast, because no arithmetic operations are needed [18]. The 
look-up tables can be used for direct approximation, linear approximation, 
interpolation approximation and bipartite approximation [16].  

Many of the division techniques can be used also for other more complex 
operations, like the square root, inverse square root, exponentiation and 
logarithm [16].       
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3. Thesis Overview 
 
 

 A PhD. means dissemination of the existing knowledge, and based on this 
the creation of new knowledge, which can be used and furthermore developed 
by an entire scientific community. A very rigorous documentation of the state-
of-the-art in the scientific domain which the PhD. belongs must be undertaken 
in order to be able to recognize the disadvantages of the state-of-the-art 
solutions and then to improve them, thus bringing new ideas and creating new 
knowledge. In order to do so, the research activity must be undertaken into a 
scientific environment which can be characterized by tradition, continuity and 
performance.  Such a group is the ACSA (Advanced Computer Science and 
Architectures) research group, where I belong. Due to the scientific activity of 
Prof. Mircea Vladutiu, which is my scientific coordinator, and of Mihai 
Udrescu, Lucian Prodan and Oana Boncalo, this group can offer the premises 
for a successful PhD. thesis. 
     
  

 
Fig. 3.1 ACSA laboratory overview 

 
 
3.1. Proposed Title 
 

The name which I propose for this PhD. is “On the Design of Floating Units 
for Interval Arithmetic”. This title describes in apprehensive and coherent 
manner the scientific domain where this PhD. thesis belongs.  Furthermore, this 
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title described the methodology for the accomplishing my main objective, 
which is to design high performance, low cost interval arithmetic units.  
 
3.2. Thesis Objectives 
 

The objectives for this PhD. will follow two main scientific directions. The 
first direction will focus on the design of units for interval arithmetic, while the 
second will be focused on the impact of the designed units on specific interval 
arithmetic applications. 

Regarding the first scientific direction, four interval operations will be 
targeted: addition, multiplication, multiply-add fused and divide-add fused.  All 
four units will be designed in VHDL, at gate level for IEEE simple precision 
format and at more behavioral level (major modules of the design) IEEE double 
precision format. Both cost and latency for the proposed units will be estimated 
using these VHDL models. Furthermore, a gate level model for a simplified 
IEEE format of only 16 bits will be developed in order to allow exhaustive 
functional testing.  

Regarding the addition unit, a fast design based on the double path floating 
point adder will be looked for. As in conventional floating point arithmetic, 
additions are expected to be the most common operations in interval arithmetic. 
Thus, a fast adder is justified. Furthermore, a significant cost increase must be 
avoided for the proposed unit.  

Regarding interval multiplication, both algorithm and hardware 
implementation will be looked for. The algorithm will be designed in order to 
reduce the drawbacks of having large number of operations for interval 
multiplication. Furthermore, the algorithm must be easily implemented in 
circuitry.  

As in conventional floating point arithmetic, there are some applications 
(like matrix multiplication) where a multiply-add fused (MAF) may be more 
advantageous than using a multiplier and an adder. The interval multiply-add 
fused will be the first of its kind, to the best of our knowledge, there is no such 
interval unit. Thus, both algorithm and hardware implementation must be 
developed for this unit. 

Regarding the divide-add fused, this hardware unit will be used in order to 
increase the performance of the Newton’s interval method. This method has its 
main operations a division followed by a subtraction. Thus, a divide-add fused 
(DAF) unit is justified.  

Regarding the second scientific direction, the impact of the proposed units 
on the specific interval applications will be looked for. The applications will be 
evaluated and statistic data (like the percentages of each operation) will be 
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extracted. Because the most common programming languages do not provide 
support for interval arithmetic, an interval arithmetic emulator will be 
developed.    

 
   

3.3. Thesis Outline 
 

The proposed outline is given belong. This outline is the today’s vision on 
the future PhD. However, future changes can appear.  

 
1. Introduction – in this chapter a overall view of the scientific domain will 

be made and the opportunity for this thesis will be 
presented. 

2. An Interval Arithmetic System Perspective – this chapter will be 
dedicated to the analysis of the specific interval arithmetic 
applications; a presentation of these applications will be 
realized; a presentation of the methodology of analysis will 
be made; and finally the results will be given, which will 
present the hardware requirements for these applications. 

3. Interval Addition – this chapter will be dedicated to the interval addition 
unit; the chapter will contain the state-of-the-art regarding 
both floating point addition and interval addition; the 
proposed unit will be presented and detailed; cost and 
performance estimates are given; the impact for both 
interval arithmetic applications and for floating point is 
estimated; also comparison with the state-of-the-art both in 
conventional floating point and interval arithmetic is 
realized. 

4. Interval Multiplication – this chapter will present the interval 
multiplication unit; the chapter will contain state-of-the-art 
regarding floating point multiplication; interval 
multiplication algorithms are examined and detailed; the 
proposed interval multiplication algorithm will be ; its 
hardware implementation will be detailed; cost and 
performance estimates are given; also comparison with the 
state-of-the-art both in conventional floating point and 
interval arithmetic is realized. 

5. Interval Multiply-Add Fused – this chapter is dedicated to the interval 
multiply-add fused unit; the state-of-the-art of the floating 
point multiply-add fused will be realized; interval multiply-
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add fused algorithms will be proposed; hardware 
implementation of the proposed algorithms are given; cost 
and performance estimates are given; comparisons with 
floating point multiply-add fused units will be made; the 
impact on specific interval arithmetic applications will be 
performed. 

6. Interval Divide-Add Fused – this chapter will present the interval divide-
add fused unit; a detailed presentation of the floating point 
SRT division will be made; a floating point divide-add fused 
will be proposed; an interval divide-add fused algorithm and 
its hardware implementations will be given; cost and 
performance estimates are realized; the impact on specific 
interval arithmetic application will be analyzed. 

7. Conclusion – this chapter will present the concluding remarks of the PhD. 
thesis; the major contributions of this thesis are summarized; 
furthermore the impact of this thesis is given. 

 
Two PhD. reports will be presented. The contents of the PhD. reports will 

be the following: 
- PhD. Report 1 – this report will be dedicated to interval addition and 

multiplication 
- PhD. Report 2 –  this report will be dedicated to interval multiply-add 

fused and divide-add fused 
 
 
 
3.4. Realization 
 
3.4.1. Activity Planning 
 

In order to achieve the major thesis objectives, on the two main scientific 
directions, and to follow the proposed thesis outline, a very detailed and 
carefully planning of the research and development activities has to be 
followed. The major tasks of the research process follow the major chapters of 
the proposed PhD. thesis layout. Furthermore, the two PhD. reports and the 
completion of the thesis are also included in the major tasks of the scientific 
process.  Fig 3.2 presents the timeline and an estimated duration for the 
accomplishment of the major tasks in the research process. 
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Fig. 3.2 Major activities planning  

 
In order to achieve each major research and development activity, smaller 

activities have to be accomplished. These smaller activities are specific to every 
major task.    

In Fig. 3.3 are depicted the activities which will result in the completion of 
the PhD. report No. 1. These activities are planned for the academic year 2007-
2008. The estimated timeline and milestones for each of major activities are 
presented in the below graphic. 
 

 
Fig 3.3 Planned activities for the 2007-2008 academic year 
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 For the second academic year (2008-2009), the finalization of the PhD. 
report No. 1 and of the PhD. thesis are the main goals. Also, the design of the 
interval MAF and interval DAF are estimated to take place in this period. In 
Fig. 3.4 are depicted the activities which must be undertaken in order to achieve 
the major tasks of this academic year.  
 
 

 
Fig 3.4 Planned activities for the 2007-2008 academic year 

 
Thus, by a accomplishing each of the major tasks as planned and by 

sustaining all the activities planned, the PhD. thesis can be defended by the 
second quarter of 2009, following the directions dictated by the University’s 
Doctoral Program. 
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3.4.2. System Design 
 

The main scientific direction of this PhD. will be the design of the interval 
arithmetic unit for addition, multiplication, multiply-add fused and divide-add 
fused. These units must be evaluated in terms of both performance and cost and 
must be compared with both existing interval arithmetic units and conventional 
floating point units.  

In order to achieve the above presented tasks, the proposed units will be 
designed in VHDL. VHDL will be used because it provides a technology 
independent hardware description language. Thus, my designs will be 
technology independent, which is a major advantage for me, due to the 
inaccessibility of any semiconductor chip processing technology.  

For each unit, three VHDL models will be designed. A first model will be 
made at gate level for a simplified 16 bits IEEE format. The role of this model 
will be for functional testing, because at 16 bits exhaustive testing is possible. 

A second VHDL model will be made at gate level for IEEE simple 
precision. The role of this model will be to estimate the cost of the design. 
Furthermore, VHDL models for other existing units will be made in order to 
achieve an efficient and relevant cost comparison. 

A third model will be made for IEEE double precision numbers. This model 
will be made at a more behavioral level, where the major subcomponents will 
be described at behavioral level. All the details, and especially the delays, for 
these subcomponents will be taken from the existing literature. Thus, a relevant 
performance comparison can be achieved.  

 
 
3.4.3. Dissemination 
 

An important issue for this PhD. is constituted by the results dissemination. 
The dissemination will follow two major directions: 

- The first direction is focused on the dissemination needed for 
accomplishing the PhD. thesis and is based around the two PhD. report 
and the PhD. thesis. In this way, all the scientific results of my research 
will be evaluated and criticized by the ACSA research group and by the 
Computer Science and Engineering Department, where I belong. 

- The second direction is focused on publication in major conference 
proceedings and journals. In this way, my work during this PhD. will be 
evaluated by the entire scientific community. The main topic of the 
conferences where I attend to publish will be computer arithmetic, in 
particular, and digital design, in general. Some conferences which I 
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attend to publish are: IEEE Workshop on Design and Diagnostics of 
Electronic Circuits and Systems, Euromicro Digital System Design, 
IEEE Circuits and Systems Conference, IEEE Symposium on Computer 
Arithmetic.  

 
 
3.5. Potential Contributions 
 

This thesis main goal is to offer a new perspective in the design process of 
interval arithmetic units, offering viable and efficient solutions in order to 
provide hardware support for interval arithmetic. Thus, significant contributions 
will be made for each designed unit. The potential contributions can be 
classified in to classes: 

- Better solutions for existing interval arithmetic units – this can apply to 
the interval addition and multiplication units; 

- New interval arithmetic units – this principal can apply to the multiply-
add fused and divide-add fused; to the best of our knowledge no such 
units have been proposed. 

Another major potential contribution may be given by the second scientific 
direction, being the first attempt to analyze interval arithmetic application in 
order to design specific circuitry dedicated to them.   
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4. Conclusions 
 
 
 
 As it was stated in the beginning of this report, this PhD. comes to fill the 
gap of dedicated hardware support for interval arithmetic. A new approach for 
this major objective is proposed: to design the hardware units from almost zero, 
by taking into account all the specifications of interval arithmetic. This way 
efficient hardware unit both in performance and cost can be obtained. Thus, a 
better exploitation of the more reliable interval applications is possible.  
 The PhD. is like a journey. It has a start point, which is represented by the 
state-of-the-art of the scientific domains where the PhD. belongs. In this case, 
the scientific domain is represented by the floating point and interval arithmetic. 
In this PhD. report Chapter 2 is dedicated to the state-of-the-art in both interval 
and conventional floating point arithmetic. Algorithms and hardware designs 
for interval arithmetic units are presented. An overview of the IEEE 754 
standard for binary floating point arithmetic, which will be used for all the 
proposed designs, is given. Principles in hardware designs for floating point 
addition, multiplication, multiply-add fused and division are detailed. 
 The journey has a destination. This destination is represented by the final 
PhD. thesis. An outline for this PhD. is given. This outline points out the major 
objectives and the potential contributions. Furthermore, the main objectives and 
the contributions are presented in this PhD. report. 
 Furthermore, the means for reaching the destination are presented in detail 
in this PhD. report. The main milestones and the activities associated with them 
are given. A detailed planning for these milestones and activities are depicted. 
Also, the methodology for design and analysis of the proposed units is 
presented. And last, but not least, the dissemination plans are given.  
 Thus, this report constitutes the first step for the proposed PhD. thesis. The 
future work will follow the guidelines presented in this report. 
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